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Abstract

Despite the theoretically infinite number of possible trajectories a
human may take to reach a distant doorway, we observed that locomo-
tor trajectories corresponding to this task were actually stereotyped,
both at the geometric and the kinematic levels. In this paper, we
propose a computational model for the formation of human locomo-
tor trajectories. Our model is adapted from smoothness maximization
models that have been studied in the context of hand trajectory gen-
eration. The trajectories predicted by our model are very similar to
the experimentally recorded ones. We discuss the theoretical implica-
tions of this result in the context of movement planning and control in
humans. In particular, this result supports the hypothesis that com-
mon principles, such as smoothness maximization, may govern the
generation of very different types of movements (in this case, hand
movements and whole-body movements).

Introduction

The existence of invariant properties of biological motion has been reported
in many experimental studies, in particular those related to arm movements
in animals and humans (Jordan and Wolpert, 1999). For instance, in the
case of reaching and drawing experiments, stereotyped behaviours in terms
of velocity profiles and smoothness of the hand trajectories in space are re-
ported in the literature (Morasso, 1981; Atkeson and Hollerbach, 1985). This
stereotypy is particularly striking in light of the theoretically infinite number
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of motor solutions to reach a spatial target. The existence of such motor
invariants and stereotypy were proposed to be the by-product of control laws
characteristic of biological systems. As a consequence, computational ap-
proaches have been developed over the past 20 years in order to formulate
the principles underlying the motor control.

In the companion paper (Hicheur et al., 2007), we demonstrated for the
first time that locomotor trajectories produced by humans in a simple goal-
oriented task were also highly stereotyped. We also observed that this stereo-
typy of whole-body trajectories contrasted with a much greater variability in
the feet placement. This observation indicates that goal-oriented locomo-
tion should be considered not only at the level of the steps but also at the
level of the whole trajectory. It is then necessary to develop a computational
approach to provide some elements of understanding of the mechanisms un-
derlying the generation of locomotor trajectories.

Optimal control approaches

This paper addresses this problem within the framework of optimization the-
ory. The optimal nature of locomotor behaviour was first investigated from
a biomechanical viewpoint at the level of the step formation. For instance,
it has been shown that humans choose walking or running so as to mini-
mize the metabolic energy cost at their current speed, as measured by their
consumption of oxygen (Alexander, 1989).

Optimization theory is an appealing framework as it is related to the pos-
sibility that the sensorimotor system is the product of processes such as evo-
lution, development, learning or adaptation that continuously act to improve
behavioural performance (Todorov, 2004). In practice, optimality principles
have been successful in modelling a great variety of biological movements.

For instance, observing that skilled movements are generally smooth and
graceful, Hogan (1984) proposed a minimum jerk principle to predict qual-
itative and quantitative features of single-joint forearm movements. This
is motivated by the assumption that minimizing the squared jerk (jerk is
mathematically defined as the third-order derivative of the position) may be
equivalent to maximizing smoothness. Flash and Hogan (1985) generalized
this model to the case of multijoint motion. They showed in particular that
planar trajectories (x(t), y(t)) that minimize the following squared jerk cost:

∫ 1

0

(

(

d3x

dt3

)2

+

(

d3y

dt3

)2
)

dt (1)

displayed qualitative and quantitative similarities with experimentally recorded
hand trajectories.
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In the above approach, the optimal trajectory is determined only by the
kinematics of the hand and is thus independent of the physical system that
generates the movement. Alternatively, Uno et al. (1989) proposed a min-
imum torque change model that takes into account dynamic properties of
the arm. They modelled the arm as a two-joint manipulator controlled by
torques applied at the joints, and showed that the trajectories that minimize
the total squared time derivatives of the torques displayed some features of
actual hand trajectories.

Recently, a number of studies have emphasized the importance of bio-
logical noise present in the motor system at many levels, ranging from the
neural commands to the muscular apparatus. These studies presented com-
putational approaches that involve a stochastic component and were success-
ful in predicting several properties of human movements (see for instance
the minimum variance model of Harris and Wolpert (1998), or the optimal
stochastic feedback control framework of Todorov and Jordan (2002)).

Minimum squared derivative (MSD) principles

Qualitatively, a trajectory is smooth if there are no abrupt variations in
time. This implies that higher-order time derivatives of the position have
low absolute values. While earlier studies (Hogan, 1984; Flash and Hogan,
1985) mostly focused on the squared jerk cost (see above), other costs such
as the squared acceleration or the squared snap (snap is the time derivative
of jerk) can also be considered. More generally, the nth-order MSD cost is
given by:

∫ 1

0

(

(

dnx

dtn

)2

+

(

dny

dtn

)2
)

dt (2)

The case n = 1 corresponds to the minimum velocity cost, n = 2 to minimum
acceleration, n = 3 to minimum jerk and n = 4 to minimum snap, etc.

Richardson and Flash (2002) conducted a comparative study in which
they examined the capacities of MSD principles of different orders to predict
hand trajectories. In particular, they found that 3rd- and 4th- order MSD
principles (minimum jerk and minimum snap) usually performed better than
those of other orders. In addition to quantitative fit, the trajectories pre-
dicted by 3rd- and 4th-order MSD principles displayed typical qualitative
characteristics of human hand trajectories: smoothness of the trajectory,
straight hand paths and bell-shaped velocity profiles in reaching tasks, inverse
relationship between velocity and curvature in drawing tasks (the so-called
two-thirds power law: Lacquaniti et al., 1983), etc.
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At the trajectory level, human locomotion seems to share some of these
qualitative features. Indeed, one can observe that human locomotor trajec-
tories are generally smooth. Straight paths are also generated for reaching
a spatial goal in an environment free of obstacles, provided that the initial
body orientation is compatible with such a path. Finally, humans tend to
decelerate in the curved parts and accelerate in the straighter parts of a tra-
jectory. This last observation was confirmed by a recent comparative study
(Hicheur et al., 2005) where the authors quantitatively examined the rela-
tionship between velocity and curvature in locomotor tasks where subjects
had to walk along complex shapes. While the two-thirds exponent was not
observed for these shapes (as opposed to the case of hand movements: Viviani
and Flash, 1995), the inverse variations of velocity and curvature could be
reproduced by multiple power laws whose exponents depended on the shape.
This variability of the exponents suggested that the power laws relating the
velocity to curvature in human locomotion could be by-products of more
general principles, for instance the optimality principles mentioned above.

Taken together, these observations raise the possibility that MSD prin-
ciples underlie the generation of human locomotion trajectories. If verified,
this would suggest that the same set of principles account for different types
of movements (hand movements and locomotor movements in our case) and
would provide interesting theoretical insights into the understanding of the
functional organization of the motor system in general. In order to test this
hypothesis, we designed an experiment in which subjects had to produce a
wide variety of locomotor trajectories. We then compared the experimen-
tally recorded trajectories with the optimal trajectories predicted by four
smoothness maximization models derived from the MSD approach.

Materials and methods

Experimental data

The experimental protocol is presented in detail in the companion paper.
Subjects gave their informed consent prior to their inclusion in the study.
Experiments conformed to the Code of Ethics of the Declaration of Helsinki.
Briefly, we designed a goal-oriented locomotor task similar to a ‘walking
through a distant doorway’ situation in order to observe the formation of
relatively complex locomotor trajectories. We asked the subjects to walk
along the laboratory-based Y-axis for about one meter before reaching the
actual initial position (the origin (0,0) of the laboratory’s reference frame),
so that their walking direction was approximately orthogonal to the X-axis
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when they reached the point (0,0). They then had to walk towards and
through a distant doorway (also designated below as ‘the target’) located at
various positions and with various orientations (see Fig. 1). The doorway
was ∼ 1 m wide, so that the subjects had no difficulty going through it at
normal walking speeds. Between the point (0,0) and the target, no specific
instructions were provided to the subjects relative to the path to follow.
The subjects were also free to choose their walking speed over the whole
trajectory.
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Figure 1: (A) Spatial disposition of the 40 tested targets. Each target posi-
tion is represented by a small black disk. The possible target orientations for
each target position are indicated by arrows. (B) The 12 target orientations,
ranging from 0 to 330◦.

In order to facilitate the analysis, we classified the 40 tested targets in
four categories according to the different turning magnitudes induced by
the door orientations. The four categories were: HC (high curvature), MC
(medium curvature), LC (low curvature) and ST (straight; see Fig. 2 for
an illustration of four typical trajectories recorded in one subject). The
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experimental database used for our study was composed of 709 trajectories
(we had to eliminate 11 faulty trials out of the 40 targets × 6 subjects
× 3 trials = 720 trials). The analysis was performed on the time interval
separating the instant t0 when subjects crossed the X-axis and the instant t1
when they reached the centre of the door, according to the task requirements
(see Fig. 2). The trajectory was then time-rescaled so that t0 = 0 and t1 = 1.
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Figure 2: Four actually recorded trajectories, one trajectory per category.

Modelling approach

As mentioned in the introduction, MSD principles have proved to be par-
ticularly relevant for modelling hand movements. In order to test how such
smoothness-based principles can predict locomotor trajectories, we constructed
mathematically MSD trajectories as follows.

For a given target, we first extracted a set of 12 parameters (initial and
final positions, velocities and accelerations for the x and y components) from
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the experimental data:

x0 =
1

N

N
∑

i=1

xi(0), vx
0 =

1

N

N
∑

i=1

ẋi(0), ax
0 =

1

N

N
∑

i=1

ẍi(0) (3)

and similarly for x1, vx
1 , ax

1 , y0, v
y
0 , a

y
0, y1, v

y
1 , a

y
1 (N corresponds to the

number of trajectories recorded for this target).
Some of these 12 parameters were task-related and thus were not related

to any spontaneous strategy. Indeed, according to the experimental protocol,
the initial and final positions (x0, y0, x1, y1) corresponded, respectively, to
the origin of the laboratory’s reference frame and to the centre of the door.
Similarly, the initial movement direction was imposed as parallel to the Y-axis
while the final movement direction was constrained by the orientation of the
door. As subjects were carefully monitored during the session, the extracted
values of these parameters were very close to the imposed ones: over the
709 trajectories, the average distance (± SD) between the actual and the
imposed initial positions was 3.0 ± 2.5 cm, the average distance between the
actual and the imposed final positions was 3.2 ± 2.2 cm, the average absolute
difference between the actual and the imposed initial orientations was 9.6 ±
7.9◦ and the average absolute difference between the actual and the imposed
final orientations was 5.9 ± 4.4◦. Thus, our choice to extract these values
from the data rather than to compute them a priori from the task was only
motivated by convenience.

In contrast, initial and final accelerations (ax
0 , a

y
0, ax

1 , a
y
1) and initial and

final speeds (the norms of the velocity vectors) were not imposed by the task
and thus contained information about the subjects’ movement strategies or
their personal preferences. Considering these parameters as free parameters
in the optimization procedure yielded close-to-zero values, which was not
consistent with the observations. On the other hand, estimating them by
an independent method would be complicated and not relevant with respect
to our objectives (see Discussion for more details on the issue of putting
experimental values into the models).

On the computational level, as our objective consisted of predicting the
whole trajectory kinematics (path and velocity profile), these values actually
contained relatively little information. In contrast, the original two-thirds
power law (Lacquaniti et al., 1983), the modified two-thirds power law (Vi-
viani and Schneider, 1991) or the constrained minimum jerk model (Todorov
and Jordan, 1998) aimed at predicting only the velocity profile. Moreover,
these models required as inputs the entire recorded path in conjunction with
either the end-point velocities and accelerations (for the constrained mini-
mum jerk model) or the entire velocity profile (for the modified two-thirds

7



power law). However, it should be recognized that some of the trajectories
studied in the references cited above were more complex than ours.

It should also be noted that the movement duration was implicitly ex-
tracted in the time-rescaling procedure.

Next, we derived the planar trajectory (x(t), y(t)) that minimizes the cost
given in equation 2 and verifies the following 12 boundary conditions:

x(0) = x0, x(1) = x1, ẋ(0) = vx
0 , ẋ(1) = vx

1 , ẍ(0) = ax
0 , ẍ(1) = ax

1

y(0) = y0, y(1) = y1, ẏ(0) = v
y
0 , ẏ(1) = v

y
1 , ÿ(0) = a

y
0, ÿ(1) = a

y
1

(4)

In usual MSD approaches, the number of boundary conditions depends on
the order of the derivative that is minimized. For instance, the minimum
velocity, minimum acceleration, minimum jerk and minimum snap models
require, respectively, 4, 8, 12 and 16 boundary conditions. However, these
choices are arbitrary and are not motivated by any theoretical consideration
(see Harris, 2004; Harris and Harwood, 2005, for a detailed discussion of
the issue of boundary conditions in models of biological movements). They
introduce furthermore a bias in favour of the higher-order MSDs. In our
comparative approach, we chose to use the same set of boundary conditions
given by equation 4 in all four models in order not to favour any particular
model. The mathematical details for the derivation of the MSD trajectories
are given in the Appendix.

Performance of the models

We performed a series of quantitative comparisons between the actual and
the predicted trajectories either at the global level of the trajectory or at the
more detailed level of the velocity profile.

In the companion paper, similar comparisons were conducted in order
to assess the stereotyped behaviour of actual trajectories corresponding to a
single task. For this, the average trajectory was compared to actual trajecto-
ries, resulting in several measurements [e.g. average and maximal trajectory
deviations (ATD and MTD) and average and maximal velocity deviations
(AVD and MVD)].

Here, we were interested in the predictive capacities of our models. We
thus compared the average trajectory corresponding to a given task to the
trajectories predicted by our models for the same task. This was reasonable
as actual trajectories were stereotyped and, consequently, very similar to the
average trajectory.
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Trajectory prediction

In order to quantify the prediction error at the level of the trajectory, we
computed, for each target, the instantaneous trajectory error (TEc) of the
predicted trajectory (xc(t), yc(t)) (replace ‘c’ with ‘v’ for minimum velocity,
‘a’ for minimum acceleration, ‘j’ for minimum jerk and ‘s’ for minimum snap)
with respect to the average (av) trajectory (xav(t), yav(t)) as:

TEc(t) =
√

(xc(t) − xav(t))2 + (yc(t) − yav(t))2 (5)

We then defined the average and maximal trajectory errors (ATEc and
MTEc) over the whole trajectory:

ATEc =

∫ 1

0

TEc(t)dt (6)

MTEc = max
0≤t≤1

TEc(t) (7)

Note that ATEc and MTEc take into account the instantaneous errors at
all time instants. They are therefore sensitive to dissimilarities at both the
geometric level and at the velocity profile level.

For each category X (X = HC, MC, LC, ST), the average ATEc and
MTEc over all targets belonging to this category were denoted, respectively,
ATEX

c and MTEX
c .

For a graphical examination of the models’ performances, we also plotted
in Figs 3-6 the variance ellipses calculated by principal component analysis.
Intuitively, the variance ellipse at time t is centred at (xav(t), yav(t)) and its
orientation and magnitude indicate how the (xi(t), yi(t)) (i = 1 . . . N , where
N corresponds to the number of trajectories recorded for this target) are
distributed around (xav(t), yav(t)). Note that r1(t)

2 + r2(t)
2 = TD(t)2 where

r1 and r2 are the lengths of the ellipse’s semi major and semi minor axes and
TD is the trajectory deviation defined in the companion paper.

Velocity profile prediction

In contrast to the companion paper, the goal here is to compare the velocity
profiles in terms of their variations in time rather than in terms of their
absolute variabilities (which are due in part to the variability of the walking
tempos in different subjects; these have been measured in the companion
paper).

For a given trajectory (xi(t), yi(t)), we thus considered the normalized
velocity profile defined as:

vi(t) =

√

ẋi(t)2 + ẏi(t)2

∫ 1

0

√

ẋi(t)2 + ẏi(t)2dt
(8)
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The average normalized velocity profile and the instantaneous normalized
velocity deviation (nVD) were then defined as:

vav(t) =
1

N

N
∑

i=1

vi(t) (9)

nVD =

√

√

√

√

1

N − 1

N
∑

i=1

(vi(t) − vav(t))2 (10)

Finally, we defined the Average and Maximal normalized Velocity Devi-
ations (AnVD and MnVD) over the trajectory as:

AnVD =

∫ 1

0

nVD(t)dt (11)

MnVD = max
0≤t≤1

nVD(t) (12)

Next, we computed the normalized velocity profile of the predicted tra-
jectory (xc(t), yc(t)) as:

vc(t) =

√

ẋc(t)2 + ẏc(t)2

∫ 1

0

√

ẋc(t)2 + ẏc(t)2dt
(13)

Finally, average and maximal normalized velocity errors (AnVEc and
MnVEc) over the whole trajectory were computed as:

AnVEc =

∫ 1

0

|vc(t) − vav(t)|dt (14)

MnVEc = max
0≤t≤1

|vc(t) − vav(t)| (15)

For each category X (X = HC, MC, LC, ST), the average AnVEc and
MnVEc over all targets belonging to this category were denoted, respectively,
AnVEX

c and MnVEX
c .

Statistical analysis

We performed repeated-measurements anova with the Statistica 5.1 software
package (Statsoft R©) in order to compare statistically the performance of the
models. More specifically, given two models, we compared their maximum
trajectory errors in order to assess whether one model was significantly better
than the other. We also tested whether the maximum trajectory errors of a
model were significantly smaller or greater than the corresponding maximum
trajectory deviations (the experimental variabilities).
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Results

Qualitative examination

Minimum velocity model

In Fig. 3, we plotted the predictions of the minimum velocity model for four
representative targets, one for each category. We observed that the geometric
paths predicted by this model tended to be the straightest possible. Thus,
the predicted paths for the targets of category ST were accurate. However,
for the targets that required some amount of curvature (HC, MC and LC),
the predicted paths were strongly bent towards the interior of the curve,
resulting in a big inaccuracy around the middle of the path.

Minimum acceleration model

Predictions of the minimum acceleration model are presented in Fig. 4. Qual-
itatively, for categories HC, MC and LC, the geometric paths predicted by
this model were much more accurate than those predicted by the minimum
velocity model. However, the predictions were still not satisfactory for cat-
egories HC and MC, which included the most curved trajectories. Indeed,
as in the minimum velocity model, the predicted paths for these categories
tended to be straighter than the actual paths. More specifically, in the re-
gions of relatively high curvatures, the predicted paths fell outside the grey
area of the variance ellipses, implying that their distances to the average
paths were greater than the experimental variability in these regions.

The comparison of the velocity profiles only makes sense when the geo-
metric paths are similar, i.e. in the case of category ST for the minimum
velocity model and in the case of categories LC and ST for the minimum
acceleration model. In these cases, the average velocity profiles were almost
constant in time, which was well reproduced by both models.

Minimum jerk and minimum snap models

The predictions of these models are presented in Figs 5 and 6, respectively.
We first observed that the trajectories predicted by the two models were very
similar for the four representative targets. In contrast to the two previous
models, the geometric paths predicted by these two models for the HC and
MC trajectories are smoothly curved and bear impressive resemblance with
the average ones. As an illustration, the predicted paths always lay inside
the grey area of the variance ellipses, implying that the distance between the
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Figure 3: Prediction of the minimum velocity model for four representative
trajectories. (A) Geometric paths of the average (solid lines) and the pre-
dicted (dashed lines) trajectories. The variance ellipses (in grey) are also
plotted in order to show the spatial variability around the average trajectory
at every time instant (see Materials and methods). (B) Normalized velocity
profiles of the average (solid lines) and of the predicted (dashed lines) trajec-
tory. The standard deviation around the average velocity profile is shaded
in grey. The dark grey horizontal line shows the mean value (in time) of the
normalized velocity profiles.
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Figure 4: Prediction of the minimum acceleration model for four representa-
tive trajectories. For details, see legend of Fig. 3.
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predicted and the average paths was smaller than the experimental variability
at every time instant.

At the level of the velocity profiles, we noted that the average velocity
profiles were approximately constant in time for categories LC and ST (the
only minor variations were due to the step-level oscillations). This was well
reproduced by both models. For categories HC and MC, in the average
velocity profile, the velocity decreased and became minimal around t = 0.7
(where t is time scaled from 0 to 1) before increasing again. This variation
of the velocity was related to the variation of curvature in the corresponding
geometric paths. The inverse relationship in human locomotion has been
experimentally observed by Vieilledent et al. (2001) and by Hicheur et al.
(2005). The predicted velocity profiles successfully captured this behaviour,
although with some slight overshoot. For instance, for category HC the
velocity profile of the minimum jerk trajectory had almost the same global
behaviour as the average one: both decreased and became minimal around
t = 0.7 before increasing again. However the variations in the predicted
profile were slightly larger than the variations in the average profile.

Quantitative examination

Trajectory errors

The average and maximal trajectory errors as defined in Methods are plot-
ted in Fig. 7. As noted above, the minimum velocity model (dark grey
bars) produced acceptable predictions only in the case of straight trajecto-
ries (category ST). As soon as the targets imposed some amount of trajectory
curvature (categories LC, MC and HC), the minimum velocity trajectories
differed completely from the actual trajectories.

The minimum acceleration principle (medium grey bars) performed some-
what better but for categories HC and MC it was still not satisfactory. For
example, the average maximal prediction error over the 20 targets belong-
ing to these categories, MTEHC+MC

a (14.7 cm), was not significantly different
(F1,19 = 0.27, P > 0.01) from the corresponding experimental variability
(black bars) MTDHC+MC (15.1 cm).

In contrast, minimum jerk (light grey bars) and minimum snap (white
bars) principles provided strikingly good predictions. In fact, as noted above,
the predictions of minimum jerk and minimum snap models were mostly
similar. As a matter of fact, the largest difference between the two models
was observed for target 31-150 (category HC), where the maximal distance
between the two predicted trajectories was 3.6 cm. Over the 20 targets
of categories HC and MC, the average (± SD) maximal distance between
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Figure 5: Prediction of the minimum jerk model for four representative tra-
jectories. For details, see legend of Fig. 3.
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Figure 6: Prediction of the minimum snap model for four representative
trajectories. For details, see legend of Fig. 3.
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minimum jerk and minimum snap trajectories was only 2.1 cm (± 0.6 cm).
Even in the case of the highly curved trajectories of category HC, the

distance between the average trajectory and the minimum jerk trajectory
was < 13 cm over the whole trajectory (MTEHC

j = 12.7 cm). As the average
trajectory length for this category was 3.7 m, this corresponds to a maximal
error of only 3.4%. Moreover, the prediction errors of the minimum jerk
and minimum snap models were smaller than the experimental variability.
For categories HC and MC, MTEHC+MC

j (10.3 cm) was significantly smaller

(F1,19 = 20.7, P < 0.01) than MTDHC+MC. This result is related to our
previous qualitative observation that the paths predicted by these models
always lay inside the variance ellipses.

Next, the respective performances of minimum acceleration, minimum
jerk and minimum snap models were compared over the 20 targets belonging
to categories HC and MC (we observed that the three models yielded similar
performance for the straight and close-to-straight trajectories ST and LC).
The average maximal prediction error over these targets were MTEHC

a =
14.7 cm; MTEHC

j = 10.3 cm; MTEHC
s = 10.7 cm. The difference between

the minimum acceleration and minimum jerk average MTEs was statistically
significant (F1,19 = 29.10, P < 0.01). The difference between the minimum
jerk and minimum snap average MTEs was also significant, albeit to a lesser
extent (F1,19 = 9.80, P < 0.01).

The superiority of minimum jerk and minimum snap models over mini-
mum acceleration and minimum velocity models can be explained as follows.
Minimizing the mean squared velocity cost is almost equivalent to finding
the shortest path, i.e. the straightest path in Euclidean geometry, that sat-
isfies the boundary conditions. This prevents the minimum velocity model
from predicting accurate trajectories as soon as the targets required some
amount of curvature. As for the minimum acceleration model, the mean
squared acceleration cost penalises, by definition, large variations in time of
the velocity vector. This is not consistent with the experimental observation
of significant variations in the velocity vector (in particular, the variations
in the orientation of this vector) around the regions of high curvature in MC
and HC trajectories. In contrast, minimum jerk and minimum snap allow
more flexibility for the variations in the velocity vector and are thus more
capable of generating smoothly curved trajectories.

Velocity profile errors

The average and maximal normalized velocity errors as defined in Materials
and Methods are plotted in Fig. 8. These errors in terms of the velocity
profile followed the same tendency as those in terms of trajectory kinemat-
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ics: in all categories, the velocity profiles of minimum jerk (light grey bars)
and minimum snap (white bars) trajectories deviated very slightly from the
average velocity profiles. Even for category HC, the average normalized ve-
locity error was only 6% (of the average actual velocity) while the maximal
normalized velocity error over the trajectory was < 12%. In absolute terms,
these errors were close to the same order of magnitude as the experimental
variability (black bars).

Discussion

Despite the great number of possible trajectories to reach a distant doorway,
humans exhibit stereotyped behaviour in terms of both path geometry and
trajectory kinematics (see companion paper). This suggests that some un-
derlying principles may govern the formation of whole-body trajectories in
space. In the present study, we developed a comparative approach in which
we tested four optimization models already studied in the literature in the
context of hand trajectory generation (Richardson and Flash, 2002). To as-
sess their validity, we applied these models to a wide range of locomotor
tasks involving trajectories of various lengths and curvatures. Through qual-
itative and quantitative examinations, we established that two out of the four
models, namely the minimum jerk and the minimum snap models, provided
predictions remarkably close to actual trajectories, at both the geometric and
the kinematic levels.

Predictive power of the models

As pointed out by Todorov and Jordan (2002), the predictive power of a
model is not only measured by how well it fits the experimental data. At
least two other characteristics must be taken into account. The first char-
acteristic is the quantity of information that needs to be extracted from the
experimental data. Obviously, the less information extracted from the data,
the greater the challenge for the model. In order to predict the velocity
profiles of curved hand movements, the constrained minimum jerk model re-
quires, as inputs, the entire movement path and the initial and final velocities
(Todorov and Jordan, 2002). Viviani and Flash (1995) used experimental val-
ues of the velocity and acceleration at several via-points in order to predict
the velocity profiles in curves drawing tasks. In contrast, our models (which
predict both the path and the velocity profile) were required to extract only
a small number of parameters, namely the initial and final speeds and accel-
erations, and the movement duration (see Materials and methods). The last
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Figure 7: (A) Average and (B) maximal trajectory errors (ATE and MTE;
the suffixes v, a, s, j refer, respectively, to velocity, acceleration, jerk and
snap) in centimetres: dark grey bars for minimum velocity, medium grey
bars for minimum acceleration, light grey bars for minimum jerk and white
bars for minimum snap, averaged over targets corresponding to the same
category. For comparison, the average and maximal trajectory deviations
(ATD and MTD) are also plotted (black bars).

Figure 8: (A) Average and (B) maximal normalized velocity errors (AnVE
and MnVE; the suffixes v, a, s, j refer, respectively, to velocity, accelera-
tion, jerk and snap): dark grey bars for minimum velocity, medium-grey
bars for minimum acceleration, light-grey bars for minimum jerk and white
bars for minimum snap, averaged over targets corresponding to the same
category. For comparison, the average and maximal normalized velocity de-
viations (AnTD and MnTD) are also plotted (black bars). In the process of
computing the above quantities, all velocity profiles were normalized so that
their average values over the movement duration equals 1 (see Materials and
methods).
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parameter was extracted in the time-rescaling procedure, which normalizes
the durations of actual and simulated trajectories. This procedure is perva-
sive in the literature (Flash and Hogan, 1985; Uno et al., 1989; Harris and
Wolpert, 1998; Todorov and Jordan, 1998; Richardson and Flash, 2002) but,
in light of our current discussion, it also reduces the predictive power of the
model. Recently, Tanaka et al. (2006) proposed a variation of the minimum
variance model (Harris and Wolpert, 1998) that was able to determine the
movement duration from a first principles approach. The authors considered
the movement duration as a parameter to be optimized, and performed the
subsequent optimization under the constraint that the movement achieves
a predetermined level of accuracy. Within our experimental protocol, the
determination of the movement duration and, more generally, the issue of
speed-accuracy tradeoff in human locomotion could not be satisfactorily in-
vestigated; testing different walking speeds and varying the constraints on the
spatial accuracy (e.g. varying the size of the doorway) will help in addressing
these questions in future studies.

The second characteristic for estimating the predictive power of a model is
the presence and the number of free parameters that must be tuned in order to
fit the data. For instance, Viviani and Schneider (1991) proposed a modified
power law for modelling the velocity profile of curved hand movements:

v(t) = γ(κ(t) + ǫ)β (16)

In this model, the velocity gain factor γ and the exponent β needed to be
tuned in order to fit the actual velocity profile. In contrast, our models did
not contain any such free parameters.

Accuracy demands and smoothness of the trajectories

Also related to the above discussion on the speed-accuracy tradeoff is the
relationship between the task’s accuracy demands and the smoothness of
the resulting trajectories. Sosnik et al. (2007) have reported that stringent
accuracy demands resulted not only in an increased movement duration but
also in a decreased movement smoothness. In our experiments, the doorway
was large enough (see Materials and methods) that it allowed subjects to
get through without any difficulties at normal walking speeds, resulting in
smooth trajectories, as we observed. Again, varying e.g. the size of the
doorway in future experiments will help in further exploring the relationship
between the accuracy demands and the smoothness of the resulting locomotor
trajectories.
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The role of online control in the implementation of lo-
comotor trajectories

Although trajectories corresponding to a given task were highly stereotyped,
there still existed a small trial-to-trial variability, ranging between 10 and
15 cm for the straight and highly curved trajectories, respectively (see the
companion paper). This variability could be related to morphological differ-
ences between the subjects and to the noise present in the human sensory
and motor systems (Harris and Wolpert, 1998).

Remarkably, the variability was smaller at the beginning and the end
of the trajectory and larger in between (see for instance the HC trajectory
in Fig. 3A). If the movement was executed in open-loop (i.e. in a purely
feedforward manner), the variability would increase throughout the move-
ment. Thus, the observed variability pattern indicates that an online feed-
back control process is at work during the implementation of the optimal
trajectory (presumably according to a minimum jerk or minimum snap cri-
terion, as suggested by our results). The nature of such a control process is,
however, less clear. In the case of hand movements, a number of hypothe-
ses have been proposed, including trajectory-tracking mechanisms through
servo control (McIntyre and Bizzi, 1993) or optimal feedback control schemes
(Todorov and Jordan, 2002). Within this context, increasing the complexity
of the goal-oriented task (for instance using a multiple via-points task, as
in Todorov and Jordan, 2002), applying external perturbations during the
movement execution or testing specifically the contribution of sensory infor-
mation (for instance by manipulating the visual inputs with prism glasses, as
in Rushton et al., 1998) will help in unveiling the nature of the online control
process at work during the implementation of locomotor trajectories.

Common strategies may govern the formation of hand
and whole-body trajectories

Hand and whole-body movements differ greatly in their spatial and tem-
poral scales: for instance, hand trajectories are usually tens of centimetres
long while travelled distances during locomotor tasks are usually > 10 times
longer. This difference in magnitude is associated with a difference in the na-
ture and the number of muscles involved in the production of the movement:
while hand movements activate mostly the arm muscles, locomotor activity
mobilizes most of the body muscles (lower limbs muscles for body propulsion,
upper body muscles for trunk stabilization, neck muscles for steering, etc.).

However, as evoked in the companion paper, recent studies suggest that
the generation of hand and whole-body movements share common strate-
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gies. For instance, Papaxanthis et al. (2003) have recently observed that
vertical whole-body and arm movements executed in the sagittal plane share
kinematic similarities. The authors then suggested that the central ner-
vous system (CNS) uses similar motor plans for the performance of arm
and whole-body movements in the sagittal plane. The comparison of the
velocity-curvature relations in human locomotion and in hand movements
has also been conducted, using the same (up to a scaling factor) predefined
curved paths in both types of movements (Hicheur et al., 2005). At the com-
putational level, Harris and Wolpert (1998) tested the assumption that the
CNS learns a new movement by minimizing the variance of the final effector
position for both hand and eye movements.

In this context, our observation that the minimum jerk and minimum
snap models best predict locomotor trajectories should be related to the case
of hand movements, where very similar results have been reported (Flash
and Hogan, 1985; Richardson and Flash, 2002). For instance, in the task of
periodic drawing of closed shapes, Richardson and Flash (2002) showed that
MSD models of order n > 2 provided more accurate predictions than MSD
models of lower orders.

From a theoretical viewpoint, our finding that the same models could
account for both hand and whole-body movements supports the hypothesis
that common mechanisms are implemented by the motor system in the gen-
eration of various types of movements. More specifically, this hypothesis can
be related to a theory put forward by Bernstein (1967), according to which
there exist, at the higher levels of the motor system, kinematic representa-
tions of movements that are independent of the nature (in our case, the arm
or the whole locomotor system) of the actual effector.

The nature of the control variable(s)

The last remark is associated with the conceptual distinction between kine-
matic and dynamic variables usually presented in the literature (Jordan and
Wolpert, 1999). While kinematic variables (e.g. the hand’s position, velocity,
acceleration, jerk, etc. measured in the laboratory reference frame) describe
the movement of the end-effector in the extracorporeal space, dynamic vari-
ables (e.g. the torques applied at the joints, the muscle activations, etc.) are
related to the internal mechanical properties of the motor system.

In the case of arm movements, the motor apparatus can be realistically
modelled by a two-link manipulator controlled by torques applied at the
joints (Uno et al., 1989). In this context, the opposition between kinematic
control of the end-effector (the hand) and dynamic control of the torques can
be readily investigated. For locomotion, however, given the greater dimen-
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sionality of the motor system (at the segmental, muscular, etc. levels), there
is a theoretically greater complexity of the motor control problem. Thus, the
issue of identifying precisely which variables are being controlled could not
be satisfactorily addressed in this study; testing other locomotor tasks and
using different kinds of perturbations will help in further exploring the mech-
anisms underlying the generation of locomotor trajectories. Nevertheless, two
series of observations argue in favour of a kinematic control of goal-oriented
locomotion. First, we provided evidence in the companion paper that loco-
motor trajectories are stereotyped, in particular at the kinematic level. In
the present study, we were able to accurately predict locomotor trajectories
with kinematic-based models. While this does not rule out the possibility
that the CNS may take into account dynamic variables in the generation of
locomotor trajectories, we suggest that dynamic variables are rather used at
the motor implementation level. Following this idea, the transformation from
kinematic objectives into dynamic strategies may be acquired with learning
(see also Winter and Eng, 1995).

Finally, it should be noted that, contrary to the case of hand movements
where the laboratory (allocentric) reference frame (RF) and the body (ego-
centric) RF are equivalent, here the body RF moves and turns with respect to
the laboratory RF when the subject is moving. In this context, the kinematic
quantities used in our models (the position of the subject and its derivatives)
are only interesting when computed in the laboratory RF as, in his body RF,
the subject’s position is constant in time. From a theoretical viewpoint, while
egocentric and allocentric strategies for spatial navigation and spatial mem-
ory are usually debated in the literature (see Berthoz and Viaud-Delmon,
1999), the question of which RF(s) are actually used for the planning and
control of goal-oriented locomotion has received little attention. Here, our
results suggest that whole-body trajectories are optimized in the laboratory
RF. However, further refinements of our experiments and models will also
have to consider the possibility of egocentric components in the mechanisms
underlying the formation of whole-body trajectories.

An integrative approach for the study of human loco-
motion

While our approach focused on the global, trajectory-level, descriptions, some
fine-grained properties of the locomotor activity can be captured only if the
step-level parameters are taken into account. For instance, the variations of
the tangential velocity during the step cycle must be included in our models
in order to account for the small oscillations observed in the velocity profiles
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(see for example the average velocity profile corresponding to target 42-270
in Fig. 3B).

Recently, Arechavaleta et al. (2006) proposed a robotics-inspired approach
that emphasized the nonholonomic nature of human locomotion. For a
wheeled vehicle (e.g. a bicycle, a car, a car with trailers, etc.), the kine-
matic constraint that forces the vehicle to move in the direction of its main
axis is known as being nonholonomic (Laumond, 1998). This constraint dra-
matically reduces the possible movements of the vehicle and, as a result, it
strongly affects the nature of the vehicle’s optimal trajectories. For instance,
as a wheeled vehicle cannot move sideways, the quickest way to parallel park
is not associated with a straight path (as it would be in the usual geometry)
but consists rather of a series of complicated manoeuvres. In the context
of human locomotion, this constraint was interpreted as forcing the subject
to move in the direction of his ‘axis’, which was defined as the orthogonal
direction to the shoulders’ segment. This constraint was partly verified ex-
perimentally (see Arechavaleta et al., 2006, for more details). However, in the
models presented here, we did not take into account the body orientation and
the related nonholonomic constraint. Nevertheless, our models could predict
the trajectories with great accuracy, which suggests that, for the range of
turning amplitudes tested in our experiments, the body orientation may not
be a determining factor in the generation of locomotor trajectories. For more
demanding tasks – involving for instance very narrow turns, it is likely that
constraints on the body orientation such as the nonholonomic one exert a
positive effect on the whole-body trajectories. Both experimental and theo-
retical issues regarding the integration of such elements into our models are
the subject of ongoing research.
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Abbreviations

AnVD, average normalized velocity deviation; AnVEc, average maximal nor-
malized velocity error; ATD, average trajectory deviation; ATEc, average
trajectory error; AVD, average velocity deviation; HC, high curvature; LC,
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low curvature; MC, medium curvature; MnVD, maximal normalized veloc-
ity deviation; MnVEc, maximal normalized velocity error; MSD, minimum
squared derivative; MTD, maximal trajectory deviation; MTEc, maximal
trajectory error; MVD, maximal velocity deviation; nVD, normalized veloc-
ity deviation; ST, straight; TEc, instantaneous trajectory error. Subscripts;
a, minimum acceleration; av, average; c, (subscript) standing for v, a, j or s;
j, minimum jerk; s, minimum snap; v, minimum velocity.

Appendix

As the MSD cost functional (2) and the boundary conditions (4) are uncou-
pled in x and in y, it is sufficient to find optimal functions separately for
x and y (Flash and Hogan, 1985). The problem thus consists of finding a
function x defined on [0,1] that minimizes the functional

∫ 1

0

(

dnx

dtn

)2

dt (17)

and verifies the boundary conditions

x(0) = x0, x(1) = x1, ẋ(0) = vx
0 , ẋ(1) = vx

1 , ẍ(0) = ax
0 , ẍ(1) = ax

1 (18)

Minimum jerk trajectories

For MSD of orders n ≥ 3, it turns out that the optimum function x is a
polynomial of degree 2n − 1 in the variable t (see Flash and Hogan, 1985,
for a proof of this result). For instance, when n = 3 (minimum jerk), x is a
5th-degree polynomial:

x(t) = a5t
5 + a4t

4 + a3t
4 + a2t

2 + a1t + a0 (19)

The six boundary conditions then yield a 6th-order linear system that in
turn uniquely determines the six coefficients a0,. . . ,a5.

Minimum snap trajectories

For n = 4, x is a 7th-degree polynomial, which corresponds to eight unknown
coefficients, say a0,. . . ,a7. Using the six boundary conditions, we can express
a0,. . . ,a5 as affine functions of a6 and a7. Replacing next a4 and a5 by their
expressions in terms of a6 and a7 in the cost functional

∫ 1

0

(

d4x

dt4

)2

dt =

∫ 1

0

(840a7t
3 + 360a6t

2 + 120a5t + 24a4)
2dt (20)
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yields a second-order polynomial in the variables a6 and a7. Standard min-
imization techniques of multivariate polynomials then allow us to obtain al-
gebraic expressions of a6, a7 and then a0,. . . ,a5.

Minimum velocity and minimum acceleration trajecto-
ries in restricted solutions spaces

If n ≤ 2, the problem is ill-posed (Harris and Harwood, 2005) in the sense
that no optimal trajectory exists. However, if we restrict the solution space
to the set of polynomials of degree less than or equal to d (where d is an
integer ≥ 6), then we can find a unique optimal trajectory xd. As d grows,
the cost associated with xd decreases (because the solution space is larger).
However, when d → ∞, xd converges to a trajectory that no longer verifies
the boundary conditions.

As minimum jerk and minimum snap principles yield polynomials of de-
grees less than or equal to 7, we set d = 7 in order to make unbiased com-
parisons of the four models.

In the case n = 2 (minimum acceleration), the problem thus consists of
finding the optimal function x in the form

x(t) = a7t
7 + a6t

6 + a5t
5 + a4t

4 + a3t
4 + a2t

2 + a1t + a0 (21)

that verifies the boundary conditions (18) and minimizes the cost

∫ 1

0

(

d2x

dt2

)2

dt =

∫ 1

0

(42a7t
5 +30a6t

4 +20a5t
3 +12a4t

2 +6a3t+2a2)
2dt (22)

The same procedure as in the minimum snap case can be applied to find
the optimal coefficients a0,. . . ,a7.

The case n = 1 (minimum velocity) can be treated similarly.
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