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1.1 INTRODUCTION 
 
 

• You may require estimates at points 
between the calculated discrete values.   

 
For e.g.  in numerical modelling of deep 
beam, plane stress elements are used.  The 
displacements and strains are worked out at 
the internal points known as Gaussian 
points.  These values are then interpolated 
to the corner nodes and mid-side nodes.   

 
• You may require a simplified version of a 

complicated function.  
 
• You may require to provide a statistical 

equation to a group of data.  
 

Basically, there are two approaches to 
numerical analysis of data, depending on the 
data themselves. 
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Firstly, where the data themselves inherit 
significant degree of error, we derive a single 
curve that represents the general trend of the 
data.  This is a statistical approach. 
 
 
 
 
 
 
 
 
 
 
 
This type of analysis is known as least-squares 
regression. 
 
Secondly, where the data are known to be very 
accurate, we fit a curve that passes directly 
through each of the points. This is interpolation 
which we shall cover first.   
 
 

X 

Y 
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Interpolation can be used to obtain 
intermediate values from discrete data points. 
Interpolation is also relevant to Numerical 
Integration and Numerical Solution of 
O.D.E.   
 
These topics will be covered in later part of the 
course.  In fact, interpolation forms the 
backbone of Numerical Methods.   
 
 
 

X 

Y 
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1.2 DIFFERENCE TABLE 
 
EXAMPLE 1: POLYNOMIAL FUNCTION 
 
The difference table for  a polynomial function 
e.g.  f(x)  =  x3  is shown below.  What do you 
notice ?  

xi f(xi) ∆f ∆2f ∆3f ∆4f  

-3 -27     

  19    

-2 -8  -12   

  7  6  

-1 -1  -6  0 

  1  6  

0 0  0  0 

  1  6  

1 1  6  0 

  7  6  

2 8  12   

  19    

3 27     
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∆fi  =   f(xi+1) - f(xi)  
 
 where ∆ = forward difference operator 

  
Note: For a 3rd degree polynomial, the 3rd 

order differences are constant. 
 
 
Corollary:   
 
• If  the nth order differences are constant, we 

can approximate f(x) by an nth degree 
polynomial function Pn(x). 
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EXAMPLE 2: NON-POLYNOMIALS 
 
The difference table for a non-polynomial 
function, e.g. f(x) = 1/x,  is shown below.  
What can you infer from the difference 
columns ?  
 

x f(x) ∆f ∆2f ∆3f  

1.0 1.0000    

  -0.1667   

1.2 0.8333  0.0477  

  -0.1190  -0.0180 

1.4 0.7143  0.0297  

  -0.0893  -0.0098 

→1.6 0.6250  0.0199  

  -0.0694  -0.0061 

1.8 0.5556  0.0138  

  -0.0556   

2.0 0.5000    
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Note: 3rd  order differences fluctuate wildly, 
although the  values are small. 
 
 
Corollaries:   
 
• For non-polynomial functions, the nth order 

of differences may be small as n increases, 
but the differences themselves will not be 
constant.  

 
• If the nth order differences are constant, the 

underlying function must be a polynomial of 
degree n.  
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NOTATIONS FOR DIFFERENCES 
 
Forward differences: 

  
A polynomial function can be written in two 
forms: 
 
(a) Pn(x)  =  ao  +  a1 x  +  a2 x

2  +  ...  + an x
n  

        

  (evenly-spaced data) 
 
(b) Pn(x)  =  ao + a1 (x-xo)  +  a2 (x-xo)(x-x1)  + 
...  
         + anx

n (x-xo)(x-x1) .. (x-xn-1)     
  
  (unevenly-spaced data) 
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x f(x) 1st 2nd 3rd 4th 

x-2 f-2     

  ∆f-2    

x-1 f-1  ∆2f-2    

  ∆f-1  ∆3f-2  

xo fo  ∆2f-1  ∆4f-2 

  ∆fo  ∆3f-1  

x1 f1  ∆2fo   

  ∆f1    

x2 f2     

 

Note:       ∆ f-2   =    f-1  -  f-2 ,   

  

 ∆2f-2 =   ∆ f-1  -  ∆ f-2 

 
    ∆ f-1   =    fo  -  f-1 ,    

 
∆2f-1 =   ∆ fo  -  ∆ f-1 
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  Generally,  

∆fm =   fm+1 - fm 

 

∆2fm =   ∆fm+1 - ∆fm 

 

 
 
From Eg.2,  if we choose  the starting point    
 

xo   =  1.6,    
 

 fo  =    0.6250 
 
      ∆fo =   -0.0694 
 
     ∆2fo=   0.0138 
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EXAMPLE  3: EFFECT OF ERRORS IN X 
 

x f(x) ∆f ∆2
f ∆3

f ∆4
f 

0 1     

  32    

2 33  160   

  192  133  

4 225  293  44 

  485  177  

6 710  470  -66 

  955  111  

8 1665  581  44 

  1536  155  

10 3201  736  -11 

  2272  144  

12 5473  880  0 

  3152  144  

14 8625  1024   

  4176    

16 12801     
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If one of the x data in the difference table is 
wrong, but we know that the underlying 
function is cubic degree beforehand,  from the 
difference columns, we may be able to undo 
the error, and find the correct value for x.  
 
(For comparison purpose, the actual function is 
3x

3
 + 2x

2
 + 1. ) 

 
• We would need at least one of the elements 

in the fourth order difference to be zero.   
 
• Then we can perform a “reverse engineering” 

to back calculate the third order differences 
which should be constant.   

 
• Working from the third order differences, we 

proceed to the second order differences and 
so forth, and finally zoom in on the wrong x.    

 
• All these are only possible, if we already 

know the degree of the underlying function.   
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x f(x) ∆f ∆2
f ∆3

f ∆4
f 

      

    144  

   304  0 

  496  144  

6 721  448  0 

  944  144  

   592  0 

    144  

     0 
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Notations for differences. 
 
 ∆2

fi =     ∆(∆fi)      =     ∆(fi+1 - fi) 
 
  =     ∆fi+1 - ∆fi 
 
  =     fi+2 - fi+1 - (fi+1 - fi) 
 
∴  ∆2

fi  =     fi+2 - 2fi+1 +  fi 
 
Verify      ∆3

fi  =     fi+3 - 3fi+2 + 3fi+1 - fi 
 
The coefficients can be obtained from the 
Pascal Triangle analogy: 
 
 

    +1       

  +1  -2  +1    ∆2
 

 +1  -3  +3  -1   ∆3
 

+1  -4  +6  -4  +1  ∆4
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 Forward Difference method 
 
  ∆fi     =    fi+1 - fi 

 

  ∆2fi  =   ∆ (∆fi)      etc. etc. 
 
 Homework:   
 
Verify   ∆4

fi  =     fi+4 - 4fi+3 + 6fi+2  - 4 fi+1 + fi 
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1.3 NEWTON-GREGORY 
POLYNOMIALS 
 

It is noteworthy that the Newton-Gregory 
method applies to only evenly spaced data, 
i.e. x with uniform increment.  For unevenly 
spaced data, we need to use Newton 
divided difference.   
 
Linear Interpolation  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 xo            x                x1 

X fo f1 

h 

f1 - fo 

sh 
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The curve f(x) is approximated by a CHORD at 
two adjacent x-values, xo and x1.   
 
Using Similar Triangle, f(x) can be 
approximated by a linear function P1(x) : 
 
 f(x) ≈     P1(x) 
  =     fo +  (x - xo)/h   (f1 - fo) 
  =     fo + s ∆fo 
 

where  s  =   
 x -  x

h
o  
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Quadratic Interpolation   
(evenly-spaced data) 
 
 
 
 
 
 
 
 
 
 
This time, f(x) is approximated by a quadratic 
function P2(x), passing through three points (xo,  
fo), (x1, f1) and (x2, f2). 
 
 f(x)    ≈    P2(x)    =   fo +  s ∆fo +   
 

 
( )s s

fo
− 1

2
 2∆  

 

where  s  =   
 x -  x

h
o  

 

 xo            x  x1           x2 

X 
fo f2 

f2  - fo 

sh 

 

 

h 

f(x) 

P2(x) 

f1 

h 
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At   x =   xo ,         s =   0  ,    
 
P2(xo) =   fo 
 
At   x =   x1 ,         s =   1  ,    
 
P2(x1) =   fo +    ∆ fo =   f1 
 
At   x =   x2 ,         s =   2  ,    
 
P2(x2) =   fo + 2∆ fo  +  ∆2

 fo 
    
  =   f1 +   ∆ f1   =   f2 
                         
  (Note:     ∆2

 fo    =   ∆ f1  - ∆ fo ) 
 
Newton-Gregory Forward Interpolation 
Formula   
 
Pn(x) =  fo  +  s ∆ fo +   ( )s s − 1

2 !
∆2

 fo +  ..... 

 

  =  fo  +  s

1





 ∆ fo +   

s

2






  ∆2
 fo +  ...... 
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EXAMPLE 4:  EXACT INTERPOLATION 
 
In this example, we are trying to find a suitable 
polynomial function which fits exactly with the 
data in the table. 
 

x f(x) ∆f ∆2
f ∆3

f ∆4
f 

0 0     

  1    

1 1  12   

  13  12  

2 14  24  0 

  37  12  

3 51  36  0 

  73  12  

4 124  48   

  121    

5 245     
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Using cubic forward interpolation 
 

 P3(x) =  fo +  s∆ fo +   
( )s s − 1

2!
 ∆2

 fo  

 
 

+   
( )( )s s s− −1 2

3!
 ∆3

 fo  

 
 
Choose      xo =   0 , s   =    (x/1)   =   x 
 

P3 (x) =   0  +  x.1  +  
( )x x −1

2   . 12  +   
 

( )( )x x x− −1 2

6
 . 12 

 
   =   2x

3
 - x 
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Corollaries: 
 
• If fn(x) can be exactly approximated by Pn(x) 

(i.e. it requires n
th

 degree polynomial), then 
there is one and only one Pn(x) that fits fn(x) - 
this comes from the Uniqueness  Theorem. 

 
• In this particular case, the starting point xo 

can be arbitrarily chosen because Pn(x) = 
fn(x)  for all values of x.  

 
 
EXAMPLE 5:  FINDING THE STARTING 
POINT  
 
Find f(3.2) in Eg. 4 using quadratic 
interpolation ( n = 2).  We need to locate xo 
(starting point) if we use a lower degree of 
interpolation than the required one for exact 
matching. 
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Forward Interpolation 
 
A quadratic curve will pass through 3 points 
(xo, yo), (x1, y1), and (x2, y2).  To minimise 
errors, fit the mid point as close to x = 3.2 as 
possible.  In this case we choose  x1 = 3 , thus ,  
xo = 2. 
 

∴         s =    
3 2 2

10

.

.

−
   =  1.2 

 

Thus, f(3.2) ≈   fo +  s ∆ fo +   
( )s s − 1

2
 ∆2

 fo  

  

    =   14 + 1.2(37) + 
( )( )1.2 0.2

2
 36  

 
=   62.72 ( cf.  to 62.336 from 

    f(x) = 2x3 - x ) 
 

Error   Term =   
( )( )s s s− −1 2

6
 12 =  - 0.384 
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Truncation Errors 
 
Recall Newton-Gregory forward difference: 
 

 f(x)  ≈  fo +  s∆ fo + 
s s( )

!

− 1

2
∆2

fo +  ....  + 

 

     
s s s n

n

( )...( )

!

− − +1 1
 ∆n

fo  

 
 
Error involved in the case of a function f(x) that 
is at least (n+1) times continuously 
differentiable is  
 
 εn (x)  =     f(x) - Pn(x) 
 
 

 ( ) ( ) ( )
( )

( )=
s s - 1   s - n + 1  s - n  

n + 1
.h fn+1 n+1Λ

!
ξ  

 
where ξ lies between xo and xn. 
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Corollaries 
 
• Error εn(x) is of the order of magnitude of 

the next difference not used in Pn(x). 
 
• One should choose xo, x1 ... xn such that the 

value x at which one interpolates is as well 
centred as possible among  xo, ... xn given in 
the Table. 

 
• We can approximate the error term  fn+1(ξ)  

by   
( )∆n+1

n+1

 f  

h
 

ξ
 

 
EXAMPLE 6:  FINDING BEST 
ESTIMATE  
 
Find the best estimates and the associated 
truncation errors of f(0.8)  using Newton 
Gregory forward difference formula via: 
 
 (a)  quadratic interplation. 
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 (b) cubic interpolation. 
 

x  f(x) ∆f ∆2
f ∆3

f ∆4
f 

0.1  0.09983     

  0.37960    

0.5 0.47943  -0.07570   

  0.30390  -0.04797  

0.9 0.78333  -0.12367  0.01951 

  0.18023  -0.02846  

1.3 0.96356  -0.15213   

  0.02810    

1.7 0.99166     

 
 
(a) Quadratic interpolation 
 

3 points are required (xo,  fo), (x1,  f1) and 
(x2,  f2) for  n = 2.. 

 
 Choose       x1  =    0.9      ⇒      xo    =   0.5 
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  s  =   
x -  x

h
  =   

0.8 -  0.5

0.4
  =   0.75o  

 
 

 f(x)   ≈  fo +  s∆ fo + 
( )s s − 1

2!
∆2

fo +  ....  

 
 
 

f(0.8) ≈0.47943+0.30390(0.75)+  
 

( )( )( )− −0.12367 0.75 0.25

2!
  

 
=  0.71895 

 

 ε2 (x)  =   
( )( )s s 1 s 2

3!

− −
 (- 0.02846)   

 
=  - 0.00111 
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(b) Cubic interpolation 
 
4 points are required i.e. (xo,  fo), (x1,  f1), (x2,  
f2) and (x3 ,  f3). 
 
Locate  x =  0.8  between  x1  =  0.5 and  x2  =  
0.9. 
 
 ⇒   xo   =   0.1 
 
 

 ∴ s  =   
0.8 -  0.1

0.4
  =   1.75 

 
 

 f(x)   ≈  fo +  s∆ fo + 
( )s s − 1

2!
∆2

fo +  

 
( ) ( )s s 1  s-2

3!

−
∆3

fo 
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f(0.8) =   0.09983 + 1.75 (0.3796)  
 

+
( )( )( )1.75 0.75 -0.0757  

2
 

 

+
( )( )175.  0.75 -0.25

6
(- 0.04797) 

 
=  0.71707 

 

 ( ) ( )( )( ) ( )ε 3 x =
s s 1 s 2 s 3

4!
0.01951

− − −
 

 
  = 0.00033 
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1.4   NEWTON'S DIVIDED DIFFERENCE 
 
Linear Interpolation 
 
 
 
 
 
 
 
 
 
 
 
 

• Simplest form of divided difference. 
 
• Identical with Newton-Gregory linear 

interpolation. 
 
• The data need not be evenly spaced, but the 

formula can still be applied to evenly -
spaced data. 

 

 xo             x               x1 

X 

fo 

f1 
 

f1 - fo 

Y 

P1(x) 
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( )f  -  f

x  -  x
  =   

P x  -  f

x -  x
1 o

1 o

1 o

o

 

 

Rearranging,  ( ) ( )
( )

( )P1 x   =   f  +  
f  -  f

x  -  x
 x -  xo

1 o

1 o
o  

 
or  symbolically P1(x)   =  fo + f[xo , x1] (x - xo) 
 
 where       [ ]f x  , x   =   

f  -  f

x  -  xo 1
1 o

1 o
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Quadratic Interpolation 
 
To improve the accuracy of interpolation, we 
introduce some curvature into the line 
connecting the data points.  In this case, three 
data points are required. 
 
 
 P2 (x)   =   bo + b1(x - xo) + b2(x - xo)(x - x1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xo                 x         x1         x2 

X fo f2 

f(x) P2(x) 

f1 
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To determine the values of bo, b1 and b2, we 
need to use the corresponding values of f(x) at 
x =xo, x1 and x2. 
 
 At x = xo  bo   =   fo 
 
 At x = x1   b1   =   f  -  f

x  -  x
1 o

1 o

    =   f[xo , x1] 

 
 At x = x2,    
 

b2   =  

( )( )

( )( )

f  -  f  -  
f  -  f x  -  x

x  -  x

x  -  x x  -  x

2 o
1 o 2 o

1 o

2 o 2 1

 

 
 

b2   =
( )( ) ( )( )

( )( )( )
f  -  f x  -  x  -   f  -  f x  -  x

x  -  x x  -  x x  -  x
2 o 1 o 1 o 2 o

2 o 2 1 1 o

 

 
 

 =
( )( ) ( )( )

( )( )( )
f  -  f x  -  x  -   f  -  f x  -  x

x  -  x x  -  x x  -  x
2 1 1 o 1 o 2 1

2 o 2 1 1 o
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b2   =   

( ) ( )f  -  f

x  -  x
 -   

f  -  f

x  -  x

x  -  x

2 1

2 1

1 o

1 o

2 o

 

 
 

 =   
[ ] [ ]f x  , x    f x  , x

x  -  x
1 2 o 1

2 o

−
 

 
=   f [xo , x1 , x2]  

  
 
Thus,  if  
 
Pn(x) =bo + b1 (x - xo) + ... + bn (x - xo).(x - xn-1) 
 
then    bo  =   fo 
 
        b1  =   f[xo ,  x1] 
 
      bn  =   f[xo ,  x1 ,  ...  xn] 
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EXAMPLE 7: NEWTON’S DIVIDED 
DIFFERENCE 
 
To help us better understand the use of divided 
difference table, the following example is used:  
 

xi  fi f[xi,xi+1] f[xi ,.xi+2] f[xi  

..xi+3] 
f[xi ...xi+4] 

3.2 22.000     

  8.400    

2.7 17.800  2.856   

  2.118  -0.528  

1.0 14.200  2.012  0.256 

  6.342  0.086  

4.8 38.300  2.263   

  16.750    

5.6 51.700     
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A polynomial of 3rd degree that fits  in between 
xo = 3.2  and  x3  =  4.8  is given by : 
 
 P3(x)  = 22 + 8.400(x - 3.2)  
 

+ 2.856(x - 3.2)(x - 2.7) 
 
    -0.528(x - 3.2)(x - 2.7)(x - 1.0). 
 
The 4th degree polynomial function would be : 
 
P4(x) =P3(x)+0.256(x -xo)(x -x1)(x -x2)(x -x3) 
 
P4(x) =P3(x)+0.256(x-3.2)(x-2.7)(x-1.)(x-4.8). 
 
 
Corollaries: 
 
• If the true underlying function is an nth 

degree polynomial, then the nth degree 
polynomial will yield exact results, based on 
(n+1) data points. 
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• For an nth degree polynomial to approximate 
(n+1)th degree, the associated error term is: 

 

εn x( ) = ( )
( )
f

n

n +

+

1

1

 ξ
!

(x - xo) (x - x1) ....(x - xn) 

 
where  xo  <  ξ  <  xn 

 
 
• For this formula to be useful, the function 

must be known and differentiable.  
Otherwise, we can approximate the error 
term by: 

 
εn x( )≈ f[xo ,x1,x2, ... xn+1](x - xo)(x -x1)...(x - xn)  

 
where  f [xo , x1, x2 ... xn+1] is the (n+1)th 
divided difference.  
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1.5   LAGRANGIAN POLYNOMIALS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f2 

f0 

f1 

x2 x1 x0 

f(x) = P2(x) 

f2 

f0 

f1 

x2 x1 x0 

f(x) = P2(x) 

1st term: L0(x) f0 
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f2 

f0 

f1 

x2 x1 x0 

f(x) = P2(x) 

2nd term: L1(x) f1 

f2 

f0 

f1 

x2 x1 x0 

f(x) = P2(x) 

3rd term: L2(x) f2 
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The rationale underlying Lagrange formulation 
can be understood by realising that each term 
Li(x) will be 1 at x = xi and 0 at all other 
sample points.   
 
Figure above shows a second-degree case 
where each of the terms passes through one of 
the data points and is zero at the other two 
points.   
 
Summation of 3 terms is the unique P2(x) that 
pass through the 3 points exactly. 
 
 

f2 

f0 

f1 

x2 x1 x0 

f(x) = P2(x) 

1st term: L0(x) f0 

2nd term: L1(x) f1 

3rd term: L2(x) f2 
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Consider the linear polynomial P1(x): 
 
 
 
 
 
 
 
 
 
 
 

 P1(x) =   
( )

( )

x x

x x
f

o
o

−
−

1

1

+ 
( )

( )

x x

x x
fo

o

−
−1

1 

 
when x=  xo , P1 (xo)  =1 . fo  +  0 . f1 =fo    
 
when x=  x1 , P1 (x1) =0 . fo +   1 . f1  =f1 
 

where   Lo(x)  =    
x 

xo

-  x

 -  x
 1

1

 

 

f0 

f1 

x1 x0 

f(x)=P1(x) 

L0(x) f0 

L1(x) f1 
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   L1(x)  =    
x 

x

-  x

 -  x
 o

o1

 

  
 ⇒  P1(x)  =   Lo(x) . fo  + L1(x) . f1 
  
 
Lagrange formulation can be derived from 
Divided difference as shown for 1st degree 
case: 
 
 
 P1(x)  =   f(xo) + (x - xo) f[x1, xo] .. (1.5.1) 
 
 

But f [x1 , xo ] =
f

x
1 o

o

 -  f

 -  x
 

1

 

 

     =
f

x

f

x
o

o

1

1 -  x
 +  

 -  x
 

o 1

(1.5.2) 
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Substituting Eq (1.5.2) into Eq (1.5.1), 
 
P1 (x)=f (xo) +  
 

( )
( )

( )
( )

x  

x

x  

x o

-  x

 -  x
 f   +  

-  x

 -  x
 f   o

o
1

o

1
o

1

 

 

P1(x)=   ( )
( )

( )
( )

x  

x

x  

xo

-  x

 -  x
 f  +  

-  x

 -  x
 f    1

1
o

o

o
1

1

 

 
 
The 2nd  degree Lagrangian formula is: 
 

P2(x)=   
( )( )

( )( )
( )( )

( )( )
x x 

x x

x x 

x xo o

-  x -  x

 -  x  -  x
 f   +  

-  x -  x

 -  x  -  x
 f  1 2

1 2
o

o 2

o 2
1

1 1
 

 
( )( )

( )( )
+   

-  x -  x

 -  x  -  x
 fo 1

o 1
2

x x 

x x2 2
 

 
P2(x)   =   Lo(x) . fo  +  L1(x) . f1  +  L2(x) . f2 
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The Lagrangian Polynomials are: 
 
• straight forward to apply. 
• can be used for unevenly spaced data.  
• can be used for randomly ordered data (i.e. 

no sequencing) 
 
Disadvantages are that: 
 
• more arithmetic is involved. 
• need to start all over again if new data is 

introduced. 
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EXAMPLE 8: LAGRANGIAN  
POLYNOMIAL 
 
Using Lagrangian Polynomials, find  P2(3). 
 

x f(x) 

3.2 22.000 

2.7 17.800 

1.0 14.200 

 
P2 (3) =   
 

( )( )
( )( )

( )( )
( )( )

3 27 3 10

3 2 27 3 2 10

3 3 2 3 10

27 3 2 27 10

− −
− −

− −
− −

. .

. . . .

. .

. . . .
 22.000  +    17.800   

 
( )( )
( )( )

+
− −
− −

   14.200   =    20.149
3 3 2 3 27

1 3 2 1 27

. .

. .
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Truncation error for Lagrange Polynomials. 
 
As with Newton's divided difference, Lagrange 
has an estimated error of: 
 

en(x)  =  f [xo , x1 , x2 , ... xn , xn+1] ( )x −∏  xi
i=0

n
 

 
EXAMPLE 9: LAGRAGIAN ERROR 
 
 

x fi f[xi , 
xi+1] 

f[xi , ...  
xi+2] 

f[xi , ... 
xi+3] 

3.2 22.000    

  8.400   

2.7 17.800  2.856  

  2.118  -0.528 

1.0 14.200  2.012  

  6.342   

4.8 38.300    
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Suppose in Eg.8, 1 pair of data (4.8, 38.300) is 
missing. What would be the error involved in 
estimating f(3) from the Table in Eg.8? 
 
   

ε2(x)  =    -0.528(x - 3.2)(x - 2.7)(x - 1.0) 
 
∴  Error  =  0.528(3 - 3.2)(3 - 2.7)(3 - 1.0)    
 

=   0.06336 
 
 
 
Using Lagrangian method 
 
we have,  
 

x f 
3.2 22.000 
2.7 17.800 
1.0 14.200 
4.8 38.300 
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P3 3
3 27 3 10 3 4 8 22

3 2 27 3 2 10 3 2 4 8
( )

( . )( . )( . )

( . . )( . . )( . . )
=

− − −
− − −

 

 
 

 +
− − −

− − −
( . )( . )( . ) .

( . . )( . . )( . . )

3 3 2 3 10 3 4 8 17 8

27 3 2 27 10 27 4 8
 

 
 

+
− − −

− − −
( . )( . )( . ) .

( . )( . )( . )

3 3 2 3 27 3 4 8 14 2

1 3 2 1 27 1 4 8
 

 
 

+
− − −

− − −
( . )( . )( . ) .

( . . )( . . )( . . )

3 3 2 3 27 3 10 38 3

4 8 3 2 4 8 27 4 8 10
 

 
 

P x3 13 5 7 17983 0 17909 0 35996( ) . . ( . . ) ( . )= + + − + − =
 

 
Error= 
 
P P3 23 3 20 2120 20 1486 0 06336( ) ( ) . . .− = − =  
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1.6   2-D INTERPOLATION 
 
Consider the following triangle: 
 
 
     1      

    x  y     

   x2  xy  y2    

  x3  x2y  x y2  y3   

 x4  x3y  x2y2  x y3  y4  

x5  x4y  x3y2  x2 y3  x y4  y5 
 
Suppose z is a polynomial function of two 
variables x,y such that x is of 2nd degree and y 
is of 3rd degree, then 
 
 z   =    f(x,y)     
 
= ao + a1x + a2y + a3x

2 + a4xy + a5y
2 + a6 x

2y 
 + a7x y2 + a8 y3 + a9 x2y2 + 
a10xy3 + a11x

2y3 
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The technique is to hold a variable (say, x) 
constant first and then z is reduced to a single 
variable problem, i.e. z = f(c,y)  where c is a 
constant. 
 
EXAMPLE 10: 2-D INTERPOLATION 
 
Estimate f(1.6,0.33) using quadratic 
interpolation for x and cubic interpolation for y. 
 
 

        
y 

x 

0.1 0.2 0.3 0.4 0.5  

0.5 .165 .428 .687 .942 1.190  

1.0 .271 .640 1.003 1.359 1.703  

1.5 .447 .990 1.524 2.045 2.549  

2.0 .738 1.568 2.384 3.177 3.943  

2.5 1.216 2.520 3.800 5.044 6.241  
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  y z ∆z ∆2
z ∆3

z 

  0.2 0.640    

    0.363   

  0.3 1.003  -0.007  

x = 1.0    0.356  -0.005 

  0.4 1.359  -0.012  

    0.344   

  0.5 1.703    
 
 

  y z ∆z ∆2
z ∆3

z 

  0.2 0.990    

    0.534   

  0.3 1.524  -0.013  

x = 1.5    0.521  -0.004 

  0.4 2.045  -0.017  

    0.504   

  0.5 2.549    
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  y  z ∆z ∆2

z ∆3
z 

  0.2     

       

  0.3     

x  =  2.0       

  0.4     

       

  0.5     
 

  x z ∆z ∆2
z 

  1.0 1.111   

    0.571   

y = 0.33  1.5 1.682  0.372 

    0.943  

  2.0 2.625   
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From previous tables, when  y   =   0.33 
 
 

    sy   =    
0 33.  -  0.2

0.1
  =   1.3  

 
 
 ∴ z(1.0, 0.33) = 0.64 +1.3(0.363)  
 

+
( )( )1.3 

2

0.3 0.007−
+ 

( )( )( )1.3 

6

0.3 0.7 0.005− −
    

 
      =    1.111 
 

When  x   =  1.6 ,   s   =   
1.6 -  1.0

0.5
  =   1.2x  

 
 z (1.6, 0.33)   
 

=   1.111 + 1.2 (0.571) + 
( )( )1.2 

2

0.2 0.372
 

   
=  1.841  
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1.7 LEAST SQUARES METHOD  
 
1.7.1 INTRODUCTION 
 
In engineering problems, very often a 
relationship is found to exist between two (or 
more) variables.   
 
We wish to model the relationship by 
determining a function that "best" represents a 
set of data obtained from experiment, test or 
observation. 
 
In plotting values of a quantity Y against values 
of X, we obtain pairs of numbers (x1, y1), (x2, 
y2), ..., (xn, yn) which could be represented as 
points in the x - y plane.  
 
For example, the curve that "best" fits these 
points could then be used to predict other 
points or to estimate coefficients related to the 
physical problems being studied. 
e.g. the slope ∆

∆
σ
ε

   E⇒      



 55

Which is better ?     
 
Interpolation or Least-squares ? 
 
Given n points, we can find a polynomial y = 
f(x) of sufficiently high degree to fit exactly the 
n points such that  
 
 
 f(x1)   =   y1, f(x2)   =  y2, ....., f(xn)  =  yn 
 
 
e.g. using one of the interpolation formulae, a 
polynomial of 4th degree can pass through 5 
given points exactly. 
 
But exact fitting implies that the data 
themselves are error free. 
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An exact fitting might not be appropriate: 
 
(a) Experimental data are generally subject to 

some errors. 
 
(b) A high degree polynomial with many 

turning points may not be smooth enough to 
represent the underlying physical law. 

 
(c) Prior knowledge of physical laws may 

indicate some function other than a 
polynomial. 

 
∴ In practice, the given points would generally 

not lie exactly on the graph, i.e. the equation 
y = f(x) represents the ideal line with the 
minimum scatter. 

 
 
 



 57

1.7.2 ERRORS IN OBSERVATIONS 
 
Data for X and Y may have errors as follows: 
 
(a) the X is exact, but the Y is in error. 
e.g. in studying temperature in a mass of fresh 

concrete, the temperature yi is measured at 
pre-determined times xi.  Errors occur in 
reading yi. 

 
 
(b) the Y is exact, but the X is in error.   
e.g. in a pile load-test, settlements xi are 

measured at known loads yi.   
 
 
(c) both the X  and Y  are in errors  

e.g. in a pile load-test using a hydraulic 
jack, read the load yi and settlement xi at 
various intervals. 
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Fig. 1 shows some points to be fitted by a line 
ST. 
 
 
 
 
 
 
 
 
 
 
 
If  P(xi, yi) is one of the given points and is the 
true line governing the relation between X and 
Y, with y = ao +  a1x  then,  
 
In case (a), the error represents the distance PA 
 
In case (b), the error represents the distance PB 
 
In case (c), the usual supposition is to treat the 
error as the distance PC which is perpendicular 
to ST.   

Y 

X 

S 

T 

P 

A 

C 

B 
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1.7.3 FITTING THE STRAIGHT LINE 
 
Simplest method: plot the points and fit a line 
by eye using a straight edge. 
 
Disadvantage:  different persons would most 
likely plot different lines. 
 
Some criteria need to be applied with regard to 
the errors in the observations. 
 
Consider the errors in Y  only. 
 
In Fig.1,  point A on ST has the ordinate 
 
   y(xi)   =   ao  +  a1 xi 
 
For point P, the error or deviation is  
 
   ei  =   yi  -  y(xi)   =   yi - ao - a1 xi 
 
Consider the error for all given points for i = 1 
to n: 
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If we impose the condition  
 

  
i

n

=
∑

0
ei   =  0  

 

then  
i

n

=
∑

0
(yi  -  ao  -  a1 xi)  =  0 

 
==>  aon  +  a1 Σ  xi  =  Σ yi 
 
1 equation is insufficient for computing  
 
ao & a1. 
 
∴ the condition Σ ei  =  0  is usually not 
adopted. 
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1.7.4 PRINCIPLE OF LEAST SQUARES 
 
This is widely adopted in practice. 
 
In fitting a straight line to the points (x1, y1), ..., 
(xn, yn) in which the errors are taken in the Y,  
the straight line y  =  ao  +  a1x  should be 
fitted through the given points so that the sum 
of the squares of the distances of these points 
from the straight line is a minimum 
 

i.e.  ( )e ai
i

n

i

n
2

1

2

1= =
∑ − −∑  =    y a xi o 1 i  

 
is a minimum, where yi is the observed data and 
ao + a1 xi  is the idealised straight line.  
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Normal Equations 
 
Let SSE represent the sum of squares of errors 
 

 SSE = ( )e ai
i

n

i

n
2

1

2

1= =
∑ − −∑  =    y a xi o 1 i  

 
For SSE  to be minimum : 
 

 ( )∂
∂
 SSE

 a
  =      =   0

o

− − −∑2 1y a a xi o i  

 

 ( )∂
∂
 SSE

 a
  =       =   0

1

− − −∑2 1x y a a xi i o i  

 
i.e.  a i io 1n  +  a   x   =    y∑ ∑     (i) 
 
 a yi i io 1 i x   +  a   x   =    x∑ ∑ ∑2     (ii) 
 
 
(i) and (ii) are normal equations for the 
determination of the Least-squares straight 
line.   All Σ are for i = 1 to n. 
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EXAMPLE 11:  LEAST-SQUARES 
LINEAR 
 
Using the method of least squares, fit a straight 
line to six  points (0,3), (1,2), (2,2), (3,1), (4,1), 
(5,0).  Assume that the errors are in the Y. 
 
 
 

X Y X
2
 XY 

0 3 0 0 

1 2 1 2 

2 2 4 4 

3 1 9 3 

4 1 16 4 

5 0 25 0 

Σ = 15 9 55 13 
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The normal equations: 
 

   

a n a x y

a x a x x y

o i i

o i i i i

 +  1

1
2

∑ = ∑

∑ + ∑ = ∑  

   
     6 ao  +  15 a1  =   9 
 
   15 ao  +  55 a1  =  13 
 

===>  ao   =   
20

7
 , a1  =  -  

19

35
  

Thus, the required line :  y  =   
20

7
  

19

35
x −  

 
    or  35y  +  19x  =  100 
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1.7.5 LEAST SQUARES PROCEDURE 
FOR POLYNOMIALS 

 
 
The sum of squares of errors  
 
 SSE 

= ( )ei
i

n
2

1

2

=
∑ − − − −∑  =   y   a   a x    a xi o 1 i m i

mΚ  
 
 where there are (m+1) unknowns in the 
coefficients  a. 
 
For minimum SSE: 
 

 ( )∂
∂
 SSE

 a
  =      a   a     a   =   0

o
m− − − − −∑2 1y x xi o i i

mΚ  

 

 ( )∂
∂
 SSE

 a
  =      a   a     a   =   0

1
m− − − − −∑2 1x y x xi i o i i

mΚ  

 

( )∂
∂
 SSE

 a
  =       a   a     a   =   0

m
m− − − − −∑2 1x y x xi

m
i o i i

mΚ
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==> Normal equations for finding the 
polynomial of degree m : 

 
a n  o i+   a   x   +      +   a   x   =    y1 m i

m
i∑ ∑ ∑Κ

 
 

ao i i x   +   a   x   +      +   a   x   =    x y1 m i
m+1

i i∑ ∑ ∑ ∑2 Κ

 
 
ao i i i x   +   a   x   +      +   a   x   =    x y1 m i

m+2
i

2 3 2∑ ∑ ∑ ∑Κ

 
   .      . 
   .      . 

 .      . 
ao i

m
i
m

i
m x   +   a   x   +      +   a   x   =    x y1 m i

2m
i∑ ∑ ∑ ∑+1 Κ
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Observe the pattern of the coefficient matrix : 
 
     n  Σxi  Σxi

2
   ..... Σxi

m
 

 
  Σxi  Σxi

2
 Σxi

3
   ..... Σxi

m+1
 

 
  Σxi

2
 Σxi

3
 Σxi

4
   ..... Σxi

m+2
 

   .      . 
 .        

   .      . 
  Σxi

m
 Σxi

m+1
 Σxi

m+1
 ..... Σxi

2m
 

 
Solving a large set of equations poses practical 
difficulties for the unknowns ao, a1, ...., am. 
 
Generally, these equations are ill-conditioned, 
i.e. the answers are very sensitive to round-off 
errors. 
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EXAMPLE 12:  LEAST-SQUARES 
QUADRATIC 
 
Using the method of least squares, fit a curve  y 
= ao + a1x + a2x

2
  to the data : 

 
 

 xi -2 -1 0  1  2  3  5  7 
 yi 9  6 3 -1 -2 -3 -1  3 

  
From the data: 
 
 Σx = 15, Σy = 14, Σx

2
 = 93,  Σx

3
 = 495, 

 
 Σx

4
 = 3142, Σxy = -22, Σx

2
y = 128,  n=8 

 
Normal equations : 
 
        a x  xo 1 2n  +   a +   a   =   y∑ ∑∑ 2  
 
   a x xo 1 2x   +   a   +   a   =   x y∑ ∑ ∑∑2 3  
 
 a x xo

2
1 2

2x   +   a   +   a   =   x y∑ ∑ ∑∑3 4  
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    8 ao   +   15 a1     +    93 a2     =   14 
 
  15 ao   +   93 a1     +   495 a2    =  -22 
 
  93 ao   +  495 a1     +  3141 a2  =  128 
 
 
Solving for ao, a1, a2, 
 
==>  y   =   2.133  -  2.864x  +  0.429 x

2
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1.7.6 WEIGHTED LEAST SQUARES 
 
In some cases, the data points may not be all 
equally reliable, e.g. some measurements tend 
to be less reliable towards one or both ends of a 
range of measurements. 
 
One way to overcome the biasedness is to 
attach different weights to the terms in the 
summation, 
 

  SSE = wi i
i

n
 e   2

1=
∑  

 
Minimising SSE  implies that  normal 
equations are modified by the weights wi. 
 
 
For example, taking the errors in the Y, and 
fitting the data with straight line 
 
   y   =   ao  +   a1 x 
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     ( )SSE  w y a a xi i o i=     
i=1

n
− −∑ 1

2  

 

( )∂
∂
 SSE

 a
  =       =   0

o

− − −∑2 1w y a a xi i o i  

 

( )∂
∂
 SSE

 a
  =     x    =   0

1

− − −∑2 1w y a a xi i i o i  

 
 
Normal equations: 
 
     ao ∑ wi  +  a1 ∑ wi xi     =   ∑ wi yi  
 
  ao ∑ wi xi  +  a1 ∑ wi xi

2
   =   ∑ wi xi yi  

 
 
The effect of attaching weights is that wi 
appears in the respective sums. 
 
A similar effect occurs in fitting with higher 
polynomials. 
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1.8   SUMMARY 
 
  f(x)  ≈     Pn(x) 
 

εn(x)  =    (x - xo) (x - x1)  ...  (x - xn)  
( )

( )
f n+1 

n+1

ξ
!

 

 
applies to both sets of data. 
 

But  εn(x)  =    ( )
s

n +




1

 h  f  n+1 n+1 ξ  applies 

only to evenly spaced data. 
 
 
For two dimensional interpolation e.g.  z =    
f(x,y), the trick is to hold one variable at  a 
time.   The usual procedure for centering the 
data (whether in the x-  or y- directions) still 
applies. 
  
 TKH/jam 
2 Jan 2001 


