NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF CIVIL AND STRUCTURAL ENGINEERING

CV272 - NUMERICAL METHODS

Tutorial 4: Numerical Differentiation

1. Table Q1 is for $(1+\log \mathrm{x})$. Determine estimates of $d(1+\log x) / d x$ at $x=0.15$ and 0.23 using (a) two and (b) three terms of the following equation.
(Ans. (a) 2.8625, 1.8775 , (b) $2.8775,1.8808$)
$f^{\prime}\left(x_{o}\right)=\frac{1}{h}\left(\Delta f_{o}-\frac{1}{2} \Delta^{2} f_{o}+\frac{1}{3} \Delta^{3} f_{o}-\frac{1}{4} \Delta^{4} f_{o}+\ldots+\frac{1}{n} \Delta^{n} f_{o}\right.$
By comparing to the analytical values, determine the relative errors of each estimate.
(Ans. (a) $1.13 \%, 0.56 \%$, (b) $0.61 \%, 0.39 \%$)

Table Q1

\boldsymbol{x}	$\boldsymbol{1}+\boldsymbol{\operatorname { l o g } \boldsymbol { x }}$
0.15	0.1761
0.17	0.2304
0.19	0.2788
0.21	0.3222
0.23	0.3617
0.25	0.3979
0.27	0.4314
0.29	0.4624
0.31	0.4914

2. Making use of the Newton-Gregory forward-difference interpolation formula with $n=$ 4 , show that the quintic order central difference $f^{\prime}\left(x_{2}\right)$ is:
$f^{\prime}\left(x_{2}\right)=\frac{-f_{4}+8 f_{3}-8 f_{1}+f_{o}}{12 h}$
with error term $\frac{1}{30} h^{4} f^{v}(\xi)$, and $x_{o}<\xi<x_{4}$
3. A vehicle going around a bend experiences a side-sway force which depends on the radius of curvature, r, of the road at this point. It can be shown that the radius of curvature can be expressed as

$$
r=\frac{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{\frac{2}{3}}}{f^{\prime \prime}(x)}
$$

Table Q3

x	0	0.2	0.4	0.6	0.8
$f(x)$	0	0.16	2.56	12.96	40.96

A set of tabular points of the horizontal alignment is shown in Table Q3. Compute the radius of curvature at $x=0.4$, using
(a) Forward difference $(\mathrm{n}=2)$
(b) Central difference $(\mathrm{n}=2)$

Which estimate is more accurate? Explain why.

TKH/jam
8 Jan 2001

