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3.1   DIFFERENTIAL EQUATIONS 
 
• A D.E. is an equation involving an unknown 

function y and its derivatives y', y". 
 
• D.E. describe many physical laws: spring-

mass systems, R.C. circuit, beam bending, 
etc. 

 
• A D.E. is an O.D.E. if the unknown function 

depends on only one independent variable. 
 
 e.g.  Mx =  -  EI  d

2
w/dx

2 
~beam bending 

 
• If the unknown function depends on two or 

more independent variables, it is known as a 
partial differential equation. 
 

 e.g. Mx=-D (∂
2
w/∂x2 + ν  ∂

2
w/∂y

2
) 

   ~plate bending 
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• order    &    degree    
 

highest derivative      the power to which the  
in the equation   highest-order derivative  

is raised. 
• Linear differential equations. 

 
bn(x)  d

n
y/dx

n
  +  bn-1(x)  dn-1y/dxn-1  +  .....  

 
 +  b1(x)  dy/dx +   bo(x) y   =   g(x) 
 
where bi(x) (i = 0, 1 ... n) and g(x) are known 
and depend only on x.   ∴ y is a function of x. 

 
 

Egs.      y'"  -  5xy'  =    e
x
 + 1 

 
Ans:   3rd order, 1st degree,   Linear    

b3(x)  =   1 
 b1(x)  =   -5x 
 g(x)  =   e

x
 + 1 
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Egs.   y { d
2
x/dy

2 } =    y
2
 + 1 

 
Ans:   2nd order, 1st degree 

Linear   b2(y) =   y 
 g(y) =   y

2
 + 1 

 
 
Egs.  { d

2
r/dy

2
 }

2
  +  d

2
r/dy

2
  + y {dr/dy } =0 

 
Ans:   2nd order, 2nd degree, non-linear. 
 
3.2  WHY USE NUMERICAL METHODS? 
 
• when analytical solution is near impossible. 
 
• in many engineering problems, exact solution 

is not required; numerical answers within a 
range of variables are preferred. 

 
• numerical methods can be easily fed into 

computes and results obtained quickly. 
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3.3  TAYLOR SERIES METHODS 
 
 

y(x+h)=y(x)+ hy'(x)+ h
2
/2! y"(x)+ h

3
/3!  y'"(x)+..  

 
    +   h 

n+1
/(n+1)! y

(n+1)
 (ξ) 

 
 where x ≤ ξ ≤ x+h 
 
Now, given the O.D.E. y' = f(x,y), with y = yo  
 
The value of y at x1 (where x1 = xo+h)  is: 
 
y1 = y(xo) + hy'(xo) + h

2
/2  y"(xo) + h

3
/6 y'" (xo)  

 
+ ... 
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Example 1 :  
 
Given  dy/dx  = 2y + x - 0.5,   
with   xo  = 0.1 ,   

 y(xo)  = yo    = 1.1714  
Find the value of y at x  = 0.5. 
 

y' = 2y + x - 0.5 
∴ '

oy  = 2(1.1714) + 0.1 - 0.5 = 1.9428 
 

y" = 2y' + 1   
∴ oy ′′  = 2(1.9428)+  1   = 4.8856 

 
y'" = 2y"    

∴ oy ′′′  = 2(4.8856)    = 9.7712 
 
yiv = 2y'"   

∴ iv
oy  = 2(9.7712)    = 19.5424 

 
 



 6

Putting h = 0.4   (a one-step calculation) 
 
y (0.5) = 1.1714 + 1.9428 (0.4) + 2.4428(0.4)

2
 

+ 1.6285 (0.4)
3 + 0.8143 (0.4)

4  + error 
 
= 2.4644 (c.f. with exact solution 2.4683) 
 
Note that if h is large, we need more terms in 
the series to get more accurate answers. 
 
 
Putting h = 0.1 [ i.e. y(0.5) is evaluated in 4 
steps starting from y(0.1) ] 
 
    y(0.1)            y'(0.1)                  y"(0.1)  

y(0.2) = 1.1714 + 0.1(1.9428) + 0.1
2
(2.4428)  

 
    y'"(0.1)     yiv(0.1) 

+ 0.1
3
(1.6285) + 0.1

4
(0.8143) +  error 

 
 = 1.3918     
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Now using  x = 0.2 ,  y = 1.3918 , we obtain 
 
y'(0.2)  = 2.4836   y'"(0.2) = 11. 9345 
 
y" (0.2) = 5.9673   yiv(0.2) = 23.8691 
 
Substituting into Taylor series: 
 

 y(0.2)           y'(0.2)     y"(0.2)   

y(0.3)  = 1.3918 + 0.1(2.4836) + 0.1
2
/2(5.9673)  

 
 y'"(0.2)      yiv(0.2)  

+ 0.1
3
/6(11.9345) + 0.1

4
/24 (23.8691) 

 
= 1.6721 and so on for y(0.4) 

 
Verify y (0.5) = 2.4683  
(exact with analytical solution of 2.4683) 
 
Qn:  What are the disadvantages in Taylor's 
method? 
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3.4   EULER & IMPROVED EULER METHOD 
 

use Taylor series in truncated form by 
neglecting terms in h

2
, h

3
, etc. 

 

y(x+h) ≈  y(x)  +  hy'(x)  + y" 
2

2h
(x)  +          (1) 

 
Error term  =  h

2
/2 y"(ξ) where  x ≤  ξ  ≤  x+h 

 
 
By using eqn.(1) and the O.D.E. and choosing a 
small interval h, we can obtain y(xn) using 
following: 
 
(a) given xo, yo (initial conditions) 
 

(b) Let  h  = )xx(
n

1
on −  

Divide intervals into n strips of  width h 
 
(c) x1  =  xo + h 
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(d) From O.D.E.  )y,x(fy oo
'
o =  

 
 
 

(e) From Eqn.(1), '
oo1 hyyy +=    

 
 
 

(f) Using the values of x1, y1, return to steps (c) 
- (e) to obtain: 
x2  = x1 + h 
y1

' =  f(x1, y1) 
y2  = y1 + hy1' 

 
(g) Repeat step (f) until xn is reached. 

 
In general 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

xi+1  =  xi + h 
yi'   = f(xi, yi)   
yi+1  =  yi + hyi' 
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• Geometrically, it is an approximation of the 
curve y(x) by a polygon whose first side is 
tangent to the curve at xo. 

 

• Note that the error can grow quite large if 
interval h is not small. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

h h h 
x0 x1 x2 x3 

y0 
y1 

y2 

y3 

Y 

X 
slope )y,x(f 00′  

slope )y,x(f 22′  

Solution  by 
 Simple  Euler  

slope )y,x(f 11′  

Actual 
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Example 2    
 
Solve   y'= 2y + x - 0.5  
With  y(x0) = y(0.1) = 1.1714 
 
Choose h = 0.1, and with initial conditions of  
 
xo = 0.1 ,  yo = 1.1714 ,  evaluate yi', xi+1, yi+1: 
 

xi+1 = 
xi+0.1  

yi+1 = yi+0.1 yi'  yi' = 2yi+xi-0.5 

xo = 0.1 

 

x1 = 0.2 

 

 

x
2 = 0.3  

yo =  1.1714 

 

y1  =  yo+0.1 yo' 

    =  1.3657 

 

y2 =  y1+0.1 y1'   

    =  1.6088  

yo' = 1.9428 

 

y1' = 2.4314 

 

y2' = 3.0176  
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In tabular form: 
 
i  xi  yi  hyi' =  

0.1 (2yi + xi - 
0.5)  

Exact          
yi 

Absolute 
error 

0
1
2
3
4  

0.1
0.

2 0
.3
0.4

0.
5  

1.1714
1.365

7 1.60
88 1.9
106 2.
2827  

0.1943 0.2
431 0.301
8 0.3721

-  

-
1.39

18 1.
6721
2.0255

2.46
83  

-
0.0261 0.

0633 0.114
9 0.1856  

 
 

 
Improved Euler method 
 

• From the point (xi, yi) to find the next value  
yi+1

* : yi+1
* = yi + hyi' as before.   

 
• Instead of accepting this as the value of yi+1, 

use it only to calculate the gradient at the point 
(xi+1 , yi+1

*), i.e. from the O.D.E.,  
 yi+1

*'  =    f(xi+1, yi+1
*) 
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• Then work out a "better" value of yi+1 using: 
 yi+1  =   yi + h/2 (yi' + yi+1

*')  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Geometrically, in the Euler method, solution y 
between xi and xi+1 is approximated by a straight 
line with slope yi'.   
 
In improved Euler, solution y is approximated 
by two straight lines: one between xi and xi + 
h/2 having slope yi', and one between xi + h/2 
and xi+1  having slope yi+1

*'.  

Improved Euler method 

slope 
′

+
*

1iy  

yi 

h 

xi xi+h/2 

yi+1 

Y 

X 

Euler method 

slope ′
iy  

Actual 

xi+h 

y*i+1 
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Example 3 
 
Use improved Euler for previous Eg. 2. 
  

 y'  =  2y + x - 0.5 y(0.1)=  1.1714 

xo=  0.1 yo   =  1.1714 yo'     =  1.9428 

x1=  0.2 y1
* = yo + 0.1yo'   =  1.3657 y1

*'   =  2.4314 

 y1 =  yo + 0.1/2 [yo' + y1*'] 

      =  1.3901 

y1'     =  2.4802 

x2 =  0.3 y2
*= 1.3901 + 0.1 (2.4802) 

     =  1.6381 

y2
*'   =  3.0762 

 y2  =1.3901 + 0.1/2 [2.4802 

                            + 3.0762] 

y2'     =  3.1358 

      =  1.6679  and so on   
 
 

Verify for yourself y(0.5)  =  2.4557 
 
Compared to exact result of 2.4683 and 2.2827 
from Euler method (Eg. 2). 
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3.4 RUNGE-KUTTA METHOD 
 

• the term refers to a large family of one-step 
methods for handling 1st order O.D.E. 

• computationally more efficient. 
• uses Taylor expansion and based on retaining 

all terms up through h
4
.  Error = 0(h

5
) 

 
Algorithm:  Given  y'  =  f(x,y),  y(xo)   =   yo 
 
At step n+1, compute the following terms: 

 

An      =   h.f (xn, yn) 

Bn      =   h.f (xn + h/2, yn + An/2) 

Cn    =   h.f (xn + h/2, yn + Bn/2) 

Dn    =   h.f (xn+1, yn + Cn)   

yn+1  =   yn + 1/6 (An + 2Bn + 2Cn + Dn) 

where : xn,  yn,  xn + h/2,  yn + An/2 are 
sampling points and 6 is the weighting 
factor. 
 



 16

Example 4  
 
Use Runge-Kutta to solve 1st order O.D.E. with 
one initial condition: 
 
y'  =  2y + x - 0.5  y(0.1)  =  1.1714,  h= 0.1. 
 
Ao=   0.1(2yo + xo - 0.5)   
 =  0.1(2.3428 + 0.1 -0.5) =  0.1943 
 
Bo =   0.1 [ 2(yo + Ao/2) + (xo + 0.05) - 0.5 ]   
 =  0.2187 
 
Co =   0.1 [ 2(yo + Bo/2) + (xo + 0.05) - 0.5 ]   
 =  0.2212 
 
Do=   0.1[2(yo + Co) + (xo + 0.1) - 0.5]   
 =  0.2485 
 
y1 =   yo + 1/6(Ao + 2Bo + 2Co + Do) 
 = 1 + 1/6(0.1943+0.4374+ 0.4424 + 0.2485]  
 =  1.3918 
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 In tabular form: 
 
x  A  B  C  D  y   

Exact  
0.1 
 
0.2 
 
0.3 
 
0.4 
 
0.5

 

    - 
 
0.1943 
 
0.2484 
 
0.3144 
 
0.3951

 

    - 
 
0.2187 
 
0.2782 
 
0.3509 
 
0.4396 

    - 
 
0.2212 
 
0.2812 
 
0.3545 
 
0.4441 

    -  
 
0.2485 
 
0.3146 
 
0.3953 
 
0.4939 

1.1714 
 
1.3918 
 
1.6721 
 
2.0255 
 
2.4683 

1.1714 
 
1.3918 
 
1.6721 
 
2.0255 
 
2.4683 
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3.6   MULTI-STEP METHOD 
 
One such example. is Adam-Moulton's method. 
• given y'  = f(x,y)  1st derivative equation. 
 

• •requires 4 starting values of y, i.e. yn, yn-1, yn-2, 

yn-3.   
 
• from  yn,  yn-1,  yn-2,  yn-3, find  yn',  yn-1',   yn-2',  

yn-3' using 1st derivative equation. 
 

• •from these starting values, it predicts a value 
for yn+1, (i.e. yn+1

*), using Predictor Equation. 
 
• •then it uses a Corrector Equation to give the 

corrected value yn+1. 
 
Predictor: 
                           (n)            (n-1)                   (n-2)                (n-3)                   

yn+1
*= h/24 [55yn' - 59yn-1' + 37yn-2' - 9yn-3']+ yn 

 

Corrector:  
    (n+1)            (n)           (n-1)           (n-2) 

yn+1 =h/24 [9yn+1
*' + 19yn' - 5yn-1' + yn-2'] + yn 
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Example 5 
 
Given y'  =2y + x - 0.5 y(0.1)=1.1714. 
 
Assume first 4 values found by Euler's method: 

x 0.1 0.2 0.3 0.4 

y  1.1714 1.3657 1.6088 1.9106 

y' 1.9428 2.4314 3.0176 3.7212 

 (n-3) (n-2) (n-1) n 

 
Predictor Eq.: 
                                (n)                (n-1)  

y4
*= 0.1/24 [ 55(3.7212) - 59(3.0716) +  

(n-2)                        (n-3) 
37(2.4314) - 9(1.9428)] + 1.9106   

= 2.3235         
 
From D.E. y4

*'= 2(2.3235) + 0.5 - 0.5=  4.6470 
 
Corrector Eq.: 
y4  = y(0.5) = 0.1/24 [9(4.6470) + 19(3.7212) – 

 5(3.0176)  + 2.4314] + 1.9106   
= 2.3267 



 20

3.7   COMPARISON OF SOME METHODS 
 
 

Method Error E as a 
function of h 

 No. of 
function  

Numerical  Easy to  

 Local 
Error 

Global 
Error 

evaluations 
(step) 

Stability  change 
h 

Euler 
(1st order) 

E(h2)  E(h) 1 Poor Yes 

Modified 
Euler  

(2nd order) 

E(h3) E(h2) 2 Good Yes 

Runge-Kutta  

(4th order) 
E(h5) E(h4) 4 Good Yes 

Adams-
Moulton 

E(h5) E(h4) 2 Good No 

 
1. Local error refers to the error of one step; 

global error refers to the error at the end of n 
steps, i.e. an accumulation of errors over the 
n steps. 

 
2. Global error > Local error as h < 1.0 
 
3. Euler's method (1st order) has relatively large 

truncation error and is often unstable.   
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3.8  HIGHER-ORDER EQUATIONS 
 
 

Solving 2nd order O.D.E., can be non-linear. 
→ A d

2
y/dx

2
 + B dy/dx + Cy   =   f(x,y) 

 
Reduce to 1 pair of simultaneous 1st order 
O.D.E. 
 
Given:  d

2
y/dx

2
= f(x, y, dy/dx)   

With  y(xo)  = yo,     y'(xo) = yo
' 

 
Define dy/dx as a second function, e.g. 
→  dy/dx = t    with  y(xo)= yo   (1) 
 
→ dt/dx = f(x, y, t)  with  t(xo)= yo'    (2) 
 
• Eqs.(1) & (2) are two 1st order O.D.E. which 

can be numerically solved simultaneously to 
give the solution for the 2nd order O.D.E. 

 
• For each step of calculation, we must calculate 

for each equation in turn. 
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Example 6 :  Solving 2nd order O.D.E. 
 
 d

2
y/dx

2
 =   1/2( x+ y + dy/dx + 2)  

 
Need 2 initial conditions: y(0) = 0 ,  y'(0) = 0 
 
Find y(0.4) and y'(0.4), using h = 0.2 
 
Let  dy/dx = t,    y(0) = 0   (1) 
 
dt/dx =1/2(x + y + t + 2), t(0) = y'(0)= 0 (2) 
 
where : f ( x, y, t ) = 1/2 (x + y + t + 2) 
 
Using simple Euler's method. 
 

002.0 't

'y
  0.2  +  

t

y
 =  

t

y

























 

 
 

( )
 

0.2

0
 =  

2 + 0 + 0 + 0 2/1

0
  0.2  +  

0

0
 =  

t

y

2.0 
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( ) ( ) 0.2 y'  =  0.2t    ,
't

'y
  0.2  +  

t

y
 =  

t

y

0.20.24.0 























 
 

( )
 

0.44

0.04
 =  

2 + 0.2 + 0 + 0.2 2/1

2.0
  0.2  +  

2.0

0
  =

























 
 

Try solving this using modified Euler. 
 
Predictor: 

       
0.2

0
   =  

't

'y
  0.2  +  

t

y
 =  

t

y

00

*

0.2 































                  

 
Corrector:

 
t'

y'
   +  

't

'y
  

2

0.2
  +  

t

y
 =  

t

y *

0.2000.2 











































 

 

( )
     

2+ 0.2 + 0 + 0.2 1/2

0.2
 + 

1

0
 0.1 + 

0

0
  = 

































 

 

 
0.22

0.02
  =









 



 24

Predictor: 

( )
 

2 + 0.22 + 0.02 + 0.2 1/2

0.22
 0.2  +  

0.22

0.02
   =           

  
't

'y
  0.2  +  

t

y
 

t

y

0.20.2

*

0.4

































=








  
0.464

0.064
   =  

22.1

22.0
  0.2  +  

22.0

02.0
  = 

t

y *

0.4 































 

 
Corrector: 

 
t'

y'
   +  

't

'y
  

2

0.2
  +  

t

y
 =  

t

y *

0.40.20.20.4 











































 

 

( )
 

2+0.464 +0.064+0.40.5

464.0
+

22.1

22.0
 0.1+

22.0

02.0
  = 

































 

 

   
4884.0

0884.0
   =  

2684.0

0684.0
  +  

22.0

02.0
  =

























 

 
   cf y(0.4)  =  0.0918 (Exact answer) 
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3.9   SUMMARY (We've covered so far, ... ) 
 
• use the Taylor series to solve a 1st order D.E. 
 
• use Euler, modified Euler or Runge Kutta for 

1st & 2nd order . 
 
• One-step method (Euler, Improved Euler, 

Runge-Kutta) 

- need information only at a preceeding point 

to progress to next point.  Methods are "self-

starting". 

- employs Taylor's expansion. 

- functions may be evaluated several times.  

Can be time    consuming. 
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• Multi-step method (also known as Predictor-

Corrector) 

- not self-starting, rely on one-step to start. 

- one-step methods (of same order) are of 

comparable accuracy to the multi-step 

methods (e.g. Runge Kutta and  Adam 

Moulton). 

- no. of function evaluations for Runge Kutta is 

four, while a predictor-corrector method of the 

same order requires only two.  

∴ Predictor-corrector methods can be more 

efficient. 

 
 
 



 27

SINGLE STEP METHOD 
    
Starting point      Local  
      errors 
   Simple Euler    0(h

2
) 

Taylor Series   Modified Euler   0(h
3
) 

   Runge Kutta 4th order 0(h
5
) 

 
 
MULTI-STEP METHOD 
 
Starting point:      Local  
      error 
 
Simple or  
Modified Euler  Adam-Moulton   0(h

5
) 

 (require 4 pts)   Predictor formula 
   Corrector formula  
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SUMMARY 
 
1. Runge-Kutta Method 

Ai =    h.f(xi, yi) 

    Bi =   h.f(xi + h/2, yi + Ai/2) 

    Ci =   h.f(xi + h/2, yi + Bi/2) 

    Di =   h.f(xi + h, yi + Ci) 

  yi+1 =   yi + 1/6(Ai + 2Bi + 2Ci + Di) 

 
2. Multi-Step Method 
 
Predictor: 
yi+1

*=h/24[55yi' - 59yi-1' + 37yi-2' - 9yi-3'] + yi 
 

Corrector:  
yi+1=h/24 [9yi+1

*' + 19yi' - 5yi-1' + yi-2'] + yi 
 

3.   Higher Order Equations 
Let  dy/dx   =   t  with  y(xo)  =   yo   (1) 
dt/dx   =   f(x, y, t)  with  t(xo)  =   yo'  (2) 
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APPENDIX: ANALYTICAL SOLUTIONS TO O.D.E. 
 

1.1 SEPARABLE EQUATION 
 

Form :  Q(y) y'  = P(x) 

Solution:     ∫  Q(y) dy  = ∫ P(x) dx + constant 
 
Example 1 
 
Solve { y'/(1+x

2
) } + 1 + y  =   0 

 
{ 1/(1+x

2
) } dy/dx  =   - (1+y) 

 
  ∫ dy/(1+y)    =   - ∫ (1+x

2
) dx 

   
    In (1+y) =   -  (x + x

3
/3) + c 

  ∴            y =   1 - e A
x

3

x3











+−

  
 
Question: What are the order and degree of this 

equation.?  Express it  linear form.   
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1.2 EQUATIONS REDUCIBLE TO 
SEPARABLE FORM BY SUBSTITUTION 

 
 Form:   y'   =   P(y/x) 
 
 Solution: Let  v    =   y/x  or  y   =   vx  
 

dy/dx   =    v + x dv/dx  
 ⇒  v + x dv/dx     =   P(v)  
 ∴     ∫   dv/(P(v)-v)  =  ∫ dx/x + constant 
 
 
Example 2  
 

dy/dx  = (x+y)/y   =   1 + y/x   =   1 + v 
 
  put v  =    y/x 
 
  P(v)  =   1 + v 
 
v + x(dv/dx)  =    1 + v 

∫ dv/(1+v-v)  =     ∫  dx/x + c 



 31

 
         v  =    ln x + c 
 
 Upon back substituting 

 
y/x  =    ln x + c 

 
∴      y =     x ln x + cx 
 
 Linear O.D.E. 1st order, 1st degree 
 
 
1.3 EXACT O.D.E. 
 
 Form :  M(x,y) dx  +  N(x,y) dy  =  0 
 
L.H.S. is an exact differential of a function 
F(x,y) for all x,y in a domain D.  Express as 
below: 
 
 
M(x,y) dx+N(x,y) dy =∂F/∂x  dx+∂F/∂y dy = dF 
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⇒  ∂F/∂x  = M(x,y)  & ∂F/∂y = N(x,y) for all x,y 
 
 

Dy,xallforx/Ny/Myx/F2 ⊂∂∂=∂∂=∂∂∂  
 ∴  The O.D.E. is exact. 
 
Solution: Once an O.D.E. is found to be exact, the 

solution can be obtained by integrating 
the partial derivatives ∂F /∂x and ∂F/∂y. 

 
 
Example 3 
 
Solve  dy/dx  =   -4xy - 3x

2
/(2x

2 + 2y) 
 

⇒  (3x
2
 + 4xy) dx + (2x

2 + 2y) dy    =    0= dF  
 
Let  M =   3x

2
 + 4xy       N =   2x

2 + 2y 
 

∂M/∂y =   4x ,  ∂N/∂x =   4x    
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∴ ODE is exact 
 
Then,  ∂F/∂x  =   3x

2
 + 4xy - (1)  

 

∂F/∂y  =   2x
2 + 2y -(2) 

 
From (1)         F  =   x

3
 + 2x

2
y + φ(y) - (3) 

 
From (2) and (3)  
 

∂F/∂y  =   2x
2 +  ∂φ(y)/∂y  =   2x

2 + 2y 
  

∴   φ(y)  =   y
2
 + c 

 
Hence, F(x,y) =   x

3
 + 2x

2
y + y

2
 + c 

 
 Since       dF  =  0 ,   F(x,y)   =   constant 
 
∴   The solution is x

3 + 2x
2
y + y

2 = constant. 
 
1.4     INTEGRATING FACTORS   
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(Please refer to Kreyszig for greater details) 
 
 Form:  M(x,y) dx + N(x,y) dy = 0 
 
   But equation is not exact. 
 
 Solution: Multiplying the equation by a 

suitable function Q(x,y) to make it 
exact. 

 
 Q(x,y) ∼∼ Integrating Factor of the D.E. 
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Example 4  
 
Given non-linear O.D.E. 
 
dy/dx=2x

2
+y/(x-x

2
y) ⇒ (2x

2
+y)dx+(x

2
y-x)dy =0 

 
(Check that D.E. is not exact from Eg.3).    
 
 Multiplying by Q(x), the integrating factor, 
 
[Q(x) (2x

2
+y)]dx +[Q(x)(x

2
y-x) ]dy =0 is exact. 

 

⇒  ∂/∂y [Q(x) (2x
2
+y)]=  ∂/∂x [Q(x) (x

2
y-x)] 

 
Q(x).1  = ∂Q(x)/∂x (x

2
y-x) + Q(x)(2xy-1) 

 
          ∂Q(x)/∂x =   - 2/x Q(x) 
 
Integrating    ⇒   Q(x) =  constant/x

2   =   c/x
2 

 

⇒   c/x
2
 (2x

2
+y) dx + c/x

2
 (x

2
y-x)dy = 0 
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1.5  LINEAR FIRST-ORDER O.D.E. 
 
 Form:   1y' + f(x)y = r(x)    
 
   f(x), r(x) are both functions of x.   
 
Case (a) Homogeneous form:  r(x)  =  0. 
 
 i.e. ∫ dy/y  =  -∫ f(x) dx  ⇒  y  = ( ) dx xf e C ∫−  
 
Case (b) Non-homogeneous form: r(x) ≠0 
 

Multiply the O.D.E. by an I.F.  ( ) dx xf e ∫− . 
 
i.e.  ( ) ( ) ( ) ( ) ( ) dx xf dx xf dx xf e xr  =  ye xf  +  e'y ∫∫∫                             
 
    L.H.S. =   d/dx ( )[ ]dx xf ye ∫  
 
 ∴        d/dx ( )[ ]dx xf ye ∫   =     r(x) ( ) dx xf e ∫  
 
 ⇒  ( ) dx xf ye ∫  =      ∫ ( ) ( )[ ]dx xf e xr ∫  dx + c 
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Example 5 
 
Solve     xy' + y + 4  =  0 -  Linear 1st order 
non-homogeneous 
 
Rewriting       y' + y/x =  - 4/x 
 
           dx x/1 ye ∫  =  ∫ - 4/x dx x/1 e ∫  .dx 
 

     y e
1nx

  =  ∫ - 4/x e
1nx

 .dx 
 
But  e

1nx
  =  x  ⇒    yx=  - ∫ 4 dx   =   - 4x + c 

 
     ∴    y =   c/x - 4  
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1.6  HOMOGENEOUS LINEAR D.E. 
WITH CONSTANT COEFFICIENTS 

 
 Form:  (of n

th
 order) 

 
an y

(n)
 + an-1 y

(n-1)
 + ... a1 y

(1)
 + ao y = 0  ... (1) 

 
where  a1   = constant,    i   =  1  to  n and  an ≠ 0 
 
 To obtain the general solution, n linearly 
independent solutions are required. 
 
         y  =    eλx      ... (2) 
 
 Note      y

(i)
  =    d

i
u/dx

i
 i = 1 , n. 

 
 Substituting (2) into (1), we obtain 
 
eλx [an λn + an-1λn-1 + ... + a1 λ + ao]      =   0  
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 For non-trivial solution, eλx  ≠  0 
 
⇒  an λn + an-1 λn-1 + ... + a1 λ+ ao = 0  (3)  
 
 Note: 
 
(a) Eqn.(3) is the characteristic equation of the 

O.D.E. and the roots are called characteristic 
roots. 

 
(b) The solution to Eqn.(3) is the solution to the 

homogeneous equation. 
 
(c) λ can be +ve, -ve or complex. 
 
  
 Once the roots (λ1, λ2 , ... , λn) are obtained, 

the general solution is written as: 
 

 eC  +   + eC  + eC  =  y x
n

x
2

x
1

n21 λλλ Λ    (4) 
 
 where  C1, C2, ... , Cn  are constants. 
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 For second order homogeneous O.D.E. 
 
  a2 y + a1 y + ao y =    0 
 
 The characteristic equation is quadratic: 
 
  a2 λ

2
  +  a1 λ  +  a0  =   0 

 
 

Condition Solution 

2 distinct roots:  λ1, λ2 
2
1a   

>  4a2 ao   

 

Equal roots λ1 = λ2  
2
1a   =  4a2 ao 

 

Complex roots  λ  = α ± iß  
2
1a   < 4a2 ao 

y =   21 e B + e A λλ   

 

y  = eλx (Ax + B) 

 

 

y  = eαx(A cos ßx 
+ B sin ßx)  
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1.7 Non-homogeneous Linear D.E. with 

constants. 
 

 Form:  (n
th

 order) 
 
an y

(n)
 + an-1 y

(n-1)
 + ... + a1 y

(1)
 + a0 y = f(x)  (5) 

 
 Similar to Eqn (1) except LHS = f(x) ≠ 0 
 

Solution steps 
 
(a) Find the solution of the homogeneous 

equation associated with (5). 
 
an y

(n)
 + an-1 y

(n-1)
 + ... + a1 y

(1)
 + a0 y   =   0 

 
Solution is: yh = C1 1e λ  + C2

2e λ   +  ..  + Cn 
ne λ  

 
This is called homogeneous solution. 
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(b) Find any particular solution yp which 
satisfies equation (5). 

(c) If yh is the homogeneous solution and yp is 
any particular solution, the general solution 
is  y = yh + yp. 

 
Obtaining yp by method of undetermined 
coefficients 
 
To obtain yp for the ODE 
 
an y

(n)
  +  an-1 y

(n-1)
 + ... +  a1 y

(1)
 +  a0 y   =   f(x) 

 
f(x) is a linear combination of : 
 
(a) xα   ( α  ≥  0 )  (c) cos γx ( γ  ≠  0 ) 
(b) eßx  ( ß  ≠  0 )  (d) sin δx  ( δ  ≠  0 ) 
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Simple rules for determining yp: 
 

Term in f(x) Choice of yp 

(a) kx
p
 

 

(b)  ke
px

 

 

(c)  k cos px 

 

(d) k sin px 

 

(e) sum of functions 

 

(f) A term in f(x) is 
a solution of the 
homogeneous 
O.D.E.  

Ap x
p
 + Ap-1 x

p-1 + ..+ A1 x+ Ao 

 

A e
px 

 

A cos px + B sin px 

 

A cos px + B sin px 

 

sum of functions 

 

Multiply the appropriate 
function by x if roots are 
distinct, or by x

2
 if roots are 

equal. 
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Example 6 
 
Solve  y"  -  4y'  +  3y =    - 3e

-x
 

 
Characteristic Eqn.: λ

2
 - 4λ+ 3  = 0     

 
 λ    =    1 , 3 

 
Homogeneous solution is  yh  =     Ae

x
 + Be

3x
 

 
  yp:  Let  yp  =       Ce

-x 
 
     y'p  =  - Ce

-x
           &    y"p  =  Ce

-x 

 
Comparing coefficients of e

x
 gives   C = -3/8 

 
∴ General solution is    
 

y =  A e
x + B e

3x
 - 3/8 e-x. 
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