NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF CIVIL AND STRUCTURAL ENGINEERING

CV272- NUMERICAL METHODS

Tutorial 2: Interpolation II (Evenly and unevenly-spaced data)

1. Given that $x_{0}, \ldots x_{3}$ are equally-spaced at intervals h, show that Lagrange's interpolation formula with $n=3$ may be written as

$$
\begin{gathered}
f(x)=-\frac{(s-1)(s-2)(s-3)}{3!} f_{o}+\frac{s(s-2)(s-3)}{2} f_{1}-\frac{s(s-1)(s-3)}{2} f_{2} \\
+\frac{s(s-1)(s-2)}{3!} f_{3}
\end{gathered}
$$

where $\quad s=\frac{\left(x-x_{o}\right)}{h}$
2. The bending moments (M) at various points x meters from one end of a beam were recorded in Table Q2.

Table Q2

$x(\mathrm{~m})$	1.0	2.0	4.0	7.0
$M(\mathrm{kNm})$	109.4	195.0	280.0	135.60

Estimate the bending moment at $x=2.8 \mathrm{~m}$ (up to 3 decimal places) from
(a) Newton's divided-difference interpolation formula of degree 3. (Ans. 243.873)
(b) Lagrange's interpolation formula, using only the first 3 data points. (Ans. 242.792)

Without recalculating, compute the error in your result for part (b) for ignoring the $4^{\text {th }}$ data print. (Ans. 1.081)
3. The vertical stress σ_{z} under the corner of a rectangular area subjected to a uniform load of intensity q is given by the solution of Boussinesq's equation:

$$
\sigma_{z}=q f_{z}(m, n)
$$

where q is equal to the load per unit area and
f_{Z} is called the influence value and m and n are
dimensionless ratios with $m=a / z$ and $n=b / z$
where a, b and z are dimensions defined in
Figure Q3.
The values of f_{z} at various m and n are given in Table Q3.
If $\mathrm{a}=5.6 \mathrm{~m}, \mathrm{~b}=13 \mathrm{~m}$, compute r_{Z} at a depth 10 m below the corner of a rectangular footing that is subjected to a total load of 100 tons, employing a quadratic formula in n and m. (Ans. 0.13897)

Table Q3 - Influence Value f_{z}
m $\quad n=1.2 \quad n=1.4 \quad n=1.6$
$\begin{array}{lllll}0.1 & 0.02926 & 0.03007 & 0.03058\end{array}$
$\begin{array}{lllll}0.2 & 0.05733 & 0.05894 & 0.05994\end{array}$
$\begin{array}{lllll}0.3 & 0.08323 & 0.08561 & 0.08709\end{array}$
$\begin{array}{llll}0.4 & 0.10631 & 0.10941 & 0.11135\end{array}$
$0.50 .12626 \quad 0.130030 .13241$
0.60 .143090 .147490 .15027
$\begin{array}{lllll}0.7 & 0.15703 & 0.16199 & 0.16515\end{array}$
$\begin{array}{lllll}0.8 & 0.16843 & 0.17389 & 0.17739\end{array}$

Figure Q3
4.. Table Q4 shows the experimental results of deflections, d, of a 6 meter uniform beam subjected to a non-uniformly distributed load. Due to a faulty dial gauge, the deflection record at point 5 is invalid. Note that x is the distance from one end of the beam.

Table 04

Point	1	2	3	4	5	6	7
$x(\mathrm{~m})$	0.75	1.50	2.25	3.00	3.75	4.50	5.25
$d(\mathrm{~mm})$	4.5	18.0	30.0	45.0	$?$	15.0	6.0

(a) Using a $4^{\text {th }}$ degree polynomial, determine the deflection at point 5 .
(Ans. 38.701)
(b) Strengthening is required for the part of the beam where the deflections exceed 30 mm . Using a 3rd degree polynomial, determine the length of the beam where strengthening is required. For point 5 , use the computed deflection in part (a). (Ans. Length $=4.086-2.25 \mathrm{~m}$)
TKH/jam
12 July 1999

