ORDINARY DIFFERENTIAL EQUATIONS
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3.1 DIFFERENTIAL EQUATIONS

A D.E. isan equation involving an unknown
functiony and itsderivativesy', y".

D.E. describe many physical laws. spring-
mass systems, R.C. circuit, beam bending,
efC.

A D.E.isan O.D.E. if the unknown function
depends on only one independent variable.

eg. M= - El dwidx’
~beam bending

If the unknown function depends on two or
more independent variables, it is known as a
partial differential equation.

eg. M=-D (ﬂzw/'ﬂx2+ n ﬂzwlﬂyz)
~plate bending



order & degree
highest derivative the power to which the
In the equation highest-order derivative

IS raised.

Linear differential equations.
b.(x) dYydX' + bny(X) d"yidx™ + ...
T by(X) dyldx+ by(x)y = 9(X)
where bi(x) (1 = 0, 1 ... n) and g(x) are known
and depend only onx. \ yisafunction of x.

Egs. y' -5/ = e +1

Ans. 3rd order, 1st degree, Linear

by(x) = 1
b,(x) = -5x
gx) = e€+1



Egs. y{dxdy'}= y +1

Ans. 2nd order, 1st degree
Linear b,(y) =

= y2
agly) = y+1

Egs. { dr/idy’}* + dridy” + y{dr/dy} =0
Ans. 2nd order, 2nd degree, non-linear.
3.2 WHY USE NUMERICAL METHODS?
. when analytical solution is near impossible.
. In many engineering problems, exact solution

IS not required; numerical answers within a

range of variables are preferred.

. numerical methods can be easlly fed into
computes and results obtained quickly.



33 TAYLOR SERIESMETHODS
Yo+ h)=y(X)+ hy'(X)+ 7720 y'(x)+ h/31 " (X)+..
+ h™ (1) Y™ (9
where X £x £Xx+h
Now, given the O.D.E. y' = f(x,y), withy =y,
Thevalue of y at x, (wherex; = x,+h) Is:

Vi = Y(%) + hy' (%) + h72 y'(x) + h76 y" (x))

+ ...



Example 1 :

Given dy/dx = 2y + x- 0.5,
with X, =01,

) =Y, = 11714
Find thevaueof yat x =0.5.

y =2y+x-05

\ 'y, =2(1.1714) + 0.1-0.5 = 1.9428
y' =2y +1

\ y¢& = 2(1.9428)+ 1 = 4.8856
y" =2y

\ vy = 2(4.8856) = 0.7712
yiv = 2y"

\ yY = 2(9.7712) = 19.5424

o



Puttingh = 0.4 (aone-step calculation)

y (0.5) = 1 1714 + 1.9428 (0. 4) + 2.4428(0. 4)
+ 1.6285 (0. 4) + 0.8143 (0. 4) + error

= 2.4644 (c.f. with exact solution 2.4683)

Note that iIf h is large, we need more terms in
the series to get more accurate answers.

Putting h = 0.1 [ I.e. y(0.5) is evaluated in 4
steps starting from y(0.1) |

y(0.1) y'(0.1) y'(0.2)
y(0.2) = 1.1714 + 0.1(1.9428) + 0.1°(2.4428)

y"(0.1) yV(0.1)

+0.1° (1.6285) + O. 1° (0.8143) + error

= 1.3918



Now using x= 0.2, y=1.3918, weobtain
y'(0.2) = 24836 y"(0.2) = 11. 9345
y'(0.2) =5.9673 yiv(0.2) = 23.8691

Substituting into Taylor series.

¥(0.2) y(0.2) 5 y'(0.2)
y(0.3) = 1.3918 + 0.1(2.4836) + 0.1°/2(5.9673)

3 y"(0.2) 4 yiv(0.2)
+ 0.17/6(11.9345) + 0.17/24 (23.8691)
= 1.6721 and so on for y(0.4)

Verify y (0.5) = 2.4683
(exact with analytical solution of 2.4683)

On. What are the disadvantages in Taylor's
method?



34 EULER & IMPROVED EULER METHOD

use Taylor series in truncated form by
. . 2 .3
neglecting termsin h’, h', etc.

2

Yt YOO + YO + Ty + ()

Error term = h’/2 V'(xywhere X £ x £ X+h

By using egn.(1) and the O.D.E. and choosing a
small interval h, we can obtain y(x,) using
following:

() given x,, Yy, (initial conditions)

1
() Let h = (- %))
Divide intervalsinto n strips of width h

(C) X, = X+ h



(d) From O.D.E. y, = f(x,,Y,)
(e) From Eqn.(1), vy, =y, +hy,

(f) Using the values of x,, y,, return to steps (c)
1 J1
- (€) to obtain:

X, =% +h
y, = (X, yo)
Y, =y, + hy

(0) Repeat step (f) until x,is reached.

In general
i1 = Xth
S = 1Y)
Vier = Yit+hy




- Geometrically, it is an approximation of the
curve y(X) by a polygon whose first side is
tangent to the curve at X,

- Note that the error can grow quite large if
interval hisnot small.

A Y
/7 Actual
/*\_Solution by

Y3 // Smple Euler
Y2 N slope f&x,.Y,)
Y1 ‘/\ \ SIOpef‘()(ldll)
Yo sope f€x,,V.)

- X

Xo X1 X2 X3
h | h | h

10



Example 2

Solve  y=2y+ x-05
With  y(x,) = y(0.1) = 1.1714

Choose h = 0.1, and with initial conditions of

X, =01, y,= 11714, evaluatey,, X1, Yi.q:

Xipq = Yirr= Yit0.1Y/ y' = 2y+x-0.5
x+0.1
x,=01 | y, = 11714 y.' = 1.9428
;=02 |y, = yot0.ly; y,' = 2.4314
= 1.3657
y, = 3.0176
X,=0.3 y,= y,+0.1y,
= 1.6088

11



In tabular form:;

i X% Y. hy,' = Exact | Absolute
0.1(2y + X - Y, error
0.5)

0O | 011171401943 0.2| - -
1 0. 1365(431 0.301| 139| 0.0261 O.
2 |2 0/7 160|8 03721 |18 1.|0633 0.114
3 |.3 |88 19 - 6721 |9 0.1856
4 | 04 106 2 2.0255

0. | 2827 2.46

5 83

| mproved Euler method

. From the point (x, y;) to find the next value
Yier P Yier =Y+ hy asbefore,

. Instead of accepting this as the value of vy, ,,
use it only to calculate the gradient at the point
(X1, Vet ), i€ fromthe O.D.E,

yi+1*' — 1:(Xi+1’yi+1*)

12



. Then work out a"better" value of y,, , using:
Yier = Vit W2(% + Vi)

AY

T Actual

d v\Improved Euler method

/

y'” - dopeyiy
Yiin //‘/‘/'/ \ Euler method
Yi | dope v=q
X

X  X+h/2 x+h

L h

Geometrically, in the Euler method, solution y
between x and X, , IS approximated by a straight
line with slopey:'.

In improved Euler, solution y Is approximated
by two straight lines: one between x;. and x +
h/2 having slope y;', and one between x; + h/2
and x., , having dlopey,,,"".

13



Example 3

Use improved Euler for previous Eg. 2.

y = 2y+x-05 y(0.1)= 1.1714
x= 01 y, = 11714 y, = 1.9428
x= 02 y* =y +0ly’ = 13657 y*' = 24314
Y1 = Yot OW2[y; +y*] vy, = 24302

= 1.3901

x,= 0.3 y,*= 1.3001 + 0.1(2.4802) vy,*' = 3.0762
= 1.6381

y, =1.3901 + 0.1/2[2.4802 y, = 3.1358

+ 3.0762]
= 1.6679 and so on

Verify for yourself y(0.5) = 2.4557

Compared to exact result of 2.4683 and 2.2827
from Euler method (Eg. 2).

14



3.4 RUNGE-KUTTA METHOD

- the term refers to a large family of one-step
methods for handling 1st order O.D.E.

- computationally more efficient.

~ uses Taylor expans on and based on retaining
all terms up through h'. Error = O(h )

Algorithm: Giveny = f(xy), y(X,) =

At step n+ 1, compute the following terms:

A, = hf(x, v

B, = hf(x,+h2,y,+A/2)

C, = hf(x,+h2 vy +B/2)

D = hf (Xn+1’ Yn + Cn)

Yne1 = yn+ 1/6 (An+ 28n+ 2Cn-l_ Dn)
where: X, VY, X, + h2, y + A/2 are
sampling points and 6 is the weighting
factor.

15



Example 4

Use Runge-K utta to solve 1% order O.D.E. with
oneinitial condition:

y = 2y+x-05 y(0.1) = 1.1714, h= 0.1.

A= 0.1(2y,+ X, - 0.5)
= 0.1(2.3428+ 0.1-05) = 0.1943

B,= 0.1[2(y,+ AJ/2)+ (x,+ 0.05)-05]
= 0.2187

C,= 01 2(y,+ B/J/2)+ (x,+ 0.05)-0.5]
= 0.2212

D= 012(y,+ C,) + (x,+ 0.1) - 0.5]
= 0.2485

V1= Yot U6(A, + 2B, + 2C, + D,)
=1+ 1/6(0.1943+0.4374+ 0.4424 + 0.2485]
= 1.3918

16



In tabular form:;

A

Exact

0.1

0.2

0.3

0.4

0.5

0.1943

0.2484

0.3144

0.3951

0.2187

0.2782

0.3509

0.4396

0.2212

0.2812

0.3545

0.4441

0.2485

0.3146

0.3953

0.4939

1.1714

1.3918

1.6721

2.0255

2.4683

1.1714

1.3918

1.6721

2.0255

2.4683

17




3.6 MULTI-STEP METHOD

One such example. is Adam-Moulton's method.
. giveny = f(x,y) — 1% derivative equation.

. requires 4 starting values of y, 1.€. V., V. 1, Yno,
yn-3-

. fl‘Om yn1 yn-]_1 yn_21 yn_3, f|nd yn', yn-ll’ yn-2"
Y. 5 using 1% derivative equation.

. from these starting values, it predicts a value
fory ., (i.e.y..,"), using Predictor Equation.

. then it uses a Corrector Equation to give the
corrected valuey. , ,.
Predictor:
. m @y e 0y
Yne1 — h/24 [55yn B 59yn-l T 37yn-2 B 9yn-3]+ Yn
Corrector:

(nt+1) (n) (n-1) (n-2)

yn+1 =h/24 [gyn+1*' + 19yn' - 5yn-1l + yn-2'] + yn

18



Example 5
Giveny =2y+ x-05y(0.1)=1.1714.

Assume first 4 values found by Euler's method:
x| 01 | 02 | 03 0.4

y 11.171411.3657|1.6088| 1.9106
y' 11.9428|2.4314|3.0176| 3.7212
(n-3) | (n-2) | (n-1) n

Predictor Eq..
(n) (n-1)
y, = 0.1/24 [ 55(3.7212) - 59(3.0716) +

(n-2) (n-3)

37(2.4314) - 9(1.9428)] + 1.9106
= 2.3235

FromD.E. y,*'= 2(2.3235) + 0.5- 0.5= 4.6470

Corrector Eq.:
Y, = Y(0.5) = 0.1/24[9(4.64/70) + 19(3.7212) —
5(3.0176) + 2.4314] + 1.9106
= 2.3267

19



3.7 COMPARISON OF SOME METHODS

Method Error Easa No. of Numerical | Easy to
function of h function
Local | Global | evaluations | Stability | change
Error | Error (step) h
Euler E(h2) | E(h) 1 Poor Yes
(1st order)
Modified E(h3) | E(h?) 2 Good Yes
Euler
(2nd order)
Runge-Kutta E(hS) | E(h4) 4 Good Yes
(4th order)
Adams- E(hS) | E(hd) 2 Good No
Moulton

1. Local eror refers to the error of one step;
global error refersto the error at the end of n
steps, i.e. an accumulation of errors over the

n steps.

2. Global error > Locd errorash< 1.0

3. Euler's method (1% order) has relatively large
truncation error and is often unstable.

20



3.8 HIGHER-ORDER EQUATIONS

Solving 2™ order O.D.E., can be non-linear.
® AdVydX + Bdyldx+ Cy = f(xy)

Reduce to 1 pair of simultaneous 1% order
O.D.E.

Given:  dy/dx’= f(x, y, dy/dx)
With  y(%) =¥e  Y(X) =Y

Define dy/dx as a second function, e.g.
® dyldx=t with  y(X,)= Yo (1)

® di/dx=f(x,y,t) with t(x)=YV, (2)

- Egs.(1) & (2) are two 1% order O.D.E. which
can be numerically solved simultaneously to
give the solution for the 2™ order O.D.E.

- For each step of calculation, we must calculate
for each equation in turn.

21



Example 6 : Solving 2™ order O.D.E.

dyidx’ = 12(x+ y+ dyldx + 2)
Need 2 initial conditions. y(0) = 0, y'(0)=0
Find y(0.4) and y'(0.4), using h= 0.2
Let dy/dx = t, y(0)=0 (1)
di/dx =1/2(x + y+t+ 2), t(0)=y'(0)=0 (2
where: f(x, y,t)=1/2X+y+t+ 2)

Using smple Euler's method.

1ya  _1vyu OZIYU
Pth, 1th it
1 Y0 I 0 0

oC
[
— ) m— —
O
N
ox<C

Ly 100 5
fth,, 10h ~11/2(0+0+0 +2)

22



1Yo _1Yd 1Yu

i’y =(ly +02] =y (0.2
Tthoe 1t P, 02
~104Q I 0.2 U 10.04¢
" 1o 2}5 “2 111200240402 +2)) 0.4

Try solving this using modified Euler.

Predictor'
AN s AN O..

LYV :u+02%)l’l,1_l y
't%oz Tt % Ttgo 10.2
Corrector
lyg _iya , 028Ye  1vi U
I _I Y 1 ,I\ 1
T’[%02 11D, 2 @At%o |t%o.2
_ 110G, . E0¢ ] 0.2 iy
= +O-1é +

TO[\S &1 71/2(02+O+O.2+2)[\;

i 0.02(;

23



Predi ctor:

|yu 1 YU iYU
Pho Tthe  1th
10.02() ] 0.22 (0
" o 2.1/2(oz+ooz+ozz+2)}'§
|yu 10.02( |022u 10.064(
Ll T ooy " PP 100l T Lo.aeay
Corrector:
1 YU 1 YU 02 §Yu 1Y u y
|tgo4 % +7gt%o.2+% g E
10020, . §0.220 ] 0.464 0

L0220 P18 1200 L0.5(0.4+ 0,064+ 0.464+ 2))

| 0.02() | 0.0684() 10.0884;
lo.22}, " 102684y~ to.4884)

cf y(0.4) = 0.0918 (Exact answer)

24



3.9 SUMMARY (We'vecovered sofar, ...)
- usethe Taylor seriesto solve a 1¥ order D.E.

~ use Euler, modified Euler or Runge Kutta for
1% & 2™ order .

- One-step method (Euler, Improved Euler,
Runge-Kutta)

- need information only at a preceeding point
to progress to next point. Methods are "self-
starting".

- employs Taylor's expansion.

- functions may be evaluated several times.

Can betime consuming.

25



- Multi-step method (also known as Predictor-
Corrector)

- not self-starting, rely on one-step to start.

- one-step methods (of same order) are of
comparable accuracy to the multi-step
methods (eg. Runge Kutta and Adam
Moulton).

- no. of function evaluations for Runge Kutta is
four, while a predictor-corrector method of the
same order requires only two.

\ Predictor-corrector methods can be more

efficient.

26



SINGLE STEP METHQOD
Starting point
— Simple Euler

Taylor Series— Modified Euler
— Runge Kutta 4™ order

MULTI-STEP METHOD

Starting point:
Simple or
Modified Euler— Adam-Moulton

(require 4 pts)— Predictor formula
— Corrector formula

27
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o(h?)
o(h’)

Local
error

o(h’)



SUMMARY

1. Runge-Kutta Method
A = hil,y)

B. = hif(x+h2y +Al2)
C. = hf(x+ h2y + B/2)
D, = hf(x+hy+C)

Yier = Y+ U6(A + 2B + 2C; + D))

2. Multi-Step Method

Predictor:
Vier =NV24[55y;" - B9y " + 37y, - 9yi5] + Y,

Corrector:

Vi =249y, "' + 19y - Si1 t Vio] T

3. Higher Order Equations
Let dy/dx = t  with y(x)) = VY, (1)
dt/dx = f(x,y,t) with t(x)) = vy, (2

28



APPENDI X: ANALYTICAL SOLUTIONSTO O.D.E.

1.1 SEPARABLE EQUATION

Form: QY)Y =PX
Solution:  QQ(y) dy = QP(X) dx + constant
Example 1
Solve { y/(1+x)}+1+y = O
{U(1+X) Y dyldx = - (1+y)
Ody/(1+y) = - ((1+X) dx
IN(1+y) = - (x+ XJ3) + C
\ y = Ae 3750

Question: What are the order and degree of this
equation.? Expressit linear form.

29



1.2EQUATIONSREDUCIBLE TO
SEPARABLE FORM BY SUBSTITUTION

Form: y = P(y/X)

Solution: Let v yix or y = wX

v+ X dv/dx
P(v)
OIx/x + constant

dy/dx
b V+ xadv/dx

\ 0 dVI(P(V)-v)

Example 2

dy/dx = (xty)ly = 1+y/x = 1+v

putv = Vy/X

Plv) = 1+v
v+ x(dvidx) = 1+v
OV/(1+v-v) = Qdx/x+cC

30



v = Inx+c

Upon back substituting
yix = Inx+c

\ y = Xlnx+cx

Linear O.D.E. 1st order, 1st degree

1.3EXACT O.D.E.
Form: M(Xy) dx + N(x,y)dy = O
L.H.S. Is an exact differential of a function

F(x,y) for al x)y in a domain D. EXxpress as
below:

M(X,y) dx+N(x,y) dy =qF/qx dx+9qF/qy dy = dF

31



b qF/x = M(xy) & qF/qy = N(x,y) for al x)y
TF/Ixy=IM/y=IN/9x  foral x,yl D
\ TheO.D.E. isexact.

Solution: Once an O.D.E. is found to be exact, the
solution can be obtained by integrating
the partial derivatives q /qx and qF/qy.

Example 3
Solve dy/dx = -4xy - 3x2/(2x2 + 2y)
b (3 +4xy)dx+ (2 +2y)dy = 0= dF

Let M = 3x2+4xy N = 2x2+2y

WMiqy = 4x, qNiax = 4x

32



\ ODE isexact

Then, F/ex = 3% + 4xy - (1)

Fly = 2C+ 2y-(2)
From (1) F= X+ 2+ () - (3
From (2) and (3)

qalqy = 2 + FW)/qy = 2 + 2y

2
y +cC

\ f(Y)
3 2 2
Hence, F(x,y)= X + 2Xy+Yy +¢C
Since dF = 0, F(xy) = constant
\ Thesolution isX + 2x2y+ y2: constant.

1.4 INTEGRATING FACTORS

33



(Please refer to Kreyszig for greater details)
Form: M(xy) dx+ N(xy)dy=20
But equation is not exact.
Solution: Multiplying the eguation by a
suitable function Q(Xx,y) to make it

exact.

Q(X,y) ~Integrating Factor of the D.E.



Example 4
Given non-linear O.D.E.
dy/dx=2X"+YI(x-Xy) P (2X+Y)dx+(Xy-X)dy =0
(Check that D.E. is not exact from Eg.3).
Multiplying by Q(x), the integrating factor,
[Q(X) (2X+Y)]dx +[Q(X)(Xy-X) ]dy =0 is exact.
by [QC) 2C+Y)]= g [QM) (Cy-X)]
QXL = QMg 6y + QUX(2-1)
RMX = - 2/x QX
Integrating p Q(X) = constant/X’ = c/xX

b /X (2x2+ y) dx + /X (x2y-x)dy =0

35



1.5 LINEARFIRST-ORDER O.D.E.
Form: 1y + f(X)y = r(X)
f(x), r(x) are both functions of x.
Case(a) Homogeneousform: r(x) = O.
e oyly = - dx by = Cce o
Case (b) Non-homogeneous form: r(x) 10
Multiply the O.D.E. by an I.F. g of(¥dx
i e yec‘Jf(x)dx + f(x) yeof(x)olx _ r(X)eof(x)olx
LH.S = didx |ye® ]
\ d/dx \yebf(x)dx‘ = 1(x) o OF ()
of (x) dx

b ye = Llr(x)e®" ™| dx + ¢

36



Example 5

Solve xy' +y+ 4 0 - Linear 1% order

non-homogeneous

Rewriting Yy +vy/x = -4/X

0l/ xdx

ye = ¢y 4/x e/ *%™ dx

1nx

ye ™ = ¢ 4xe™ .dx

0
C
—
D
[

X p Y= -04dx = -4x+cC

\ Y = c/x-4

37



1.6 HOMOGENEOUSLINEARD.E.
WITH CONSTANT COEFFICIENTS

Form: (of n" order)

1)

a,y" + ey D Hay +ay=0 .. (1)
wherea, =constant, | = 1to nand a,10

To obtain the general solution, n linearly
Independent solutions are required.

y = €X .. (2)
Note Wo= duwdX i=1,n
Substituting (2) into (1), we obtain

eX[a, N+a,nl+. . . +a)|+a] =0

38



For non-trivial solution, e X 1 0

b aN+a,Nl+. .. +a+a=0(@3)
Note:

() Egn.(3) Is the characteristic equation of the
O.D.E. and the roots are called characteristic

roots.

(b) The solution to Egn.(3) Is the solution to the
homogeneous equation.

(c) | can be +ve, -ve or complex.

Once the roots (| , |5 5 --- » | 5) &€ Obtained,
the general solution iswritten as:

y= Cie' ™+ C,e'?+L + Ce'™ (4)
where C,, C,, ..., C,, are constants.

39



For second order homogeneous O.D.E.
Yy  +ay +ay= 0
The characteristic equation is quadratic:

2 —
| ta| +ta =0

Condition Solution

2 distinct roots: |, |, al2 y= Ae't+Be'2
> 43, a,

y = eX(Ax+ B)
Equal roots|,=|,
a; = 43,3,
y = eaX(A cos (X
Complexroots | = g+ i3] + BsinfX)

a; < 43,3,

40




1.7Non-homogeneous Linear D.E. with
constants.

Form: (nth order)

1)

a, Y +a,, Y+ +ay +ay=1() (5)

Similar to Eqn (1) except LHS=1(x) 1 O

Solution steps

(@) Find the solution of the homogeneous
eguation associated with (5).

any(n) tan, YL aly(l) tay = 0

Solutionis;y,=C, €:+ C,€2 + .. + C, ¢€'r

Thisis called homogeneous solution.

41



(b) Find any particular solution yp which
satisfies equation (5).

(©) Iy, Is the homogeneous solution and y,, Is
any particular solution, the general solution

IS Y=Yht Y,

Obtaining y, by method of undetermined
coefficients

To obtany, for the ODE

Y + gy et @y + ay = f(x)

f(x) Isalinear combination of :

@xa (a3 0) (c)gcosg(gr O)
(b)elX® 0) (d)sng (d: 0)

42



Simple rulesfor determining y,,:

(e) sum of functions

(f) A term in f(X) is
a solution of the

homogeneous
O.D.E.

Term in f(X) Choice of y,
@ k< A X+ AT+ L+ A Ag
(b) ke” Ae”
(c) kcospx A cospx + B sin px
(d) ksinpx A cospx + B sin px

sum of functions

Multiply  the  appropriate
function by X 2if roots are
distinct, or by X if roots are

equal.




Example 6
Solve y' - 4y + 3y = -3¢’

Characteristic Egn.: |2-4| +3 =0

| = 1,3
Homogeneous solutionis y, = A€ + Be™
y;: Let y = Ce
y,= -Ce & y',=Ce
Comparing coefficients of € gives C = -3/8

\ General solutionis

y = AE+Be”-3/8ex
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