NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF CIVIL AND STRUCTURAL ENGINEERING

CV272- NUMERICAL METHODS

Tutorial 5: Numerical Integration

1. Figure Q1 shows an idealised stress-strain curve for concrete subjected to compression load. Numerical values of stress (σ) and strain (ε) are given in Table Q1.
(a) Form a difference table for all the data in Table Q1, expressing σ as a function of ε. Obtain up to and include $4^{\text {th }}$ order differences.
(b) Using the Newton-Gregory forward polynomial, fit a polynomial of quartic order ($n=4$) to the recorded points for ε at the interval between $\varepsilon=0$ and $\varepsilon=0.0012$. Express the polynomial in the form of

$$
\begin{aligned}
& \sigma=a_{o}+a_{1} s+a_{2} s^{2}+a_{3} s^{3}+a_{4} s^{4} \\
& \text { where } s=\frac{\left(\varepsilon-\varepsilon_{o}\right)}{0.0003} \text { and } a_{o}, a_{l}, a_{2}, a_{3}, a_{4} \text { are constants. }
\end{aligned}
$$

(Ans. $\left.P_{4}(x)=0.0167 s^{4}+0.0333 s^{3}-1.5167 s^{2}+7.8667 s\right)$

Table Q1

ε	0	3×10^{-4}	6×10^{-4}	9×10^{-4}	1.2×10^{-3}	1.5×10^{-3}	1.8×10^{-3}
$\sigma\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	0	6.4	10.2	12.2	13.6	14.2	14.2

Figure Q1: Idealized Concrete Stress-strain Curve
2. Calculate the area of a quandrant of an ellipse whose semi-axes are a and $b(a=2 b)$ by the following methods and compare with the exact result of $\frac{\pi b^{2}}{2}$.
(a) Mid-point rule
(b) Trapezium rule
(c) Simpson's rule
(Ans. $1.732 b^{2}$)
(d) Gauss's two-point rule
(Ans. b^{2})
(Ans. $1.488 b^{2}$)
(Ans. $1.592 b^{2}$)
3. Estimate the triple integral:-

$$
\begin{aligned}
& 120.5 \\
& \iint_{0}^{12} \int_{0}^{x y z}
\end{aligned} e^{x y z} d x d y
$$

using
(a) Simpson' s rule
(Ans. 0.6128)
(b) Guass' s two point rule
(Ans. 0.6127)
4. Estimate the double integral using 2-point Gaussian integration:
$\int_{13}^{24} f(x, y) d y d x$
where $f(x, y)=$
$\begin{array}{ll}\text { (a) } & x y \\ \text { (b) } & x^{2} y \\ \text { (c) } & x^{3} y \\ \text { (d) } & x^{4} y\end{array}$
(Ans. 5.250)
(Ans. 8.167)
(Ans. 13.125)
(Ans. 21.681)

By checking your estimates against the analytical solutions, what conclusions can you reach regarding the accuracy of the method?

TKH/jam
12 July 1999

