NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF CIVIL AND STRUCTURAL ENGINEERING

CV272- NUMERICAL METHODS

Tutorial 5: Numerical Integration

- 1. Figure Q1 shows an idealised stress-strain curve for concrete subjected to compression load. Numerical values of stress (*s*) and strain (*e*) are given in Table Q1.
 - (a) Form a difference table for all the data in Table Q1, expressing s as a function of e. Obtain up to and include 4th order differences.
 - (b) Using the Newton-Gregory forward polynomial, fit a polynomial of quartic order (n=4) to the recorded points for e at the interval between e = 0 and e = 0.0012. Express the polynomial in the form of

$$\mathbf{s} = a_{o} + a_{1}s + a_{2}s^{2} + a_{3}s^{3} + a_{4}s^{4}$$

where $s = \frac{(e - e_o)}{0.0003}$ and a_o, a_1, a_2, a_3, a_4 are constants. (Ans. $P_4(x) = 0.0167s^4 + 0.0333s^3 - 1.5167s^2 + 7.8667s$)

е	0	3x10-4	6x10-4	9x10-4	1.2x10 ⁻³	1.5x10 ⁻³	1.8x10-3
s (N/mm ²)	0	64	10.2	12.2	13.6	14.2	14.2

Table Q1

- 2. Calculate the area of a quandrant of an ellipse whose semi-axes are *a* and *b* (*a* = 2*b*) by the following methods and compare with the exact result of $\frac{pb^2}{2}$.
 - (a)Mid-point rule(Ans. $1.732 b^2$)(b)Trapezium rule(Ans. b^2)(c)Simpson's rule(Ans. $1.488b^2$)(d)Gauss's two-point rule(Ans. $1.592b^2$)
- 3. Estimate the triple integral:-

$$\begin{array}{ll}
\begin{array}{c}
\begin{array}{c}
120.5 \\
o & 1 \\
o & 1
\end{array} \\
\begin{array}{c}
\begin{array}{c}
\end{array} \\
using \\
(a) & Simpson' & srule \\
(b) & Guass' & s & two & point rule \\
\end{array} \\
\begin{array}{c}
\begin{array}{c}
\end{array} (Ans. 0.6128) \\
(Ans. 0.6127)
\end{array}$$

4. Estimate the double integral using 2-point Gaussian integration:

$$\int_{13}^{24} f(x, y) dy dx$$

where f(x,y) =

(a)	xy	(Ans. 5.250)
(b)	$x^2 y$	(Ans. 8.167)
(c)	$x^3 y$	(Ans. 13.125)
(d)	x^4y	(Ans. 21.681)

By checking your estimates against the analytical solutions, what conclusions can you reach regarding the accuracy of the method?

TKH/jam 12 July 1999