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Abstract—Time-optimal trajectories with bounded velocities
and accelerations are known to be parabolic, i.e., piecewise
constant in acceleration. An important characteristic of this
class of trajectories is the distribution of the switch points,
i.e., the time instants when the acceleration of any robot joint
changes. When integrating parabolic trajectory generation into
a motion planning pipeline, especially the one which involves a
shortcutting procedure, the resulting trajectory usually contains
a large number of switch points with a dense distribution. This
high frequency acceleration switching intensifies joint motor wear
as well as hamper the robot performance. In this paper we
propose an algorithm for planning parabolic trajectories subject
to both physical bounds, i.e., joint velocity and acceleration limits,
and the minimum-switch-time constraint. The latter constraint
ensures that the time duration between any two consecutive
switch points is always greater than a given minimum value.
Analytic derivations are given as well as comparison with other
methods.

Note to Practitioners—A large number of industrial robots
accept piecewise constant acceleration trajectories as inputs.
Currently available procedures for planning such trajectories
usually cause trajectories to have many switch points, the time
instants when a robot joint changes its acceleration, concentrated
in short time intervals. Switch points that are too close to
each other might hamper the robot performance, in terms of
execution time or tracking accuracy. To address this problem we
develop an algorithm which plans piecewise constant acceleration
trajectories by taking into account not only joint velocity and
acceleration bounds but also the minimum-switch-time constraint.
The latter constraint ensures that the time duration between any
two consecutive switch points is always greater than a given
minimum value. Although the constraint might result in longer
trajectory durations, it significantly reduces the number of switch
points. Comparisons with other methods show that our method
produces higher quality trajectories. We also provide an open-
source implementation in Python.

Index Terms—parabolic trajectories, shortcutting, switch time.

I. INTRODUCTION

As the execution time of robot movements is a determining

factor in industrial productivity, planning fast robot trajectories

is an important topic in industrial robotics. A large body

of work has been devoted to the planning of time-optimal

trajectories for robot manipulators, subject to various types of

constraints, such as torque bounds [1], [2], gripper and payload

constraint [3], or velocity and acceleration bounds [4], [5], [6].

In trajectory generation for industrial robots two families of

trajectories, namely splines and polynomials, are often used.

B-splines were used in [7] while fifth-degree polynomials

were used in [8] for trajectory generation. However, in both

cases the authors only considered the case when terminal

velocities were zero. [9] considered polynomial-like trajectory

with arbitrary terminal velocities. Although it was claimed to

be computationally light, no physical bounds such as velocity

limits were taken into account. [10] and [11] extended the

framework to handle others classes of trajectories. However,

neither of the above mentioned work addressed the time-

optimality issue in the trajectory classes used.

While many trajectory classes can be utilized, a significant

proportion of industrial robots are controlled in acceleration,

i.e., their inputs are time-series of the joint accelerations,

resulting in piecewise parabolic (or second-order) trajecto-

ries. Hauser and Ng-Thow-Hing [5] and Kröger et al. [12]

investigated the problem of planning time-optimal piecewise

parabolic trajectories subject to velocity and acceleration

bounds (note that in this case the parabolicity of the optimal

trajectories is a posteriori). However, the trajectories computed

by these authors tend to have a large number of switch points,

i.e., time instants when the acceleration of any joint changes.

Furthermore, these switch points are sometimes concentrated

in a short time interval, see Fig. 1, especially after a shortcut-

ting procedure [5], [13] has been applied.

Yet, in many applications, switch points that are too close

to each other might hamper the performance of the system.

For instance, in applications where human operators must

implement the planned trajectory, time durations between two

switches cannot be smaller than the cognitive processing time

of the operator, which can be of the order of seconds.

One possibility to take into account the minimum-switch-

time constraint could be to include this constraint, along

with velocity and acceleration bounds, into an optimization

program. However, this program is non-convex, and therefore

cannot be efficiently solved (see Section V-A).

In this paper we propose an algorithm for planning

piecewise parabolic trajectories that takes into account the

minimum-switch-time constraint in an efficient way. We first

start with the algorithm of [5], [12], which computes time-

optimal interpolations subject to velocity and acceleration

bounds (recalled in Section II). Then we examine all the

possibilities of violation of the minimum-switch-time con-

straint, and propose a solution to address the violation

for each case (Sections III and IV). A proof of time-

optimality is provided, as well as an open-source implemen-

tation (see https://copy.com/jQtScjfYJ6voQsFT).

The new interpolation routine is integrated into a full-fledged
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Fig. 1. An example trajectory planned and shortcut using the algorithm in [5].
Red vertical lines indicate time instants when at least one DOF switches its
acceleration (switch points). The minimum-switch-time of this trajectory is
0.49ms, which is attained near t = 0.1 s.

motion planner and its efficiency is demonstrated through

simulations (Section V).

II. BACKGROUND: TIME-OPTIMAL PARABOLIC

INTERPOLATION WITHOUT MINIMUM-SWITCH-TIME

CONSTRAINT

In the sequel, bold lower-case letters will denote vectors,

normal lower-case letters will denote scalars, and bold upper-

case letters will denote matrices.

A. Motion planning pipeline

Before recalling the time-optimal parabolic interpolation

algorithm of [5], [12], this section presents the global motion

planning pipeline that is based on this algorithm. Although

there exists a large number of motion planning methods, this

plan-and-shortcut pipeline is one of the most robust [14] and

widely used in industrial robotics; it is the default pipeline in

the robot programming environment OpenRAVE [15], which

in turn is used by a large number of research groups and

robotics companies worldwide.

A trajectory planning problem consists in finding a fast

trajectory connecting two robot configurations xinit and xgoal

in the robot joint space C ⊂ R
n, where n is the number of

degrees of freedom (DOFs) of the robot, subject to velocity

and acceleration bounds of each joint, as well as collision

avoidance. This pipeline is based on the path-velocity decom-

position approach [16] which decompose the problem into

planning a path and a velocity profile. In the first stage a

path planner such as a Rapidly-Exploring Random Tree (RRT)

planner [17] is used to search for a collision-free path connect-

ing xinit and xgoal. The solution path is piecewise linear since

it is formed by concatenating a linear path segment together.

Each linear path segment P connecting xa and xb can be

represented by a parameterization x(s) = xa + s(xb − xa),
where s ∈ [0, 1].

The second stage, called time-parameterization, assigns to

a path a velocity profile, which is the time-derivative of the

path parameterization function s : [0, T ] → [0, 1], where

T is the total duration of the velocity profile and thus of

the trajectory. The problem can be alternatively viewed as

a velocity profile interpolation problem. To respect the path

geometry (avoiding thereby new collisions at this stage), we

must time-parameterize paths of different joints simultaneously

through the path parameterization function s. Furthermore, to

avoid discontinuities in the velocity vector at the junctions of

the linear segments, we need to ensure that the velocities at

the beginning and the end of each segment are zero. In the end

we will have a trajectory x : [0, T ] → C, where x(0) = xinit

and x(T ) = xgoal.

In the third stage, a randomized shortcutting procedure is

applied to improve the execution time of the trajectory, which

is initially high because of the nature of a randomized path

planner1 and of the start-stop behavior at the junctions between

linear segments. In each shortcutting iteration two random time

instants ta and tb, are selected. Then a time-optimal trajectory

is interpolated between (x(ta), ẋ(ta)) and (x(tb), ẋ(tb)). To

effectively shortcut the trajectory, different DOFs may be

interpolated independently, provided that all the interpolants

have the same duration. If the shortcut has shorter duration

than tb − ta and is collision-free, then we replace the original

trajectory segment by the shortcut.

In the aforementioned procedure two interpolation primi-

tives are required : (i) simultaneous interpolation with zero

terminal velocities (in the planning stage) (ii) independent

interpolation with arbitrary terminal velocities subject to the

condition that the interpolants have the same duration (in

the shortcutting stage). The following sections recall the

algorithms proposed in [5] for each case.

B. Simultaneous interpolation with zero terminal velocities

Definition 1. A ramp is a constant-acceleration velocity pro-

file. A ramp with non-zero acceleration is called a parabolic

ramp or P-ramp. A ramp with zero acceleration is called a

linear ramp or L-ramp. �

Definition 2. A P-ramp with maximal (respectively minimal)

acceleration is noted P+ (respectively P−). An L-ramp with

maximal (respectively minimal) velocity is noted L+ (respec-

tively L−). �

Consider a linear path segment P connecting xa and xb

which is parameterized by a path parameterization function

s : [0, T ] → [0, 1]. A valid velocity profile must be subject to

boundary conditions v(0) = v(T ) = 0, where v(t) = ẋ(t).
Let vm and am be the vectors of velocity and acceleration

1Some planners, such as RRT* [18] optimize path quality during the
planning itself, as opposed to the post-processing approach advocated here.
However, such planners have large execution overheads and are seldom used
in practical industrial settings.
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bounds respectively. The velocity and acceleration bounds for

the function s are then given by ṡm
def
= mini(vm,i/|xb,i −

xa,i|) and s̈m
def
= mini(am,i/|xb,i−xa,i|), where the subscript

i denotes the ith component of the vector.

The n-DOF path-parameterization problem of the segment

has been transformed to a single-DOF problem in the variable

s subject to the velocity bound ṡm and the acceleration bound

s̈m. The time-optimal velocity profile can be shown to be

either P+P− or P+L+P−. In the former case, the switch point

is given by ts =
√

1/s̈m. In the latter case, the first switch

point is given by t0 = ṡm/s̈m and the switch time between

the two switch points is t1 = 1/ṡm − 1/s̈m.

C. Independent interpolation with arbitrary terminal veloci-

ties

1) Single DOF: Given a straight-line path from x0 to x1, the

time-optimal velocity profile with the initial and final velocities

v0 and v1, subject to velocity and acceleration bounds vm
and am can be shown to have only four possible types :

P+P−, P−P+, P+L+P−, and P−L−P+. For given boundary

conditions and bounds we can compute (or interpolate) the

time-optimal velocity profile by exploring each of the four

cases above. The detailed calculations of the switch points in

each case can be found, for example, in [5], [6] and [12].

2) Multiple DOFs: Here the authors of [5] first interpolate

(the velocity profile of) each joint independently. Suppose the

kth joint has the longest duration of T . Then they re-interpolate

the velocity profiles of the remaining DOFs such that all new

velocity profiles have the same duration T . However, this

interpolation is not always possible, and determining whether

the re-interpolation is possible for a given set of boundary

conditions and bounds is actually a difficult problem [6], [12].

The authors of [5] suggest to explore four possibilities sim-

ilar to P+P−, P−P+, P+L+P−, and P−L−P+. In each case

they constrain both P-ramps to have the same magnitude

of acceleration |a|. Doing so allows then to subsequently

solve for |a|. This extra constraint, however, considerably

decreases the success rate of the re-interpolation, which in

turn decreases the performance of the shortcutting method.

A new re-interpolation method – with or without considering

the minimum-switch-time constraint – which achieves a higher

success rate is proposed in this paper, see Section IV-B.

III. SIMULTANEOUS INTERPOLATION WITH ZERO

TERMINAL VELOCITIES SUBJECT TO THE

MINIMUM-SWITCH-TIME CONSTRAINT

Let the minimum allowed switch time be δ ≥ 0. Consider

first the case when the velocity profile ṡ(t) computed in

Section II-B is P+P−. Assume that the duration of each ramp

(both ramps have equal duration by construction) is ts < δ. To

address this constraint violation, we construct a new velocity

profile, ṡ′(t), which has two ramps of equal duration. To

make the velocity profile time-optimal while not violating the

constraint, each ramp must have a duration of t′s = δ. Thus, the

new peak velocity becomes ṡ′p = 1/δ and the new acceleration

of each ramp has the magnitude |s̈′| = ṡ′p/δ. It can be easily

verified from direct calculations that ṡ′p < ṡm and |s̈′| < s̈m.

t0 t1 t2
PP1 < δ ≥ δ -

PP2 ≥ δ < δ -

PP3 < δ < δ -

PLP1 < δ ≥ δ ≥ δ

PLP2 ≥ δ ≥ δ < δ

PLP3 ≥ δ < δ ≥ δ

PLP4 < δ < δ ≥ δ

PLP5 ≥ δ < δ < δ

PLP6 < δ ≥ δ < δ

PLP7 < δ < δ < δ

TABLE I
ALL POSSIBILITIES OF MINIMUM-SWITCH-TIME CONSTRAINT VIOLATION.

Next consider the case when the velocity profile ṡ(t) com-

puted in Section II-B is P+L+P− and violates the minimum-

switch-time constraint. There are two possible subcases de-

pending on the duration of P-ramps, t0 = ṡm/s̈m.

1) t0 ≥ δ: Here only the L-ramp violates the constraint.

We have two possible ways to address this violation : (a) we

stretch the L-ramp to δ. The accelerations of the two P-ramp

remain unchanged but their durations are shortened so as to

maintain the total displacement of 1 ; (b) we re-interpolate the

velocity profile such that it has two P-ramps of equal duration

t′s = 1/ṡm. The peak velocity still saturates the bound while

the magnitude of acceleration of each ramp is reduced to

|s̈′m| = ṡ2m. By comparing the two velocity profiles above,

we then choose the valid and smallest one.

2) t0 < δ: Here both P-ramps violate the constraint. There

are three subcases ; the condition for each subcase follows

directly from direct calculations : (a) ṡmδ ≥ 1. The new

time-optimal velocity profile has two ramps of equal duration

δ. (b) 2ṡmδ ≤ 1. The new time-optimal velocity profile has

three ramps ; both P-ramps have durations of δ while the

L-ramp saturates the velocity bound and has a duration of

1/ṡm − δ. The condition of this case guarantees that the du-

ration of the new L-ramp is not shorter than δ. (c) Otherwise,

we proceed in the same way as in the case ṡm/s̈m ≥ δ stated

above.

IV. INDEPENDENT INTERPOLATION WITH ARBITRARY

TERMINAL VELOCITIES SUBJECT TO THE

MINIMUM-SWITCH-TIME CONSTRAINT

A. Single DOF

The task here is to interpolate a velocity profile for each

DOF subject to boundary conditions (x0, v0) and (x1, v1)
while respecting the velocity and acceleration bounds vm and

am, and the minimum-switch-time constraint δ.

We use a two-step method. In the first step we compute

a time-optimal velocity profile subject to only velocity and

acceleration constraints. Then in case the minimum-switch-

time constraint is violated, we re-interpolate the profile by also

taking into account the minimum-switch-time constraint. Let

t0, t1, and t2 be the durations of the first ramp, the second

ramp, and the third ramp (for PLP) of the original velocity

profile. Since the original profile can be either PP or PLP,

there are 10 exhaustive cases of possible minimum-switch-

time constraint violation which are summarized in Table I.

1) PP1: In the first step we stretch the first ramp to δ. We

constrain the second ramp to remain at the same acceleration
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Fig. 2. This figure illustrates our re-interpolation procedure for the case PP1.
The original velocity profile is shown in red. The re-interpolated velocity
profile is shown in green. The first ramp of the new velocity profile is stretched
such that it has the duration of δ.

so it will be shortened. The new peak velocity at the new

switch point t′0 = δ can be computed as

v′p =
1

2

(

k1 − sgn(k1)
√

k21 + 4k1v0 + 4v21 − 8a1d

)

, (1)

where d = x1 − x0 is the total displacement of the trajectory,

k1 = a1δ, and a1 is the acceleration of the last ramp.

The new acceleration of the first ramp a′0 can be computed

accordingly from a′0 = (v′p − v0)/δ. Fig. 2 shows an example

of our re-interpolation according to the case PP1. A proof in

Appendix A shows that the terms inside the square root in

(1) is always non-negative. After following the first step if the

new duration of the last ramp, t′1 = (v1 − v′p)/a1, is shorter

than δ, we need to re-interpolate the profile again. This can

be done in two ways : (a) the new velocity profile has two

ramps of equal duration δ ; (b) the new velocity profile has

one single ramp. In both cases we can compute explicitly the

total durations as well as the accelerations and peak velocities.

Finally we choose the time-optimal one (note that at least (b)

is guaranteed to be valid ; see Appendix A).

2) PP2: This case is symmetric with PP1 and the procedure

is similar to that of PP1.

3) PP3: There are two possibilities of re-interpolation : (a) the

new velocity profile has two ramps of equal duration δ ; (b) the

new velocity profile has one single ramp. However, unlike

the previous two cases where one-ramp velocity profile is

guaranteed to be valid, i.e., not shorter than δ, there is a

possibility that one-ramp profile is still shorter than δ. To

handle such cases, we shall “flip” the original velocity profile.

If the original profile is P+P−, then the new profile will be

P−P+ and so on. The idea of flipping the profile is illustrated

in Fig. 3. The new peak velocity can then be computed from

v′2p = (v20 + v21)/2 + a′0(x1 − x0), (2)

provided that the right-hand term is non-negative. Of the

two solutions, we shall select the one which makes the new

velocity profile valid and shortest possible.

In case (v20 +v21)/2+a′0(x1−x0) is negative, or is positive

but both of the resulting velocity profiles are not valid, this

means both ramps cannot saturate the acceleration bounds at

the same time. Here we modify the velocity profile following

the idea for PP1 and PP2. For example, consider the case when

t0 > t1, i.e., the first ramp of the original velocity profile is

longer than the last. The “flipped” velocity profile will have

the last ramp longer than the first. To obtain this flipped profile
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Fig. 3. The original velocity profile is shown in red. The minimum-switch-
time constraint δ is set to be 0.2. By using v′p computed from (2), two velocity
profiles can be constructed (shown in dashed magenta and solid green). In
this case both profiles are valid.

we follow the routine for PP1. The first ramp of the new

profile has a duration of δ while the last ramp saturates the

acceleration bound.

4) PLP1: Here our re-interpolation routine explores two

possibilities : PLP1A) the re-interpolated profile has three

ramps ; PLP1B) the re-interpolated profile has two ramps.

Then we choose the case which gives the shorter duration.

In PLP1A we stretch the duration of the first ramp of the

original profile to δ while the final velocity, vp, remains at

the velocity bound. The acceleration of the new first ramp is

then a′0 = (vp − v0)/δ. The velocity profile for the remaining

portion of the trajectory is re-interpolated using the routine

for PP1. In PLP1B the first two ramps of the original velocity

profile are merged into a single ramp by retaining the boundary

conditions. The third ramp of the original profile remains

unchanged. Finally we choose the case which gives the shorter

duration. Note that at least the case PLP1B is valid since the

merged ramp will always be longer than δ. Here the case where

the re-interpolated profile has one ramp is not explored since

it cannot be shorter than the velocity profile from PLP1B.

5) PLP2: This case is symmetric with PLP1 and the proce-

dure is similar to that of PLP1.

6) PLP3: In this case we have to stretch the duration of the

middle ramp of the original velocity profile to δ. There are

two possibilities depending on the acceleration of the new

middle ramp, a′1 : PLP3A) a′1 6= 0 ; PLP3B) a′1 = 0. In

PLP3A we leave either the first or the last ramps unchanged.

The remaining two ramps, which can be viewed as a two-

ramp velocity profile that violates the minimum-switch-time

constraint, are re-interpolated with routines for PP. To choose

which two to be re-interpolated, we explore both cases and

choose the case which gives the shorter profile. In PLP3B the

first and the last ramp will still have the same accelerations

after re-interpolation. The velocity of the new middle ramp,

v′p, can then be calculated as

v′p =
1

2

(

−k + sgn(a0)
√

k2 + 4a0d+ 2(v20 + v21)

)

, (3)

where k = a0δ and a0 is the acceleration of the first ramp.

Finally we choose the case which gives the shorter duration.

7) PLP4: This case can be divided into two

subcases : PLP4A) the re-interpolated profile has three

ramps ; PLP4B) the re-interpolated profile has two ramps. In

PLP4A and PLP4B we proceed in the same way as in PLP1A

and PLP1B respectively. However, unlike PLP1 where PLP1B
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will always give a valid velocity profile, the merged ramp can

sometimes be shorter than δ. In that case we re-interpolated

the velocity profile again using the routines for PP1, i.e.,

the duration of the first ramp (the merged ramp) is stretched

to δ ; the new peak velocity is then calculated from (1) ;

the acceleration of the remaining ramp remains unchanged.

Finally we choose the case which gives the shorter duration.

8) PLP5: This case is symmetric with PLP4 and the proce-

dure is similar to that of PLP4.

9) PLP6: We examine 4 exhaustive ways to modify the

original velocity profile : PLP6A) the durations of both the first

and the last ramps are stretched to δ. The new middle ramp is

still at the velocity bound and hence shortened ; PLP6B) we

stretch only the duration of the first ramp to δ. There are two

subcases depending on the final velocity of the first ramp.

In the first subcase the final velocity v′p is set to the velocity

bound. The remaining portion is re-interpolated as a two-ramp

velocity profile using the routines for PP. In the second subcase

the final velocity v′p is calculated as in PP1 (Eq.(1)) and the

remaining portion is re-interpolated accordingly ; PLP6C) we

stretch only the duration of the last ramp to δ. There are

two subcases similar to PLP6B) ; PLP6D) we re-interpolate

the profile such that it has only one ramp. Finally we choose

the case which gives the shorter duration. Note that at least

the case PLP6D is valid since the total duration after re-

interpolation is always greater than the duration of the original

middle ramp which in turn greater than δ.

10) PLP7: We examine 3 cases of re-interpolate profiles :

PLP7A the new velocity profile has three ramps. Since all

ramps of the original velocity profile are shorter than δ, the

duration of each ramp of the new velocity profile must be

equal to δ. To re-interpolate a velocity profile to be three-ramp

with specified durations for all ramps, we use the procedure

described in Appendix C ; PLP7B the new velocity profile

has two ramps ; and PLP7C the new velocity profile has one

ramp. To re-interpolate a velocity profile into two- or one-

ramp (PLP7B or PLP7C), we can use the routine for the case

PP3. After exploring all three cases, we choose a valid profile

(if any) which gives the shortest duration. The case which all

PLP7A, PLP7B, and PLP7C do not give any valid velocity

profile can occur, however, when the velocity limit is very

low and one of the terminal velocities is zero. In this case we

proceed as follows. Let vp be the peak velocity of the original

trajectory. If |vp − v0| > |vp − v1|, we stretch the duration of

the new first ramp to δ while the final velocity remains the

same. Then we re-interpolate the remaining portion to be one

ramp. On the other hand, if |vp − v0| < |vp − v1|, we stretch

the duration of the last ramp to δ while the initial velocity of

the last ramp remains the same. Then we re-interpolate the

remaining portion to be one ramp.

B. Multiple DOFs

After independently interpolating velocity profiles for dif-

ferent joints for a shortcut path, each joint may have different

time duration. However, in order to be a valid shortcut, velocity

profiles of all the joints for the shortcut path must have the

same duration. Let the mth joint, 1 ≤ m ≤ n, have the

slowest velocity profile of the duration T . Since the shortcut

cannot have its duration less than T , the purpose here is to

re-interpolate all the remaining n− 1 joints to have the same

duration T .

Given a trajectory and a fixed time T , a velocity profile re-

interpolation problem has either infinitely many solutions or

no solution [6]. Moreover, even when the minimum-switch-

time constraint is not taken into account deciding whether the

problem has a solution is difficult [12]. Therefore, to simplify

the problem so that we can solve it analytically, the class

of the re-interpolated velocity profile (two- or three-ramp)

and some of free variables might be specified beforehand.

The authors of [5] suggested to explore both classes and to

constrain the accelerations of the first and the last ramps to

have equal magnitude. However, constraining the acceleration

magnitude is restrictive and therefore results in relatively low

re-interpolation success rate, as can be seen in Section V-C.

We propose here a routine which also explores both classes

of possible velocity profiles but instead of constraining the

accelerations, it makes some initial guesses on the duration of

each ramp of the re-interpolated velocity profile. In addition,

our routine can also take into account the minimum-switch-

time constraint for multiple-DOFs by requiring that

min
i,k,j,l

|tsw(i, j)− tsw(k, l)| ≥ δ, (4)

where tsw(i, j) denotes the jth switch point of the ith DOF.

This implies that any pair of switch points will be separated

by a duration of at least a time duration of δ.

Suppose velocity profiles are γi, i = {1, 2, . . . , n} and γm is

the slowest with the duration T . We need to re-interpolate all

other velocity profiles, γi, i = {1, 2, . . . , n}, i 6= m, such that

they all have the new durations equal to that of γm. We start by

dividing each ramp of γm into equally long segments whose

durations are the smallest possible but still larger than δ (in our

implementation the total number of such segments is capped

to 50 to avoid long computation time when δ is small or null,

i.e., no minimum-switch-time constraint). After constructing a

grid we explore the two classes of velocity profiles as follows.

1) Two-ramp velocity profile: We try to locate the unique

switch point at each of grid lines. The acceleration of each

ramp can be analytically determined from the location of the

switch point (see Appendix B).

2) Three-ramp velocity profile: There are
(

N
2

)

possible ways

to choose two locations of switch points out of N grid lines. To

reduce computational cost, instead of trying all possibilities,

we make further guess on the locations of the switch points. In

particular, let t′0, t
′

1, and t′2 be durations of the first, the middle,

and the last ramps of the new velocity profile. Further guesses

are made on the ratios t′0/T, t
′

1/T, and t′2/T . Choices of these

three ratios are arbitrary. However, with some trial-and-error

testings, we suggest the values t′0/T = 1/4, t′1/T = 1/2,

and t′2/T = 1/4 which give fairly high success rate of re-

interpolation. Then we examine 4 ways of snapping those

switch points to their nearest grid lines. Given the duration

of each ramp, we can formulate the problem of finding

accelerations, a′0, a
′

1, and a′2, for all ramps as a feasibility

problem which can be solved analytically (see Appendix C).
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If neither the two- nor the three-ramp attempt succeeds, then

the re-interpolation is considered as failed and the correspond-

ing shortcut path is discarded.

V. IMPLEMENTATION AND USE IN MOTION PLANNING

A. Implementation and comparison with optimization method

Finding the time-optimal parabolic interpolation subject to

velocity, acceleration, and minimum-switch-time constraints

can also be formulated as an optimization problem. The

optimization variables are y = [t′0, t
′

1, v
′

p]
T for two-ramp

profiles, where v′p is the new peak velocity and z =
[t′0, t

′

1, t
′

2, v
′

p0, v
′

p1]
T for three-ramp profiles, where v′p0 is the

initial velocity of the new second ramp and v′p1 is the initial

velocity of the new third ramp.

Let the boundary conditions be (x0, v0) and (x1, v1), and

d = x1 − x0. For two-ramp velocity profiles the problem can

be formulated as

minimize
y

cT0 y

subject to G0y � h0

1

2
yTA0y + bT0 y − 2d = 0,

(5)

where A0 =

[

0 0 1
0 0 1
1 1 0

]

, b0 =

[

v0
v1
0

]

, c0 =

[

1
1
0

]

,

G0 =





















−am 0 1
−am 0 −1
0 −am 1
0 −am −1
−1 0 0
0 −1 0
0 0 1
0 0 −1





















, and h0 =





















v0
−v0
v1
−v1
−δ
−δ
vm
vm





















.

Similarly, an optimization problem for the three-ramp case

can be formulated as

minimize
y

cT1 z

subject to G1z � h1

1

2
zTA1z + bT1 z − 2d = 0,

(6)

where A1 =











0 0 0 1 0
0 0 0 1 1
0 0 0 0 1
1 1 0 0 0
0 1 1 0 0











, b1 =











v0
0
v1
0
0











, c1 =











1
1
1
0
0











,

G1 =







































−am 0 0 1 0
−am 0 0 −1 0
0 −am 0 1 −1
0 −am 0 −1 1
0 0 −am 0 1
0 0 −am 0 −1
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 −1 0
0 0 0 0 1
0 0 0 0 −1







































, and h1 =







































v0
−v0
0
0
v1
−v1
−δ
−δ
−δ
vm
vm
vm
vm







































.

Algorithms
PP PLP

Optim. Exact Optim. Exact

Comp. time (s.) 0.0181 0.000107 0.0418 0.000295
% stuck 13.8% − 14.4% −

% failed 2.2% − 8.6% −

TABLE II
A COMPARISON BETWEEN USING OPTIMIZATION AND THE PROPOSED

METHODS

Inequality constraints represent constraints on velocity,

acceleration, and minimum-switch-time while equality con-

straints represent constraints on the total displacement of

trajectories. From the above formulations we can obviously

see that both problems are non-convex since the matrices

A0 and A1 are not positive-semidefinite, i.e., some of their

eigenvalues are negative. The non-convexity of the problems

makes them difficult and more computationally expensive to

solve. In addition, a solver can also be stuck in local minima.

For comparison, we created 500 random problem instances

for each class of velocity profile. We then used both proposed

re-interpolation routines (Section IV) and PyIpopt2 to solve

the same problems. Average computation time, the number

of times the optimizer was stuck in a local minimum, and the

number of times the optimizer failed (the maximum number of

iterations exceeded) were recorded. The statistics are reported

in Table II. We found that the solution velocity profiles

returned from the optimizer always had either the same or

longer duration (the latter case implies that the optimizer was

stuck in a local minima).

B. Trajectory planning and shortcutting with minimum-

switch-time constraint

Here we include the minimum-switch-time constraint into

the motion planning pipeline described in Section II-A. In

the trajectory planning stage we use the routines described in

Section III to time-parameterize the path taking into account

the minimum-switch-time constraint. The parameterization is

done through the path parameter s and therefore does not affect

the path geometry.

In the shortcutting stage the condition (4) also needs to be

satisfied. In each shortcutting iteration we begin by randomly

selecting two time instants ta and tb. Let tswa be the nearest

switch point preceding ta and tswb the nearest consecutive

switch point of tb. If ta − tswa < δ, then we re-assign ta
to be tswa . Similarly, if tswb − tb < δ, then we re-assign

tb to be tswb . Next we continue in a usual manner by first

interpolating a velocity profile for each DOF independently

and determining the duration T of the slowest DOF. In case

T > tb−ta the shortcut is discarded right away. Otherwise, we

use the routines described in Section IV to re-interpolate all

the remaining velocity profiles again. And if the resulting tra-

jectory is collision-free, then we replace the original trajectory

segment with the shortcut.

C. Simulation results and comparisons with an existing

method

For all the simulations we used the joint velocity and

acceleration bounds of Denso VS-060 which is a 6-DOF

2PyIpopt is a freely available Python optimization module ; see
https://github.com/xuy/pyipopt
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industrial manipulator.

First we made a comparison between a re-interpolation

routine proposed in [5] and the routine proposed in Section IV

with three minimum-switch-time constraints : δ = 0 (no

minimum-switch-time constraint), δ = 0.008 s., and δ = 0.1
s., in terms of success rate of independent interpolation.

Comparison were made with two cases of generated pairs

of boundary conditions {(x0, ẋ0), (x1, ẋ1)}. In the first case

we randomly generated 1, 000 pairs of boundary conditions

while in the other case 1, 000 pairs of boundary conditions

were randomly picked from existing trajectories. For the latter

case we started with two (random) pairs of xinit and xgoal.

Then we planned 50 trajectories connecting each pair using

the aforementioned planning procedure (without shortcutting).

Then for each of 100 trajectories we randomly picked 10 pairs

of boundary conditions. The statistics in Table III show that

the re-interpolation routines proposed in [5] give relatively low

success rate due to restrictive constraints on ramp accelera-

tions.

For the next comparison a piecewise linear path was gener-

ated for each of two pairs of the initial and goal configurations.

Then for each of path segments we simultaneously interpolated

velocity profiles with zero terminal velocities, both with and

without the minimum-switch-time constraint Finally we gave

1 s. to both proposed method and the one proposed in [5]

to shortcut each trajectory. This process was repeated 1, 000
times. Initial trajectory durations, average final durations, and

numbers of shortcutting iterations executed from each method

are reported in Table IV.

Despite the fact that the proposed method is more compu-

tationally expensive as can be seen from Table III, when the

same amount of time are given to both methods, the proposed

method still performs better in terms of resulting trajectory

duration after shortcutting.

VI. CONCLUSION

In this paper we introduce a new constraint, minimum-

switch-time constraint, which is a constraint on time intervals

between consecutive switch points. Integrating this constraint

into interpolation routines can prevent velocity profiles from

having high-frequency switching in accelerations. For indus-

trial manipulators this therefore reduces joint motor wear.

We then present a new algorithm for planning piecewise

parabolic trajectories subject to velocity, acceleration, and

minimum-switch-time constraints. The algorithm starts by

computing time-optimal velocity profiles for straight line

paths subject to only velocity and acceleration constraints

as in [5], [6], and [12]. Then we address minimum-switch-

time constraint violations case by case. We also propose a

new strategy for re-interpolation of velocity profiles given a

fixed time duration. Simulation results show that our method

achieves a higher interpolation success rate and gives higher

quality trajectories than the previous method [5].
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APPENDIX A

PROOF OF TIME-OPTIMALITY

We present here detailed proofs for only the cases PP1
and PLP1. Proofs for cases PP2 and PLP2 can be easily

adapted from PP1 and PLP1, respectively, while for the

remaining cases, we have already explored all possibilities of

re-interpolation.

Consider first the case PP1. Let TPP1 be the total duration of

the newly re-interpolated velocity profile and t′0 the duration

of the new first ramp. Thus, TPP1 = t′0 + (v1 − v′p)/a1, where

v1 and a1 are the final velocity and the acceleration of the

second ramp, and v′p is the new peak velocity. The following

proposition holds.

Proposition 1. TPP1 is an increasing function in t′0.

http://www.programmingvision.com/rosen_diankov_thesis.pdf
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(x0, ẋ0) and (x1, ẋ1) generated randomly
(x0, ẋ0) and (x1, ẋ1) randomly picked from trajectories

Trajectories connecting xinit,0 and xgoal,0 Trajectories connecting xinit,1 and xgoal,1

Success rate Avg. comp. time (ms.) Success rate Avg. comp. time (ms.) Success rate Avg. comp. time (ms.)

From [5] 36.5% 0.364 61.0% 0.324 51.8% 0.381
δ = 0.0 78.1% 1.394 90.8% 1.512 85.8% 1.606

δ = 0.008 77.0% 1.431 89.8% 1.581 85.2% 1.666
δ = 0.1 75.7% 1.420 75.4% 2.806 74.0% 2.859

TABLE III
INDEPENDENT INTERPOLATION WITH ARBITRARY TERMINAL VELOCITIES (MULTIPLE DOFS): SUCCESS RATE AND AVERAGE COMPUTATION TIME

A trajectory connecting xinit,0 and xgoal,0 A trajectory connecting xinit,1 and xgoal,1

Initial dur. (s.) Avg. final dur. (s.) Avg. # iterations Initial dur. (s.) Avg. final dur. (s.) Avg. # iterations

From [5] 2.831 1.802 413.1 7.000 3.002 237.3
δ = 0.0 2.831 1.360 171.71 7.000 2.275 131.6

δ = 0.008 2.831 1.372 178.4 7.000 2.272 127.8
δ = 0.1 2.903 1.710 228.7 7.088 2.235 153.1

TABLE IV
BOTH PROPOSED METHOD AND THE ONE FROM [5] WERE GIVEN 1 S. TO SHORTCUT GIVEN TRAJECTORIES. THE EXPERIMENT WAS REPEATED 1, 000

TIMES FOR EACH TRAJECTORY.

Proof: We first consider the case P+P−. Substituting the

expression of v′p from (1) and a1 = −am into the expression

of TPP1 yields

TPP1 = t′0 +
1

2am

(

k1 +
√

k21 + 4k1v0 + 4v21 + 8amd

)

− v1
am

TPP1 =
1

2

(

t′0 −
2v1
am

)

+
1

2

√
∆,

where ∆ = (t′0 − 2v0/am)
2
+ 4

(

v21 − v20 + 2amd
)

/a2m. The

first derivative of TPP1 with respect to t′0 is then given by

d

dt′0
TPP1 =

1

2
+

1

2

t′0 − 2v0

am

√

(

t′0 − 2v0

am

)2

+ 4

a2
m

(v21 − v20 + 2amd)

.

(7)

If t′0 > 2v0/am, it follows directly that dTPP1/dt
′

0 > 0.

Otherwise, we examine the second term in the square root.

Before proceeding further, notice that for all P+P−1-

velocity profile, we always have that v0 > v1. Assume, for

contradiction, that a velocity profile falls in the case P+P−1
with v0 < v1. Since |a0| = |a1| = am, we then have that

(vp − v0)/am > (vp − v1)/am which results in t0 > t1. This

contradicts with the assumption that the trajectory is in the

case P+P−1.

Now consider when v0 > v1. The time-optimal velocity

profile connecting v0 and v1 subject to velocity and accelera-

tion bounds has one ramp if and only if the total displacement

is d∗ = (v20 − v21)/(2am). Therefore, for any P+P−-velocity

profile, the total displacement must be greater than d∗, i.e.,

v21 − v20 + 2amd > 0 (8)

By applying (8) to (7),we can see that dTPP1/dt
′

0 is always

positive. This completes the proof for the case P+P−. For the

case P−P+, the same argument which leads to dTPP1/dt
′

0 > 0
can be made. This completes the proof for the case PP1.

Therefore, following Proposition 1, to time-optimally re-

interpolate a velocity profile subject to the minimum-switch-

time constraint δ, the resulting duration of the first ramp must

be the shortest possible, t′0 = δ.

Next consider the case PLP1. Let t′0 be the duration of the

first ramp of the re-interpolated velocity profile. We claim that

0.0 0.1 0.2 0.3 0.4 0.5 0.6
time (s)

2.9

3.0

3.1

3.2

3.3

3.4

3.5

jo
in
t
v
e
lo
ci
ty

(r
a
d
/s
)

Fig. 4. The original PLP1-velocity profile which violates the minimum-
switch-time constraint δ = 0.2 is shown in red. The green and blue
velocity profiles result from re-interpolating according to PLP1A and PLP1B
respectively. The time instants tA

0
and tB

0
are marked with a dashed green line

and a dotted blue line respectively. In this particular example, re-interpolation
with PLP1A gives a shorter velocity profile.

in order for the re-interpolated velocity profile to be time-

optimal as well as satisfying all the constraints, t′0 must be

only in [tA0 , t
B
0 ], where tA0 is the duration of the new first

ramp in case the velocity profile is re-interpolated according

to the case PLP1A, i.e., tA0 = δ, and tB0 is the duration of the

new first ramp in case the velocity profile is re-interpolated

according to the case PLP1B. Fig. 4 shows velocity profiles of

the original PLP1-velocity profile as well as resulting velocity

profiles from the cases PLP1A and PLP1B.

The re-interpolation procedure of a PLP1-velocity profile

can be thought of as first re-interpolating the first ramp with

a duration t′0 ∈ [tA0 , t
B
0 ] and then re-interpolating the rest of

the profile using routines for PP1. Let d′0 = (v′p − v0)t
′

0/2 be

the displacement covered by the first ramp of the newly re-

interpolated velocity profile. The displacement covered by the

remaining part of the velocity profile is then drem = d − d′0.

Let the total duration of the new velocity profile be TPLP1. The

following proposition holds.

Proposition 2. TPLP1, as a function of t′0, attains its minimum

only when t′0 = tA0 or t′0 = tB0 .

Proof: We first consider the case when v′p = vm. The
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total duration TPLP1 can be expressed as

TPLP1 = t′0 + TPP1

TPLP1 = t′0 +
1

2

(

δ − 2v1
am

)

+
1

2

√

(

δ −
2v′p
am

)2

+
4

a2m

(

v21 − v′p
2 + 2amdrem

)

.

From the expression of TPLP1, we can compute d2TPLP1/dt
′

0

2

which is always negative. This implies that the minimum of

TPLP1 can only occur when either t′0 = tA0 or t′0 = tB0 .

For the case when v′p = −vm, the similar argument which

leads to d2TPLP1/dt
′

0

2
can be made. This completes the proof

for the case PLP1.

Therefore, following Proposition 2, we can conclude that the

time-optimal velocity profile subject to the minimum-switch-

time constraint δ must be obtained from either PLP1A or

PLP1B.

APPENDIX B

VELOCITY PROFILE RE-INTERPOLATION TO BE TWO-RAMP

Let T be the given total duration and τ0 the given switch

point. Since the total displacement must remain the same after

re-interpolation, we have

d =

(

v0τ0 +
1

2
a′0τ0

2

)

+

(

(v0 + a′0τ0)τ1 +
1

2
a′1τ1

2

)

, (9)

where a′0 and a′1 are accelerations of the first and the last ramp

of the new velocity profile respectively, and τ1 = T − τ0. We

also have a relationship between v0 and v1 as

v1 = v0 + a′0τ0 + a′1τ1. (10)

We can rewrite Eq. (9) and (10) as a system of linear equations

in a′0 and a′1 as
[

1

2
τ20 + τ0τ1

1

2
τ21

τ0 τ1

] [

a′0
a′1

]

=

[

d− v0T
v1 − v0

]

. (11)

We can then solve for a′0 and a′1. Since the determinant of

the square matrix is τ0τ1(τ0 + τ1)/2 6= 0, the system (11) is

always solvable.

APPENDIX C

VELOCITY PROFILE RE-INTERPOLATION TO BE

THREE-RAMP

Let T be the given total duration ; τ0, τ1, τ2 the desired

durations of the first, the middle and the last ramps of the

new velocity profile respectively. Since the total displacement

must remain the same after re-interpolation, we have

d =

(

v0τ0 +
1

2
a′0τ0

2

)

+

(

(v0 + a′0τ0)τ1 +
1

2
a′1τ1

2

)

+

(

(v0 + a′0τ0 + a′1τ1)τ2 +
1

2
a′2τ2

2

)

, (12)

where v0 is the initial velocity ; v′p0 and v′p1 are the first and

the second peak velocities respectively ; a′0, a
′

1, and a′2 are

accelerations of the first, middle, and last ramps of the new

velocity profiles respectively. Let α = τ20 /2 + τ0τ1 + τ0τ2,

β = τ21 /2 + τ1τ2, and σ = τ22 /2. Then Eq. (12) can be more

compactly rewritten as

αa′0 + βa′1 + σa′2 = d− v0T. (13)

Furthermore, we can derive a relationship between v0 and v1,

the final velocity, as

v1 = v0 + τ0a
′

0 + τ1a
′

1 + τ2a
′

2. (14)

We can write Eq. (13) and (14) as a system of linear equations

in a = [a′0, a
′

1, a
′

2]
T as

Aa = b, (15)

where A =

[

α β σ
τ0 τ1 τ2

]

and b =

[

d− v0T
v1 − v0

]

.

The system (15) is underdetermined. Therefore, a general

solution, ag , to the system can be expressed as ag = ap+ah,

where ap is a particular solution and ah is a non-trivial

element of the null space of A, i.e., satisfying Aah = 0. Here

we take the minimum-norm solution to (15) as a particular

solution, i.e., ap = AT (AAT )−1b. For a homogeneous

solution, we perform Gaussian elimination on A to obtain

ah = k





(βτ2 − στ1)/(ατ1 − βτ0)
(ατ2 − στ0)/(ατ1 − βτ0)

1



 ,

where k ∈ R.

Next consider the velocity bound vm. The peak velocities

of the re-interpolated velocity profiles are v′p0 = v0+a′0τ0 and

v′p1 = v1 − a′2τ2. Therefore, we get two sets of constraints on

the peak velocities, in terms of the accelerations, as

(−vm − v0)/τ0 ≤ a′0 ≤ (vm − v0)/τ0 and

(−vm + v1)/τ0 ≤ a′2 ≤ (vm + v1)/τ0.

Combining velocity and acceleration bounds together yields

constraints on accelerations as

l � ap + kah � u, (16)

where

l =













min

(

vm + v0
τ0

, am

)

−am

min

(

vm − v1
τ0

, am

)













and u =













min

(

vm − v0
τ0

, am

)

am

min

(

vm + v1
τ0

, am

)













.

Finally, we can solve for the feasible interval k from (16).

If there is no such k satisfying (16), then no feasible solution

for acceleration exists. Otherwise, any k in the interval can be

used to construct a feasible solution for accelerations.
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