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Abstract

Deep topic models have been proven as a promising way to extract hierarchical la-
tent representations from documents represented as high-dimensional bag-of-words
vectors. However, the representation capability of existing deep topic models is
still limited by the phenomenon of “posterior collapse”, which has been widely
criticized in deep generative models, resulting in the higher-level latent representa-
tions exhibiting similar or meaningless patterns. To this end, in this paper, we first
develop a novel deep-coupling generative process for existing deep topic models,
which incorporates skip connections into the generation of documents, enforcing
strong links between the document and its multi-layer latent representations. After
that, utilizing data augmentation techniques, we reformulate the deep-coupling
generative process as a Markov decision process and develop a corresponding
Policy Gradient (PG) based training algorithm, which can further alleviate the
information reduction at higher layers. Extensive experiments demonstrate that
our developed methods can effectively alleviate “posterior collapse” in deep topic
models, contributing to providing higher-quality latent document representations.

1 Introduction

Topic modeling has become a successful technique for text analysis and been widely applied to various
problems in machine learning (ML) [1} 2} 3] and natural language processing (NLP) [4} 5] over the
past two decades. Representing documents as bag-of-words (BoW) vectors, vanilla probabilistic
topic models (PTMs), with latent Dirichlet allocation (LDA) [6] being the best known representative,
typically formulate each document as a mixture over latent topics, where each topic is characterized
by a distribution over the terms of the vocabulary and describes an interpretable semantic concept.
Although being widely used, the modeling capability of these shallow topic models is still restricted
by their single-layer structure, and has difficulty in exploring hierarchical thematic structures. To
this end, a series of deep topic models [7, |8, 9] have been developed to extract multi-layer document
representations from a text corpus, providing a more intuitive way for users to understand text data.

Recently, benefiting from the development of deep neural networks (DNNGs), there has been an emerg-
ing research interest to develop neural topic models (NTMs) to boost the performance, efficiency,
and usability of topic modeling with DNNs. Specifically, following the framework of variational
autoencoder (VAE) [10], most NTMs [11 12} [13] construct a variational inference network (encoder)
to project each document into its stochastic latent representation, and then reconstruct the correspond-
ing BoW observation with a stochastic/deterministic decoder. By modeling the inference/generative
process with DNNs, these NTMs are more flexible and scalable than traditional Bayesian PTMs,
contributing to performing large-scale downstream tasks, especially in NLP tasks [[14}[15]].
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“Posterior collapse” has been widely criticized in the field of generative model [16} [17]], and the
occurrence of this phenomenon will cause the approximated posterior g4(z|x) collapses to it non-
information prior distribution py(z), leading their KL divergence to be close to zero [10} [T6] [17, [18].
For deep topic models, despite achieving attractive performance, existing PTMs or NTMs still suffer
from different degrees of “posterior collapse”, which causes their exhibiting similar or meaningless
patterns at higher layers [19, 20, 21]. Although there have been several deep NTMs [20, 21] trying
to alleviate this issue by constructing more flexible inference networks, the collapse phenomenon
in deep NTMs may not be solved in essence, because the true posterior provided by the generative
model and the objective function for optimization remain almost unchanged [18]].

To extract higher-quality hierarchical latent document representations, in this paper, we develop a
deep-coupling generative process equipped with a Policy Gradients (PG) based training algorithm for
existing deep topic models. The main contributions of this work are as follows:

* We develop a deep-coupling generative process for deep topic models, which incorporates
skip connections into the generation of documents to alleviate “posterior collapse’.

* We take a specific NTM as an example to explain how to construct a deep topic model with
the deep coupling generation process, and develop a deep-coupling hierarchical Embedding
Topic Model (dc-ETM), which can be extended to other deep topic models.

 Utilizing the property of sequence-like generation process, we design a PG-based training
algorithm for dc-ETM, which can further alleviate the information reduction at higher layers.

» Compared to existing deep topic models, extensive experimental results show that dc-ETMs
can lead to less “posterior collapse” and provide higher-quality latent representations.

2 Related Work

Probabilistic Topic Model: Deep PTMs [[7, 189} 22] are developed to infer multi-layer document
representations, whose adjacent layers are connected with specific factorization. For instance, gamma
belief network (GBN) [8] is constructed via factorizing the shape parameters of the gamma distributed
latent representations; DPFA [[7] extends PFA [23]] into a multi-layer version but is restricted to model
binary topic usage patterns; DirBN [9] is developed via factorizing the Dirichlet distributed topic
matrix. Although providing readily interpretable multi-layer latent document representations, the
representation capability of these deep PTMs is limited by adopting CRT distribution to upward
propagate data information to higher layers with their backbones [19].

Neural Topic Model: Most existing NTMs [[12} 20, 21} 24, [25, 26] can be viewed as extensions of
PTMs under the VAE framework and focus on modeling the generative/inference process with DNNs.
For instance, one popular research direction of NTMs is to develop more flexible inference network
with reparametrization tricks [12} [20]] and the other could be incorporating word embeddings into the
generative model [21} 24]. However, as far as we know, few efforts have been made to alleviate the
phenomenon of “posterior collapse” in NTMs by modifying its generative process, which is a great
challenge under the framework of topic modeling and also the main contribution of this work.

Besides, distinct from the way of combining reinforcement learning (RL) with topic models in
previous works [27, 28] 29], our work is the first to formulate the topic modeling generative process
as a sequential decision making one to incorporate RL-based training algorithms, which focuses on
providing higher-quality latent document representations by alleviating “posterior collapse”.

3 Deep-Coupling Generative Process for Deep Topic Models

To give an intuitive insight on “posterior collapse” in deep topic models, we provide a detailed
introduction for “posterior collapse” in Appendix [J]and then visualize the higher-level topics learned
by a recent popular NTM named SawETM [21]] in Fig. 3] which exhibit similar semantic patterns and
limit its representation capability. Then, we take SawETM as an example, but not limited to this, to
illustrate how to construct a deep topic model with the deep coupling generation process, leading
to a novel dc-ETM in Fig. Compared to the usual structures of deep PTMs and NTMs shown
in Fig. and besides the design of inference network, the main difference of dc-ETM is
incorporating skip connections into the generation of documents, enforcing strong links between the
document and its multi-layer latent representations to alleviate “posterior collapse”.
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Figure 1: The overview of the network structure of (a) deep PTM, (b) deep NTM, and (c) dc-ETM
developed in this paper, where the symbol definitions are consistent with those in Sec. @

3.1 Deep-Coupling Hierarchical Embedding Topic Model

As a usual VAE-like model, the developed dc-ETM consists of a generative model (decoder) and an
inference network (encoder). Below, we focus on presenting the generative model of dc-ETM, which
can be flexibly applied for other deep topic models to alleviate “posterior collapse”, and leave the
details of the inference network to Appendix [A]

Generative Model: Given a text corpus consisting of N documents X={z,,}Y_,, each document
can be represented as a high-dimensional sparse BoW vector x,, € Z* (0), where Z = {0, 1, ...} and
K ) denotes the vocabulary size. Then, from top to bottom, the generative model of the de-ETM
with L hidden layers can be formulated as

0 ~ Gam(®FVQUHD 1Dy 1 =1, L —1,---, 00 ~ Gam(r,1/cEV), (1)
L
T, ~ Pois(z aW@dWeW)) o = Softmax(¢), qb,(cl) = Softmax(ﬁ(l_l)Tﬁg)),l =1,...L—1,
1=1
where, &) ¢ Rf OxK® denotes the topic matrix (factor loading) and each column ¢§€l) €
Rf “" indicates a specific topic (factor) at layer [; BSLZ ) € Rf “ denotes the gamma distributed

latent representation (topic proportions) at layer I, K ") denotes the number of hidden units (topics)
at layer [. Under the Poisson likelihood, the observed multivariate count vector x,, is first factorized

into L equal-size latent matrix {a(l)i’(l)ay(,l)}le, where, @) € Rfm) <KD can be regarded as the
projection of topic matrix ®(!) to the observation space and the detailed definition will be discussed

in the next paragraph; oY) denotes the importance weight of 0 07(ll ) for generating the observation
., and the summation of the whole weight vector o € Rﬁ is constrained to be equal to one with a
Softmax normalization. Then, the latent representation 0§Ll ) at layer [ is further factorized into the
product of the topic matrix ®(+1) Rf XK and topic proportions 0,(Ll e Rﬁf “*V at the next
layer under the shape of gamma distribution. The top layer’s latent representation 0,(lL) shares the same
gamma shape parameters r € Rf ™ and we apply a gamma distributed prior on the scale parameters
cﬁf ) forl € {2, ..., L + 1}. With the recent popular distributed topic representation in NTMs [24} 30],
each topic qb,g) is treated as the result of applying a Softmax normalization on the inner product of
its distributed representation ,B,g) € RP and topic embedding matrix 8- € RP*K“™" 4t the
previous layer, where D denotes the dimension of the embedding space.

The projections of topic matrices to the observation space, denoted as {i’(l) }lel, build the straight-

forward connections between the document «,, and its multi-layer latent representations {07(11 )}lL:l,
which alleviates the information reduction at higher layers by sharing the pressure of document
modeling with all hidden layers. To reduce the computation and storage cost of the developed

dc-ETM, we develop two variants for (ﬁg) € Rf “ without introducing any extra parameter. The

one variant is adopting the property of topic hierarchy elaborated in Sec. to obtain each qg,(gl) by



successively multiplying topic matrices at lower layers as
-1
(1 l
oy =T[2"e). @)
t=1

and the other variant is treating the projection (]Aﬁg) as the result of the inner product of its distributed

representation ﬁ,(f) and the word embedding matrix 3(°) at the observed space, as follows

¢y = Softmax(3©" B). 3)

We emphasize that the first variant can be used to extend most existing deep topic models, while the
latter is limited to NTMs equipped with topic embedding techniques. We use the suffix —a and —f
to distinguish the variants defined in Eq. (2) and Eq. (3)), and their detailed implementations can be
found in Appendix

Generally speaking, the deep-coupling generative process in dc-ETM not only preserves the hierarchy
of traditional deep topic models, leading to multi-layer document representations to enhance the
modeling capability and interpretability, but also alleviates the issue that the amount of information
will decrease rapidly with the network going deeper, benefiting from building the straightforward

connections between observation x,, and its higher-level latent representations { 9,(11 )}l>1. Besides
alleviating “posterior collapse”, the characteristics of deep-coupling network structure of dc-ETM
also brings us a new view to design the corresponding inference network and training algorithm.

Inference Network: The details of the inference network of dc-ETM can be found in Appendix

3.2 Model Property

Sequence-like Generative Process: Taking advantages of the properties of the Poisson distribution,
the original generative process of the observed data x,, defined in Eq. (1) can be rewritten as:

n

L
x, = Z 2, 21 ~ Pois(aV VW), @
1=1

where acgf ) denotes the augmented observation at layer [, and is generated from the Poisson distribution

with a rate of oz(l)<i>(l)0£f ). Then, the observed data x,, can be regarded as not only the summation
over these augmented vectors {wsf ) }£ |, but also equal to the weighted summation over the latent
vectors {.@(1)07(11 )}lel on the mean, where the weight vector « satisfies the constraint Zlel a) =1,

Rethinking the generative process of the developed dc-ETM reformulated in Eq. @), the set of
augmented observation vectors {mgf ) } lel can naturally form an observation sequence [wELL ), e w%l)]
by sorting these vectors according to their dependencies in the generative process (from deep to

shallow). For each hidden layer (time step) /, the generative process will first incorporate the prior
information passing from deeper hidden layers {OS) }+>1, and then generate the latent representation
05} ) at the current layer (time step), which not only is supposed to generate the current observation

O]

vector &, under the Poisson likelihood, but also introduces the information into the shape parameter

of the following gamma distributed latent representation OS =Y at the next layer (time step).
Thus, the deep-coupling generative process of dc-ETM originally defined in Eq. (1) can be naturally

reinterpreted from the perspective of sequence generation, and its reformulation defined in Eq. @)
can be also equivalently reformulated as:

L
Ty ~ Zpois(a<l>¢}<l>0§}>), (5)
=1

providing an intuitive insight for the decomposition of the likelihood function in Sec. @.T}

Hierarchical Semantic Topics: The developed dc-ETM can naturally interpret each seman-

tic topic (;Sg) at layer [ by visualizing its projection to the vocabulary space calculated as



{1 i;i o] g) fz(ll) , and each document can also be roughly seen as a random mixture over
KO topics with 05} ) being the corresponding topic proportions at layer [ as

E{wnle(l {20, } } Hq,t)

which can be obtained with the law of total expectation. Moreover, similar to the underlying idea of
the deep learning, the topics learned by dc-ETM tend to be more specific at lower (bottom) layers
and those at higher (top) layers are more general, as shown in Fig.

o

t:

Secondly, in de-ETM, both words 3(?) ¢ RP*K " and hierarchical topics {31 € RP*K @ 7
are represented as embedding vectors under the same semantic space, contributing to intuitively
measuring and visualizing the distance between different topics (words), which has been proven to be
effective in capturing the underlying semantic structure as shown in Fig. [5(a)]

4 Policy Gradient-based Training Algorithm

4.1 ELBO of dc-ETM

As a VAE-like NTM, the developed dc-ETM can be trained like usual VAEs by directly maximizing
the evidence lower bound (ELBO), specifically as

L(:En) = Eq(0n|wn)[lnp(wn|0n)] - KL(Q(0n|mn)Hp(0n))a (7)

where the first term is the expected log-likelihood and the other term is the Kullback—Leibler (KL)
divergence from the prior p(0,,) to the variational posterior ¢(6,,|x.,).

Through introducing the augmented vectors {:cn)} i—1- the log-likelihood of x,, in dc-ETM can be
equivalently reformulated as

L
I p(z,|0,) = Eq({wﬁ)}f:llf) [1np(:cn|{w£ll)}L ll:[1p (VoW ] (8)

L
=E, 1) [1np(mn|{:c 2 1)] (eI )[Zlnp (0)]g¢ z))]

where the function in the second expectation term can be treated as the summation of the set of

log-likelihood of {:c(l) }E£ |- Due to the hierarchical network structure, the KL divergence term can
be factorized as

. . ) q(Or(zl)|*) 9
KL(g(0n|xn)[|p(0 Z g0 |-) | p(6y )@+ gty |7 Y

where q(Hy(ll ) |—) is constructed by a Weibull-based inference network described in Appendix [A{and

p(07(ll ) |®(+1) g, (+1)) satisfies a gamma prior in Eq. (T), and their KL divergence has an analytic
expression, benefiting from adopting the Weibull reparameterization technique [[20].

Combining the aforementioned derivations, the ELBO of dc-ETM can be equivalently rewritten as

L
L(x,) :Eq({w%)}fjJ*) [lnp(mn\{mg)}le)} Eq({m“) oYL |- L_Zl 1np(iL‘£Ll)|0£Ll))‘|

L 0]
q(6n"| )
- ;Eqwﬁfn—) [111 p(OL|@+D gl Dy |’ (19)

which can be directly optimized with gradient-based methods to update both the encoder parameters
2 and decoder parameters ¥ in dc-ETM. We emphasize that, after deriving the augmented vectors



{:ng,l ) }E | from @, via data augmentation technique [8], the first expectation term in L(z,,) will be a
constant and the ELBO can be directly optimized by maximizing the following loss function

(0
7 (O L ) l) q(6n’|-)
L{wn hz) ZE CRIE >[lnp”3 6 ] ZE CRE >lln 0D+ gty |’

L
=2 E |, p(i|of) >p<0£f’|<1>l+1>,0$£“>
- a0 - | 0) ;
= a(6%1-)

L
=Y L0@D:a0, 20,60 (81, 60)},.) (11)
=1
which can be roughly treated as the ELBO of a sequence [:L'%L), e ac,(f)] generated from a sequence

of latent representations [B(L) . 9,(11)] [31L132]], and naturally meets the sequence-like generative
process of dc-ETM as discussed in Sec.

4.2 Optimization with Policy Gradient

Similar to RNN-based model, after augmenting {:1: } , from x,,, the loss function of de-ETM
defined in Eq. (TI) is equal to the summation of L sub- loss functions, where each sub-loss function

E(Z)( (l)) can be equivalently regarded as a separate loss of a subsequence generation model that is

only a part of the whole sequential generative model and expected to output a:( ) at the final time step
l. Inspired by the great success achieved by RL methods [33] 34} 35 36]] in learning a stable long
sequence (Markov decision process) with high quality, we consider the sequence-like generation
procedure of a L-layer dc-ETM as a Markov decision process with L time steps, and develop a novel
training mechanism based on Policy Gradient [35]] for dc-ETM, which injects the future rewards

obtained from generating the suffix subsequence into each current sub-loss function L® (mﬁf )).

Specifically, we treat the whole dc-ETM as a stochastic policy network W(ag ) |s£ll )) expected to
generate a fixed-length action sequence [a% ), e aﬁ,”] from the observation «,,, defining the state sgf )
as {x,, {<I>(t), 0,@}01} and the action a%) as a<l>q3<l>0$f). For each time step [, given the current

state sg ), the policy network ﬂ(agf ) |3$Ll )) will first sample 0,(Ll ) from the inference network via

0 ~ q(6 |z, {2, 0} 1), (12)
and further obtain the corresponding action as
ag) - a(l)é(l)g(l) (13)

which can be regarded as directly drawing from 7 (a )|5(l)) The state transition is deterministic
after an action has been chosen, indicating that the next state s¢Y = {x,,, {®®), 07(5)}»[_1} if the
current state s\ = = {x,, {®® eff)}bl} and the action ') = a &V

Then we take the separate loss L) (w%)) defined in Eq. (TT)) as the immediate reward at the the time
step [, formulated as

((l) a()):E

7L7 n

)
N q(6n’|-)
q(eg)l_) lnp(mg,l) ‘Oé(l), @(l)7 07(}))] - Eq(eg) -) [ln ( y

p 07(11) |(I)(l+1), eg-‘rl))
(14)

and the action-value function can be formulated as

Q (s, al) = r(s),a))) + Ex

Zw =, all ”)] (15)

which indicates the expected accumulative reward starting from state s( ) , taking action ag ), and

then generating the suffix subsequence [an Do a%l)} with the policy network w(aﬁ,l ) |sg )) and the

discount factor 0 < v < 1.



Following [33]], the objective function of training dc-ETM with policy gradient can be estimated (on
one episode) as

L L
J(mn, Qv ‘Il) = Zl:l l£l> w(ag) ‘Sg))Qﬂ-(snl)v arf)) = =1 Ew(as)lssp) [Qﬂ-(sg)v agf)):| )
(16)
where €2 and W indicate the encoder and decoder parameters in dc-ETM respectively. We note that the
expectation E [] can be approximated by sampling methods based on the Weibull reparameterization,
and the objective function can be directly optimized by advanced gradient descent algorithms, like
Adam [37] and RMSprop [38]. We provide the details of PG-based training algorithm in Appendix [C}

S Experiments

To evaluate the effectiveness of the developed dc-ETM and the corresponding policy gradients
(PG) based training algorithm, we make extensive experiments on both quantitative and qualitative
aspects. Considering there are two dc-ETM variants as described in[3.1} we use the suffix —a and
—f to distinguish the variants defined in Eq. (2) and Eq. (3) respectively, and highlight whether
the dc-ETM is trained with the PG based algorithm in Sec. The implementation is available at
https://github.com/yewen99/dc-ETM|

5.1 Datasets and Baselines

Datasets: Four widely used document benchmarks, specifically R8 [39], 20Newsgroups (20News)
[40], Reuters Corpus Volume I (RCV1) [41] and World Wide Web Knowledge Base (WebKB) [42]
are included in the following experiments. We summarize the statistics of benchmarks in Appendix D]
and follow the procedure in [21] to preprocess these documents to obtain their BoW representations.

Baselines: We compare the developed dc-ETMs with a series of topic models, which can be roughly
divided into two categories: 1) shallow topic models such as LDA [6], AVITM [12] and ETM [24],
where LDA is a PTM and the others are NTMs; 2) deep topic models including PGBN [8], WHAI
[20] and SawETM [21], where PGBN is a deep PTM and the others are deep NTMs. We emphasize
that WHAI and SawETM are the most relevant strong baselines for comparison, both of which
provide hierarchical Weibull-based latent document representations, and SawETM has achieved
state-of-the-art performance on unsupervised document modeling and clustering tasks.

Experimental Settings: To make a fair comparison, we set the same network structure for all
deep topic models as [256, 128, 64, 32, 16] from shallow to deep. For PTMs, we use the default
hyperparameter settings in their published papers and accelerate the Gibbs sampling with GPU.
For NTMs, we set the size of their hidden layers as 256, the embedding size as 100 for them
incorporating word embeddings, like ETM, SawETM and dc-ETMs, and the mini-batch size as
200. For optimization, we adopt the same Adam optimizer [43] with a learning rate of le-2. All
experiments are performed with an Nvidia RTX 3090 GPU and implemented with PyTorch [44]].

5.2 Quantitative Comparisons

To investigate whether the proposed skip-connection structures in both dc-ETM variants can alleviate
“posterior collapse”, especially at higher layers, we compare them with other popular deep topic
models in the first part. Then, to investigate whether the mitigation of “posterior collapse” can
improve the quality of latent document representations at higher layers, we conduct more quantitative
comparisons in the rest parts. We report the error bars in Appendix

Document Modeling: In Fig. 2| for each deep topic model, we plot the curve of point log-likelihood

In p(x,,|—) as a function of iterative epochs conditioned on the ¢-th-layer reconstruction IONION
which can be used to measure the degree of “posterior collapse” by the relevance between the data

sample x,, and its latent representation 07({"). From the results, we can see that although SawETM
and WHAI achieve a comparable performance with dc-ETMs on the first hidden layer in Fig.[2(a)]
their reconstruction quality decreases dramatically with the network going deeper in Fig. 2(b)|and
potentially reflecting that little data information can be propagated to higher layers of these
traditional deep topic models. Benefiting from introducing skip connections into the generative
process, dc-ETMs can significantly alleviate “posterior collapse” at higher hidden layers.
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Figure 2: Point log-likelihood In p(a,, |<i>(t)0£f)) of different deep topic models on 20News dataset

as a function of iterative epoches, where <i><t>0£f) can be treated as the projection of 0525) from the
latent space to the observation space, as discussed in Sec. @

Perplexity & Topic Diversity:
To make a more comprehensive
quantitative comparison, we use
the average of heldout-word per-
plexities (the lower is the better)
and topic diversities (the higher is
the better) across all hidden lay-
ers to measure the document mod-
eling performance and topic qual-
ity of these deep topic models
with {69}, and {®}T,,
respectively. The experimental
settings are consistent with those
in [21], and the experimental re-

Table 1: Comparisons of the average of perplexities and topic
diversities across all hidden layers on various benchmarks.

Model | Perplexity | Topic Diversity
| R8 | 20News | RCV1 | R8 | 20News | RCV1
LDA [6] 996 1091 1242 0.288 0.356 0.423
AVITM [12] 561 1030 1121 0.330 0.408 0.483
ETM [24] 985 989 1480 0.352 0.410 0.524
PGBN (8] 657 743 1086 0.221 0.186 0.355
WHAI [20] 773 870 1192 0.183 0.158 0.294
SawETM [21] 530 732 920 0.207 0.175 0.331
de-ETM-a ‘ 521 ‘ 730 ‘ 912 ‘ 0.212 ‘ 0.281 ‘ 0.435
dc-ETM-3 | 427 | 710 | 873 | 0346 | 0429 | 0.566
dc-ETM-a (Policy) ‘ 463 ‘ 707 ‘ 896 ‘ 0.279 ‘ 0.385 ‘ 0.519
dcETM-3 (Policy) | 420 | 647 | 841 | 0379 | 0456 | 0.584

sults have been exhibited in Table[3] Benefiting from hierarchical network structures, the modeling
capability of deep topic models generally outperform those shallow ones. Thanks to enhancing the
connections between the observation and multiple hidden layers with the deep-coupling generative
process, the developed dc-ETMs achieve lower perplexity scores and provide higher-quality topics
than traditional topic models. Then, the PG-based training algorithm brings further performance

improvement to our dc-ETMs.

Document Clustering: To evalu-
ate the quality of the extracted la-
tent document representations on
downstream tasks, we consider
document clustering, where we
use the topic models after train-
ing to extract the latent represen-
tations of the testing documents
and then use k-means to pre-
dict the clustering labels. Using
the Purity and Normalized Mu-
tual Information (NMI) as met-
rics (the higher the better), the
results shown in Table 4] demon-
strate that concatenating hierar-
chical latent document representa-
tions extracted by traditional deep
topic models cannot improve and
even hurt the clustering perfor-
mance, potentially indicating that

Table 2: Document clustering comparison on the 1st hidden layer
or the concatenation of all hidden layers of different topic models.

Model ‘ Layer ‘ WebKB ‘ 20News ‘ R8
| | Purity | NMI | Purity | NMI | Purity | NMI
LDA I | 5340 | 1123 | 4179 | 45.15 | 6574 | 4047
AVITM || 5418 | 1777 | 4233 | 4633 | 7096 | 41.20
ETM || 5143 | 1252 | 4261 | 4840 | 7220 | 4128
PGBN I [ 5537 | 1627 | 4330 | 4651 | 7452 | 4124
Al | 5358 | 1539 | 4117 | 4420 | 7293 | 3135
WHAL I | 5989 | 2595 | 4225 | 4698 | 7470 | 43.98
Al | 5746 | 2449 | 3200 | 3751 | 7080 | 4125
SovETM I [ 5789 | 2191 | 4333 | 50.77 | 7525 | 42.97
aw Al | 5175 | 2060 | 3869 | 3933 | 7589 | 39.55
P I | 6114 | 2629 | 3281 | 43.64 | 7560 | 39.83
Al | 6318 | 2835 | 4183 | 4452 | 7631 | 4373
) I | 5471 | 2143 | 39.80 | 4430 | 7430 | 38.63
de-ETM-4 ‘ All ‘ 67.29 ‘ 33.60 ‘ 45.00 ‘ 4620 ‘ 76.25 ‘ 4564
: | [ 4971 | 1486 | 3788 | 4356 | 7165 | 32.73
de-ETM-a (Policy) ‘ Al ‘ 64.32 ‘ 33.65 ‘ 0221 ‘ 45.59 ‘ 77.46 ‘ 44.60
‘ I [ 5732 | 2605 | 4011 | 4412 | 7130 | 3834
de-ETM-f3 (Policy) ‘ All ‘ 69.32 ‘ 38.53 ‘ 48.60 ‘ 55.79 ‘ 78.29 ‘ 48.62

the latent representations at higher layers are meaningless. However, distinct from traditional deep
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Figure 3: The 5th-layer topics learned by dc-ETM and SawETM with the same network structure on
20News, where each topic is interpreted by its top-10 words. More comparisons refer to Appendix B

topic models, the concatenation operation on the latent representations of dc-ETMs can significantly
improve the performance, which can be attributed to enforcing strong links between the multi-layer
representations and the observation with the skip connections in the generation.

5.3 Qualitative Analysis

As discussed in Sec. the developed dc-ETM inherits both the characteristics of hierarchical topic
structure and semantic topic embeddings. Then we compare the hierarchical topics of a 5-layer
dc-ETM trained on 20News with those learned by SawETM for qualitative analysis.

Topic Visualization: With the visualization techniques [8]], we exhibit the 5th-layer topics learned
by dc-ETM and SawETM on 20News in Fig. 3] and Fig. [7] where each topic is interpreted by its
top-10 words by sorting the word probabilities by descending order. Obviously, the topics learned by
SawETM are quite similar, explaining the reason why concatenating its hierarchical latent document
representations cannot improve and even hurt the performance on downstream tasks. On the contrary,
the developed dc-ETM can learn meaningful and diverse topics at higher layers, indicating that more
data information is passed to higher layers to alleviate “posterior collapse”. We also exhibit a 5-layer
topic tree learned by de-ETM in Fig. [7]to illustrate the topic hierarchy of de-ETM in Appendix N.

Topic Embedding Visualization: After extracting hierarchical topic trees by dc-ETM, we visualize
some of these trees originated from different topic nodes at layer 5 by projecting their semantic
embeddings with t-SNE [43]]. As shown in Fig.[5(a)] we can find that the topics in the same topic
tree tend to be closer than others from different trees in the semantic embedding space and similar
phenomenon occurs in the words for describing the same root topic, which indicates the hierarchy
learn by dc-ETM is of high quality. Note that we also visualize the topics consisting of similar top
words in Fig. 5(b) and[5(c)} learned by dc-ETM and SawETM respectively, which demonstrates that
the developed dc-ETM can provide more meaningful and discriminative topic and word embeddings.

6 Conclusion

To provide higher-quality hierarchical latent representations for deep topic modeling, in this paper,
with the deep-coupling generative process, we develop a novel dc-ETM, which is constructed by
introducing skip connections into the generative process of GBN and also incorporates both topic
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Figure 4: A hierarchical topic tree example learned by a 5-layer dc-ETM on 20News dataset.
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Figure 5: t-SNE visualization of a) multiple 5-layer hierarchical topic trees learned by dc-ETM,
whose leaf nodes are distinguished by different colors; b) and c) various semantic topics equipped
with their own top-10 representative word embeddings learned by dc-ETM and SawETM on 20News.

embedding and Weibull reparameterization techniques. Utilizing the property of sequence-like
generation process, we design a PG-based training algorithm for dc-ETM to further alleviate the
information reduction at higher layers. We note that the main idea of designing dc-ETM equipped
with the PG-based training algorithm can potentially be extended to other deep topic models.
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Appendix

A Inference Network of dc-ETM

Figure 6: Overview of the hierarchical upward and downward inference network (encoder) of
proposed dc-ETM.

As a usual VAE-like model, the inference network (encoder) in dc-ETM is designed to approximate
the gamma distributed posteriors of latent representations of the corresponding generative model
(decoder), specifically p(6,,|x,,) defined in Eq. (I). As the gamma distribution, which can generate
sparse and non-negative random variables, is not reparameterizable with respect to its shape parameter,
we introduce the Weibull distribution [20] to construct our inference network due to its attractive
properties as discussed in Appendix one of which is that a latent variable x ~ Weibull(k, ) can
be easily reparameterized as

2= A—In(1—¢))"* & ~ Uniform(0,1). (17)

Specifically, following traditional VAEs, we first factorize the variational posterior distribution
q(0,,|z,,) defined by the inference network in a hierarchical manner as follows
L-1
Q(9n|wn) - Q(OgLL)‘mn) H Q(Of(zl)|0g+1)amn)v (13)
1=1

which is expected to be flexible enough to well approximate the true posterior distribution p(6,,|x,).
Then, for the design of the network structure, we develop a novel Weibull-based upward-downward
inference network, which contains both bottom-up deterministic and top-down stochastic paths,
contributing to reducing the noise in the procedure of inferencing stochastic latent variables that are
higher in the hierarchy [16} [17].

As the inference network shown in the left part of[6] the bottom-up deterministic path takes the BoW
vector &, as input to obtain hierarchical deterministic latent representations { h%l ) }ZL: ; as follows:

h() = MLP(h{" " & h,,), (19)

through specifically defining h,, = MLP(x,,) and Ry = MLP(h,,) with MLP indicating a two-
layered fully connected network and & being the concatenation operation at feature dimension. Then,

5} ) is further transferred into

each deterministic latent representation h
k(" = Relu(Linear(h(")), (20)
AW = Relu(Linear(h{))), 1)
where Linear is a dense fully connected layer. Finally, taking <I>(l+1)07(f 1 as the prior information
passing from the deeper layer, the variational posterior q(Og ) |—) can be obtained with the stochastic
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up-down path as
g8V AL @+ 9+ — Weibull(kV, AD), (22)
k(D = Softplus(Linear(®(+H 9+ ¢ k1)),
AW = Softplus(Linear(® D90+ @ A1),

where Softplus function is applied to ensure positive Weibull shape and scale parameters; kg ) and )\(l)
incorporate the information passing from hg ), ; and 055) can be obtained with the reparameterization
technique defined in Eq. (T7).

We emphasize that the inference network of our dc-ETM can be naturally treated as an inverse proce-
dure of the generation process of x,,, whose generation is conditional on the latent representations

{07(5 )}lel across all hidden layers. Inverse to the generative network, the inference network can
directly inject the data information into the latent representation of each layer through h,, and allow

all the stochastic latent variables {Hﬁf ) }-_, to have a deterministic dependency on the observation
x,, empirically alleviating top stochastic latent variables from being collapsed [17].

B Properties of Weibull distribution

o Similar density characteristics with Gamma Distribution

The Weibull distribution has similar characteristics with gamma distribution, i.e., the density functions
of the two distributions are quite similar

Weibull PDF: P(z|k,\) = /\k k= 16(90/)‘)

g (23)
Gamma PDF: P(z|a, ) = mxa_le_ﬁw.
o Easily Reparameterization
The latent variable x ~ Weibull(k, \) can be reparameterized as
= A—In(1—¢))** & ~ Uniform(0, 1), (24)

leading to an expedient and numerically stable gradient calculation.
e Analytic KL-Divergence

The KL-divergence between the Weibull and gamma distributions has an analytic expression formu-
lated as

KL(Weibull(k, \)||Gamma(a, 8)) = —aIn A + %

1 (25
+Ink + BAL(1 + E) —y—1l—alnf+InT(a).

C PG-based Training Algorithm

Modeling the generation of long sequence with RL-based methods has achieved great success, but
still suffers from high variance during model training. The common ways to conduct policy gradient
method for training include: i) employ the score-ratio gradient approximator like REINFORCE [46]

to backward the gradients from Q-value Q”(s%), aSL)) to the parameters of the policy network ; ii)

introduce an additional “critic” network to estimate the Q-value Q”(snl ), an ) as Q”( )) then

backward the gradients from estimated Q-value Qr (sn), (Z)) to the parameters of the pohcy network

7 through methods like deep deterministic policy gradient (DDPG) [34]. We emphasize that, both

methods above are developed for the RL applications where the Q-value function is not differentiable,

e.g., the reward r(sgz), a%)) at every time step [ is given by the non-differentiable black-box environ-

ment simulator, or for the applications with hundreds or even thousands time steps, where the direct
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computation of the gradient from Q”(sg), ag)) = r(sg), ag)) +E, [Zf;} vir(sg_i), ag_i))] to
7 is very expensive. However, the REINFORCE estimator is notorious for its high variance, which
would cause the learning of long sequence hard to converge, and the introducing of the “critic”

network would also bring extra bias for the gradients and computation burden.

Moving beyond the gradient estimator of REINFORCE method or introducing the critic network,
we design a more stable way to model the sequential generative process in deep topic model here.
Specifically, the number of time steps here is the number of layers L of the topic model, e.g., L is 5
in this paper, which is a much smaller number compared to the hundreds of time step in other RL

applications. Besides, we design the r(sg ), al! )) as a totally differentiable function in Eq. |14, which

leads to a differentiable Q-value function Q"(sg ), a% )). More specifically, recall the purpose of

policy gradient method is to maximize the Q-value by applying gradient descent to the policy model
7, we develop the Policy Gradient based variational inference algorithm for de-ETM in Algorithm [T

Algorithm 1 The Policy Gradient based variational inference algorithm for dc-ETM.

Set minibatch size m and the number of Layer L;
Initialize the encoder parameters 2 and decoder parameters W ;
for iter = 1,2,--- do
Randomly select a minibatch of m documents to form a subset X = {x;}1 m;

Draw random noise {ei}f;f ,— from uniform distribution;
for Layerl =L, L —1,--- ,1do
fori=10,1—-1,---,1do
Calculate r(sgf), agf)) according to Eq. (T4);
end for
Calculate —VQ,@Q”(sg),agf);X7 {sé}gﬁlzl) according to Eq. (I3), and update Q, ¥
jointly;
end for
end for

D Datasets

R8 is a subset of 7,674 documents selected form 8 different review groups of the Reuters 21578
dataset, and has been split into a training set of 5,485 documents and a testing set of 2,189 ones.
20News dataset consists of 18,774 documents from 20 various new groups and has been split into
a training set of 11,314 documents and a testing set of 7,532 ones. RCV1 is an archive of 804,114
manually categorized newswire stories made available by Reuters. WebKB is a dataset that includes
web pages from computer science departments of various universities, which has 4,518 web pages
that are categorized into 6 imbalanced categories.

E Error Bars

We randomly run 5 seeds for our method in experiments and report the error bar as below.

Table 3: Error bar for our method in the comparisons of the average of perplexities and topic
diversities across all hidden layers on various benchmarks.

Model | Perplexity | Topic Diversity
| RS | 20News | RCVI |  R8 | 20News | RCVI
dc-ETM-a ‘ 521+6 7307 ‘ 912+11 ‘ 0.212+0.002 ‘ 0.2814:0.001 ‘ 0.435+0.003

de-ETM-ar (Policy) | 46344 707£5 | 89645 | 0.27940.002 | 0.38540.002 | 0.51940.004
dc-ETM-3 (Policy) | 420+3 647+£4 | 84145 | 0.37940.004 | 0.45640.003 | 0.58440.004

|
|
de-ETM-3 | 42745 | 71045 | 873+10 | 0.346+0.003 | 0.429+0.003 | 0.566+0.005
|
|
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Table 4: Error bar of our method in the document clustering comparison on the 1st hidden layer or
the concatenation of all hidden layers of different topic models.

Model ‘ Layer ‘ WebKB \ 20News \ R8
| | Purity | NMI | Purity | NMI | Purity | NMI

de-ETM-av 1 61.14+0.5 26.29+0.2 32.814+0.2 43.64+0.4 75.60+0.5 39.83+0.2
B ) All 63.184+0.4 28.35+0.2 41.83+0.4 | 44.52+0.3 76.314+0.5 43.73+0.4
de-ETM.3 1 54.71+0.5 21.4340.1 39.80+0.2 44.30+0.3 74.30+0.6 38.63+0.3
) All 67.294+0.4 33.60+0.3 45.00+0.2 46.20+0.3 76.254+0.5 45.64+0.4
de-ETM-a (Policy) 1 49.71+0.3 14.8640.1 37.884+0.2 43.56+0.2 71.65+0.4 32.73+0.2
Y All 64.32+0.4 33.6540.1 42.214+0.2 45.59+0.3 77.46+0.6 44.60+0.3
de-ETM-3 (Policy) 1 57.324+0.5 26.0540.1 40.114+0.2 44.124+0.3 71.30+0.4 38.3440.2
£ y All 69.324+0.5 38.534+0.3 48.60+0.4 55.79+0.4 78.291+0.6 48.62+0.5

F Comparison of topic quality

To make an intuitive comparison on the aspect of topic quality, we visualize the 5-layer topics learned
by dc-ETM and Sawtooth on 20News dataset as shown in . Obviously, the topics learned by Sawtooth
are quite similar, which potentially explains the reason why concatenating its hierarchical latent
document representations cannot improve and even hurt the performance on downstream tasks. On the
contrary, the developed dc-ETM can learn meaningful and diverse topics in higher layers, indicating
that more data information is passed to higher layers to alleviate the phenomenon of collapse.
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Figure 7: The 5-layer topics learned by dc-ETM and Sawtooth on 20News dataset, where each topic
is interpreted by its top-10 words by sorting the word probabilities by descending order.

G Limitation

The limitation could be the computation burden brought by the extra L — 1 training steps due to the
Policy Gradient training method. However, since L is a small number, the extra computation burden
is affordable. Besides, compared with the backbone GBN-based deep topic model, our method would
not bring extra computation burden during the testing stage, but leads to performance improvements
as shown in Section

H Broader Impact

At first, we need to emphasize that this work is developed to mitigate the phenomenon of information
decay in deep topic models, which has been widely disclosed in the topic modeling literature
but few efforts have been made to address this challenge. The main difficulty is the need for
carefully designing the probabilistic generative process to build the effective connection between
the observation and the corresponding latent representations, on the premise of preserving the
interpretable hierarchical topic modeling structure, rather than casually introducing skip-connections.
Utilizing the natural hierarchy in deep topic models, we provide a general solution equipped with a
novel perspective to incorporate RL-based training algorithm, which brings quite a few contributing
ideas to this field.
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Figure 8: Overview of the proposed dc-ETM, where the left part is the hierarchical upward and
downward inference network (encoder) and the right part is the generative network (decoder).

-

Please note that, we take an NTM named SawETM as an example in this paper to illustrate how we
develop a dc-ETM, but dc-ETM can be also applied to extend NTMs with similar structures. Most of
exsiting NTMs adopt VAE-liked structures, but none of them attempt to solve the “posterior collapse”
phenomenon in essence, resulting in that the latent representations at higher layers exhibit similar or
meaningless patterns (as shown in the Appendix [F).

The significance of developing deep-coupling structure with RL-based training algorithm, which has
effectively improved the quality of the latent representations of a deep topic model at higher layers,
goes beyond a single specific model.

I The implementation details of dc-ETM variants

To have an intuitive understanding about the implementation details of the projection metrics in
dc-ETM, we provide an overview of the network structure of a 3-layer dc-ETM in Fig.[8] As shown
in Fig. |8} the topic matrix &) at layer [ can be factorized into the product of two topic embedding
matrices. Then, there are two kinds of choices to obtain the projection matrices, leading to the variants
distinguished by the suffix —« and — /3.

Specifically, for the variant de-ETM-« defined in Eq. (2)), the projection matrix &) can be obtained
by multiplying @ &2 &) and then the augmented observation vector mﬁf”) can be generated
from the Poisson distribution with a rate of o« ®® @), The other projection matrices ® (2 and

&) can be obtained in a simliar way, where specifically defining ®(*) := &),

For the variant de-ETM-£ defined in Eq. (3)), the projection matrix @) can be obtained by directly
multiplying 37 and 3(®), which is more efficient than dc-ETM-cv. Thus, in our consideration, with
a shorter path for gradient propagation, the short connections in dc-ETM-/3 can perverse more data
information than those in de-ETM-q, resulting in more informative latent document representations
to achieve better model performance with less “posterior collapse”.

We emphasize that, the projection in dc-ETM-« could be applied to extend any existing deep topic
models, while the projection in dc-ETM-£ is only applicable for the NTMs equipped with topic
embedding techniques.
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J Preliminary of “posterior collapse”

J.1 Definition of “posterior collapse”

For a VAE-based model consisting of a decoder py(x|z) and an encoder g4(z|x), the definition
of posterior collapse is that the posterior of latent variables, denoted as g4(z|x), collapses to it
prior pg(z), which is a non-informative distribution and independent of the data x. It can be
mathematically denoted as that the KL divergence between g, (z|x) and py(z) is close to zero,
represented as D1, [qy(2|2)||p(2)] =~ 0.

J.2 How to measure “posterior collapse”

As the definition of “posterior collapse”, a promising metric to measure “posterior collapse” could
be the KL-divergence between ¢, (z|x) and pg(z), where a smaller KL-divergence score indicates
that the posterior ¢4 (z|x) contains less data information and has a larger tendency to collapse to its
non-informative prior. In Table[5] we compare our method dc-ETM-f(policy) (for brevity, we note
it as "dc-ETM") with the previous SOTA NTM named SawETM with the metric of layer-wise KL
divergence on 20News, RS, and RCV1 datasets. As the results shows, the KL divergence of SawETM
gradually reduces to zero with the network going deeper, which indicates the occurrence of a serious
degree of “posterior collapse” at higher layers and limited data information can be captured by
these latent variables at higher layers. On the contrary, benefiting from the efficient skip connection

between the observation x,, and multiple latent document representations {05} ) }E |, de-ETM can
achieve relatively larger KL-divergence scores at higher layers by alleviating “posterior collapse”,
leading to more expressive latent document representations for downstream tasks.

KL-divergence of each layer

Metric 20News RS RCV1

Layer #1 | SawETM  dc-ETM | SawETM  dc-ETM | SawETM  dc-ETM
1 124 354 80.5 161 156 365
2 38.6 233 26.1 89.8 72.1 235
3 3.07 158 11.7 81.9 55.4 170
4 2.51 132 2.05 67.4 48.7 122
5 1.64 101 1.16 77.7 48.0 102

Table 5: Layer-wise KL divergence scores of SawETM and dc-ETM.

J.3  Why “posterior collapse” in a VAE-based model

Besides the experimental analysis, to have a theoretical understanding of the reason why “posterior
collapse” widely exists in the higher layers of hierarchical VAEs, we try to explain the phenomenon
of “posterior collapse” from the perspective of information theory. For ease of understanding, we
use a vanilla L-layer hierarchical VAE with a top-down inference network as an example, where
dc-ETMs can be all treated as VAE-based models. Specifically, following [[18], we extend their
theoretical explanation for “posterior collapse” in a single-layer VAE to a multi-layer version.

Separating the latent variables as the lower-level variables z< = {z1, ..., 2} and the higher-level
ones zsy = {Zk+1,..., 21}, where k € {0, ..., L — 1}, then the ELBO for this hierarchical VAE can
be reformulated as

L
L= ]Ep(w) [Eq¢(z§k\z>k)q¢(z>k\w) [10gp9(1}|21)} - Zl:l DKL(Q¢(Z1‘Zz+1)||pg(zl‘zl+1)):| ) (26)

where qy(zL|zr+1) = ¢o(zL|®), Po(ZL|ZL+1) := pe(zL), and the main contribution to the ex-
pected log-likelihood term is coming from the lower-level latent variables z<j, before the k-th hidden
layer [[17]]. Once the generation capacity of the generative model pg(x|z<y,) is powerful enough to
reconstruct the observation & well, the variational posteriors of higher-level latent variables z~j
will be optimized to be close to their priors, i.e., g4(2>k|Z) =~ po(z>), leading the representations
learned by VAE at higher layers to be meaningless and cannot provide faithful summaries for x,
which is well-known as the phenomenon of “posterior collapse” or “latent variable collapse” [[18]].

To find the potential solutions to alleviating “posterior collapse”, in the following, we reinterpret
this phenomenon from the perspective of information theory by extending the findings in [[18] to a
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hierarchical VAE scenario. For ease of undertanding, we define the mutual information between the
data « and the higher-level latent variables z~  as

Ty(m, z51) = —Ho(zsk]®) + He(25k) = Ep@)gy (zonl2) 108 06(255]T) — By, (2o, 108 46 (25k),

which is induced by the variational posterior ¢, (z>x|2). Then KL term in Eq. Z6) can be rewritten
as

L
By [, , Dralas(zilzi0) lpo(21]2041)|

=Eye) [ S0 Drelas(1l210) o (z1lz101))] + Epioy D (0 (541) lpo (254))] @7)

=Eywy [0, Dre(ao(zilzin)lpo(zilzi0))] + Zo(, 21) + Drw(a6(z54) 1P (254),

where q¢(2>1) = Ep(a) [¢6(2>k|x)]. By substituting Eq. into Eq. (26), due to the non-negativity
of mutual information and KL divergence, we can find that maximizing the ELBO is opposite
to maximizing the mutual information Z,(x, z>). When Z,(x, z~) is minimized to zero, the
variational posterior ¢, (z>x|2) will be independent of the data &, which leads to the phenomenon of
“posterior collapse”.

Thus, exploiting the property of the deep NTMs and building the skip connection between the x,,

and 0,(Ll ) with two projection variants, as shown in Fig. 8 is promising to force the higher layers of
latent variables be more informative by maximizing the mutual information.

K Evaluations of topic quality under more metrics

For evaluating the quality of the learned topics, we introduce more metrics for comparison between
SawETM and dc-ETM-/3 (policy) (for brevity, we note it as "dc-ETM") including: topic diversity,
topic coherence, and topic quality (a product of the topic diversity and topic coherence). As shown in
Table|6] Table[7] and Table[8] dc-ETM can achieve comparable performance on the aspect of topic
quality at the first layer while significantly outperform SawETM in the higher layers.

R8
Metric Diversity Coherence Topic Quality
Layer #i | SawETM  dc-ETM | SawETM  dc-ETM | SawETM  dc-ETM
1 42.11 46.56 43.29 48.44 0.182 0.225
2 15.50 37.38 44.68 41.29 0.069 0.154
3 13.75 36.48 45.05 40.18 0.062 0.146
4 12.34 34.09 47.78 47.25 0.059 0.161
5 20.00 35.43 40.89 50.79 0.082 0.179
Average 20.70 37.98 44.34 45.59 0.091 0.173

Table 6: Topic Diversity, Coherence, and Quality (product of diversity and coherence) for each layer
of SawETM and dc-ETM on R8 dataset.

20News
Metric Diversity Coherence Topic Quality
Layer #i | SawETM  dc-ETM | SawETM  dc-ETM | SawETM  dc-ETM
1 38.82 33.05 31.01 32.32 0.120 0.107
2 22.53 40.04 55.91 54.69 0.126 0.218
3 9.531 53.75 63.67 56.21 0.067 0.302
4 9.310 47.96 59.42 60.77 0.055 0.291
5 7.309 53.02 62.04 63.23 0.045 0.335
Average 17.50 45.56 54.51 53.44 0.083 0.251

Table 7: Topic Diversity, Coherence, and Quality (product of diversity and coherence) for each layer

of SawETM and dc-ETM on 20News dataset.
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RCVI

Metric Diversity Coherence Topic Quality

Layer #i | SawETM  dc-ETM | SawETM  dc-ETM | SawETM  dc-ETM
1 59.74 66.01 38.30 36.04 0.229 0.237
2 49.45 53.01 39.58 39.66 0.196 0.210
3 20.01 57.03 34.08 44.17 0.068 0.251
4 14.84 55.15 31.27 45.79 0.046 0.253
5 21.87 60.93 30.94 48.55 0.067 0.295

Average 33.18 58.42 34.83 42.84 0.121 0.249

Table 8: Topic Diversity, Coherence, and Quality (product of diversity and coherence) for each layer
of SawETM and dc-ETM on R8 dataset.

L. Layer-wise comparison under the clustering task

We provide an additional evaluation for the clustering tasks on each layer of SawETM and dc-ETM-

B(policy) (for brevity, we note it as "dc-ETM"). As shown in Table @ the higher layer 07(,,[) of
SawETM can only preserve limited data information for the downstream document clustering task,
which could explain why the SawETM cannot obtain a gain of performance improvement even if

concatenating all hidden layers, specifically {OS ) }E | (denoted as "All").

Datasets 20News RS

Metric Purity NMI Purity NMI

Layer #i | SawETM  dc-ETM | SawETM  dc-ETM | SawETM  dc-ETM | SawETM  dc-ETM
43.33 40.11 50.77 44.12 75.25 71.30 42.97 38.34
33.52 42.22 45.88 46.72 76.01 75.38 38.41 40.14
26.72 44.50 40.12 47.03 34.38 74.22 27.09 44.75
12.51 45.76 30.20 50.26 22.10 75.00 17.03 43.10
11.82 46.89 26.78 53.81 20.17 76.19 15.20 45.89
38.69 48.60 39.33 55.79 75.89 78.29 39.55 48.62

Table 9: Comparison of different layers’ 07(ll ) quality under the clustering task for SawETM and

dc-ETM.

EU\#L&N»—‘

M Visualization of topic embeddings learned by different variants

To investigate the effects of dc-ETM variants «, /3, and policy, we provide the t-sne visualization of
Sth-layer topic embeddings learned by these variants. Since the semantics of learned topics vary with
the model, to avoid cheery-picking and keep fair, we visualize the whole embeddings of 16 topics at
the 5th layer. Note that, the hyper-parameters of the variants for t-SNE visualization are all the same.

Comparing Fig. [9] (SawETM) with Fig. [10] (dc-ETM-«), it could be obviously seen that the 5th-
layer topics learned by SawETM are similar and meaningless, which means that the introduced
skip-connection in dc-ETM-« is helpful to learn meaningful topics at higher layers.

Comparing Fig. |11|(dc-ETM-a-policy) with Fig. |[10|(dc-ETM-«), it could be seen that the learned
topics are more distinguishable in de-ETM-a-policy, which indicates the effect of the policy gradient
training schema.

Comparing Fig. [12|(dc-ETM- ) with Fig. [10|(dc-ETM-av), it could be seen that the learned topics are
more distinguishable in de-ETM- (3, which indicates the effect of the efficient projection method .

In all, combining the projection method /3 and the policy gradient training schema, we could acquire
a significantly meaningful higher layers’ topic embedding in Fig. [[3|than SawETM in Fig. [0

22



SawETM-5-layer

2
5_14 %—8 subject
.5_0 & 12 subject subject X
- ! SL.)jeCtb. ! subject
~jus 53 o1 subject su JSSbject subject
Justg ust subject wtﬁ@ﬁfe&t ) subject
us ; comcom lines
de Jus§ dust just ® com 53 5_4 subject lines  'INeS
Ju i . % o - i i
Jugt dust com organization lines lines jines
Just d [J elines @ |inas
515, 511 use year organization lines
- e 6~ organizatiorprganization ° 3&‘95?’ lines
ori on ’
ard .. world ._organization 9 lines
e like g high ~ does new organization ° o
like fike oes g world ® organization ~ Organization
|I.k€. does read organization ) organization
like like .think Jnake post °. organization
K ecase did distribution
i now distribution reply reply
article .amde . 05-6 k%’w people government . writes
% ® article Know people time writes Writes writes
i i don (] it
artlc@ E:Ptld% . don know people time law 57 ~writes
e article L writes o
article don don writes )
510 . writes
_ __posting .
don o posting nntp writes
9 . [ ]
- posting tin@ posting ublic
nntp postinama h 3
universit ® university ost host ®
universit urgversity nntpnntp " nntp @ —
host "MtP host
host host @
host
host

Figure 9: t-SNE visualization of the 5th-layer topic embeddings learned by SawETM.
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Figure 11: t-SNE visualization of the 5th-layer topic embeddings learned byf dc-ETM-a-policy.
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Figure 13: t-SNE visualization of the Sth-layer topic embeddings learned by dc-ETM-j-policy.
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