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B Poaching is considered a major
driver for the population drop of
key species such as tigers, ele-
phants, and rhinos, which can be
detrimental to whole ecosystems.
While conducting foot patrols is
the most commonly used
approach in many countries to
prevent poaching, such patrols
often do not make the best use of
the limited patrolling resources.
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deployed in Southeast Asia for optimizing foot patrols

to combat poaching. In this article, we report on the
significant evolution of PAWS from a proposed decision aid
introduced in 2014 to a regularly deployed application. We
outline key technical advances that lead to PAWS'’s regular
deployment: (1) incorporating complex topographic fea-
tures, for example, ridgelines, in generating patrol routes; (2)
handling uncertainties in species distribution (game-theoret-
ic payoffs); (3) ensuring scalability for patrolling large-scale
conservation areas with fine-grained guidance; and (4) han-
dling complex patrol scheduling constraints.

Poaching is a serious threat to wildlife conservation and
can lead to the extinction of species and destruction of
ecosystems. For example, poaching is considered a major
driver (Chapron et al. 2008) of why tigers are now found in
less than 7 percent of their historical range (Sanderson et al.
2006), with three out of nine tiger subspecies already extinct
(IUCN 2015). As a result, efforts have been made by law
enforcement agencies in many countries to protect endan-
gered animals from poaching. The most direct and com-
monly used approach is conducting foot patrols. However,
given their limited human resources and the vast area in
need of protection, improving the efficiency of patrols
remains a major challenge.

This article presents PAWS, a game-theoretic application
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Game theory has become a well-established para-
digm for addressing complex resource allocation and
patrolling problems in security and sustainability
domains. Models and algorithms have been proposed
and studied extensively in the past decade, forming
the general area of security games (Tambe 2011). Fur-
thermore, several security-game-based decision sup-
port systems have previously been successfully
deployed in protecting critical infrastructure such as
airports, ports, and metro trains (Pita et al. 2008;
Shieh et al. 2012; Yin et al. 2012). Inspired by the suc-
cess of these deployments, researchers have begun
applying game theory to generating effective patrol
strategies in green security domains such as protect-
ing wildlife (Yang et al. 2014; Fang, Stone, and Tambe
2015), preventing overfishing (Haskell et al. 2014,
Qian et al. 2014), and illegal logging (Johnson, Fang,
and Tambe 2012).

Among these prior works, a novel emerging appli-
cation called PAWS (protection assistant for wildlife
security) (Yang et al. 2014) was introduced as a game-
theoretic decision aid to optimize the use of human
patrol resources to combat poaching. PAWS was the
first of a new wave of proposed applications in the
subarea now called green security games (Fang, Stone,
and Tambe 2015; Kar et al. 2015). Specifically, PAWS
solves a repeated Stackelberg security game, where
the patrollers (defenders) conduct randomized
patrols against poachers (attackers) while balancing
the priorities of different locations with different ani-
mal densities. Despite its promise, the initial PAWS
effort did not test the concept in the field.

This article reports on PAWS'’s significant evolution
over the last two years from a proposed decision aid
to a regularly deployed application. We report on the
innovations made in PAWS and lessons learned from
the first tests in Uganda in spring 2014, through its
continued evolution since then, to current deploy-
ments in Southeast Asia and plans for future world-
wide deployment. In this process, we have worked
closely with two nongovernment organizations (Pan-
thera and Rimba) and incorporated extensive feed-
back from professional patrolling teams. Indeed, the
first tests revealed key shortcomings in PAWS'’s initial
algorithms and assumptions (we will henceforth refer
to the initial version of PAWS as PAWS-Initial, and to
the version after our enhancement as PAWS). First, a
major limitation was that PAWS-Initial ignored topo-
graphic information. Second, PAWS-Initial assumed
animal density and relevant problem features at dif-
ferent locations to be known, ignoring the uncer-
tainty. Third, PAWS-Initial could not scale to provide
detailed patrol routes in large conservation areas.
Finally, PAWS-Initial failed to consider patrol-sched-
uling constraints.

In this article, we outline novel research advances
that remedy the aforementioned limitations, making
it possible to deploy PAWS on a regular basis. First,
we incorporate elevation information and land fea-
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tures and use a novel hierarchical modeling approach
to building a virtual street map of the conservation
area. This virtual street map helps scale-up while pro-
viding fine-grained guidance and is an innovation
that would be useful in many other domains requir-
ing patrolling of large areas. Essentially, the street
map connects the whole conservation area through
easy-to-follow route segments such as ridgelines,
streams, and river banks. The rationale for this comes
from the fact that animals, poachers, and patrollers
all use these features while moving. To address the
second and third limitations, we build on the street
map concept with a novel algorithm that uniquely
synthesizes two threads of prior work in the security
games literature; specifically, the new PAWS algo-
rithm handles payoff uncertainty using the concept
of minimax regret (Nguyen et al. 2015), while simul-
taneously ensuring scalability — using our street
maps — through the cutting plane framework (Yang
et al. 2013). Finally, we incorporate into PAWS the
ability to address constraints such as patrol time lim-
its and starting and ending at the base camp. In the
final part of the article, we provide detailed informa-
tion about the regular deployment of PAWS.

Background and Related Work

Criminologists have worked on the problem of com-
bating poaching, from policy design to illegal trade
prevention (Lemieux 2014). Geographic information
systems (GIS) experts (Hamisi 2008) and wildlife
management staff (Wato, Wahungu, and Okello
2006) have carefully studied the identification of
poaching hotspots. In recent years, software tools
such as SMART? and MIST (Stokes 2010) have been
developed to help conservation managers record data
and analyze patrols retrospectively. We work on a
complementary problem of optimizing the patrol
planning of limited security staff in conservation
areas.

In optimizing security resource allocation, previ-
ous work on Stackelberg security games (SSGs) has
led to many successfully deployed applications for
the security of airports, ports, and flights (Pita et al.
2008; Fang, Jiang, and Tambe 2013). Based on the
early work on SSGs, recent work has focused on green
security games (Kar et al. 2015), providing conceptu-
al advances in integrating learning and planning
(Fang, Stone, and Tambe 2015) and the first applica-
tion to wildlife security, PAWS-Initial. PAWS-Initial
(Yang et al. 2014) models the interaction between the
patroller (defender) and the poacher (attacker) who
places snares in the conservation area (see figure 1) as
a basic green security game, that is, a repeated SSG,
where every few months, poaching data is analyzed,
and a new SSG is set up enabling improved patrolling
strategies. The deployed version of PAWS adopts this
framework.

We provide a brief review of SSGs, using PAWS as a



key example. In SSGs, the defender protects T targets
from an adversary by optimally allocating a set of R
resources (R < T) (Pita et al. 2008). In PAWS, the
defender discretizes the conservation area into a grid,
where each grid cell is viewed as a target for poach-
ers, to be protected by a set of patrollers. The defend-
er’s pure strategy is an assignment of the resources to
targets. The defender can choose a mixed strategy,
which is a probability distribution over pure strate-
gies. The defender strategy can be compactly repre-
sented as a coverage vector ¢ = (¢;) where ¢; is the cov-
erage probability, that is, the probability that a
defender resource is assigned to be at target i
(Korzhyk, Conitzer, and Parr 2010). The adversary
observes the defender’s mixed strategy through sur-
veillance and then attacks a target. An attack could
refer to the poacher, a snare, or some other aspect
facilitating poaching (for example, poaching camp).
Each target is associated with payoff values that indi-
cate the reward and penalty for the players. If the
adversary attacks target i, and i is protected by the
defender, the defender gets reward Ud and the adver-
sary receives penalty UY .. Conversely, if not protect-
ed, the defender gets penalty U . and the adversary
receives reward U7 ,. U7, is usuallgl decided by animal
density — higher ammal density implies higher pay-
offs. Given a defender strategy c and the penalty and
reward values, we can calculate the players’ expected
utilities U4 and U4 when target i is attacked accord-
ingly.

In SSGs, the adversary’s behavior model decides his
response to the defender’s mixed strategy. Past work
has often assumed that the adversary is perfectly
rational, choosing a single target with the highest
expected utility (Pita et al. 2008). PAWS is the first
deployed application that relaxes this assumption in
favor of a bounded rationality model called SUQR,
which models the adversary’s stochastic response to
defender’s strategy (Nguyen et al. 2013). SUQR was
shown to perform the best in human subject experi-
ments when compared with other models. SUQR pre-
dicts the adversary’s probability of attacking i based
on a linear combination of three key features at the
targets, including the coverage probability ¢, the
attacker’s reward U7, and penalty UY ;. A set of param-
eters (wy, w,, w,) are used for comblmng the features.
They indicate the importance of the features and can
be learned from data.

First Tests and Feedback

We first tested PAWS-Initial (Yang et al. 2014) at
Uganda’s Queen Elizabeth National Park (QENP) for
three days. Subsequently, with the collaboration of
Panthera and Rimba, we started working in forests in
Malaysia in September 2014!. These protected forests
are home to endangered animals such as the Malayan
tiger and Asian elephant but are threatened by
poachers. One key difference of this site compared to

Figure 1. Snares Found by Patrollers.

QENTP is that there are large changes in elevation, and
the terrain is much more complex. The first four-day
patrol in Malaysia was conducted in November 2014.
For this test, we set the value of vl (input for PAWS-
Initial) by aggregating observation data recorded dur-
ing April 2014-September 2014. We first set the
importance value of each cell as a weighted sum of
the observed counts of different types of animals and
different human activities. We then dilute the impor-
tance value of available cells to nearby cells by apply-
ing a 5 by 5 Gaussian kernel for a convolution oper-
ation so as to estimate the value for cells with no data
recorded.

These initial tests revealed four areas of shortcom-
ings, which restricted PAWS-Initial from being used
regularly and widely. The first limitation, which was
surprising given that it has received no attention in
previous work on security games, is the critical
importance of topographic information that was
ignored in PAWS-Initial. Topography can affect
patrollers’ speed in key ways. For example, lakes are
inaccessible for foot patrols. Not considering such
information may lead to failure to complete the
patrol route. Figure 2 shows one patrol route during
the test in Uganda. The suggested route (orange
straight line) goes across the water body (lower right
part of figure), and hence the patrollers decided to
walk along the water body (black line). Also, changes
in elevation require extra patrol effort, and extreme
changes may stop the patrollers from following a
route. For example, in figure 3a, PAWS-Initial
planned a route on a 1 kilometer by 1 kilometer grid
(straight lines), and suggested that the patrollers walk
to the north area (row 1, column 3) from the south
side (row 2, column 3). However, such movement
was extremely difficult because of the changes in ele-
vation. So patrollers decided to head toward the
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Figure 2. One Patrol Route During the Test in Uganda.

northwest area as the elevation change is more gen-
tle. In addition, it is necessary to focus on terrain fea-
tures such as ridgelines and streams (figure 3b) when
planning routes for three reasons:

First, they are important conduits for certain mam-
mal species such as tigers; hence, second, poachers
use these features for trapping and moving about in
general; and third, patrollers find it easier to move
around here than on slopes. Figure 4a shows a promi-
nent ridgeline.

The second limitation is that PAWS-Initial assumes
the payoff values of the targets — for example, U, ; —
are known and fixed. In the domain of wildlife pro-
tection, there can be uncertainties due to animal
movement and seasonal changes. Thus, considering
payoff uncertainty is necessary for optimizing patrol
strategy.

The third limitation is that PAWS-Initial cannot
scale to provide detailed patrol routes in large con-
servation areas, which is necessary for successful
deployment. Detailed routes require fine-grained dis-
cretization, which leads to an exponential number of
routes in total.

The fourth limitation is that PAWS-Initial consid-
ers covering individual grid cells, but not feasible
routes. In practice, the total patrolling time is limit-
ed, and the patrollers can move to nearby areas. A
patrol strategy for implementation should be in the
form of a distribution over feasible patrol routes sat-
isfying these constraints. Without taking these
scheduling (routing) constraints into account, the
optimal coverage probabilities calculated by PAWS-
Initial may not be implementable. Figure 4b shows
an example area that is discretized into four cells and
the base camp is located in the upper left cell. There
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are three available patrol routes, each protecting two
targets. The coverage probabilities shown in figure 4c
cannot be achieved by a randomization over the
three routes because the coverage of the upper left
cell (Target 1) should be no less than the overall cov-
erage of the remaining three cells since all routes start
from the base camp.

PAWS Overview

Figure 5 provides an overview of the deployed ver-
sion of PAWS. PAWS first takes the input data and
estimates the animal distribution and human activi-
ty distribution. Based on this information, an SSG-
based game model is built, and the patrol strategy is
calculated. In wildlife protection, there is repeated
interaction between patrollers and poachers. When
patrollers execute the patrol strategy generated by
PAWS over a period (for example, three months),
more information is collected and can become part of
the input in the next round.

PAWS provides significant innovations in address-
ing the aforementioned limitations of PAWS-Initial.
In building the game model, PAWS uses a novel hier-
archical modeling approach to building a virtual
street map, while incorporating detailed topographic
information. PAWS models the poachers bounded
rationality as described by the SUQR model and con-
siders uncertainty in payoff values. In calculating the
patrol strategy, PAWS uses the ARROW (Nguyen et al.
2015) algorithm to deal with payoff uncertainty and
adopts cutting plane approach and column genera-
tion to address the scalability issue introduced by
scheduling constraints.

Input and Initial Analysis

The input information includes contour lines that
describe the elevation, terrain information such as
lakes and drainage, base camp locations, previous
observations (animals and human activities), as well
as previous patrol tracks. However, the point detec-
tions of the presence of animal and human activity
are not likely to be spatially representative. As such,
it is necessary to predict the animal and human activ-
ity distribution over the entire study area. To this
end, we used (1) JAGS (Plummer 2003) to produce a
posterior predictive density raster for tigers (as a tar-
get species) derived from a spatially explicit capture-
recapture analysis conducted in a Bayesian frame-
work; and (2) MaxEnt (Phillips, Anderson, and
Schapire 2006) to create a raster of predicted human
activity distribution based on meaningful geograph-
ical covariates (for example, distance to water, slope,
elevation) in a maximum entropy modeling frame-
work.

Build Game Model

Based on the input information and the estimated
distribution, we build a game model abstracting the



strategic interaction between the patroller and the
poacher as an SSG. Building a game model involves
defender action modeling, adversary action model-
ing, and payoff modeling. We will discuss all three
parts but emphasize defender action modeling since
this is one of the major challenges to bring PAWS to
a regularly deployed application. Given the topo-
graphic information, modeling defender actions in
PAWS is far more complex than any other previous
security game domain.

Defender Action Modeling

Based on the feedback from the first tests, we aim to
provide detailed guidance to the patrollers. If we use
a fine-grained grid and treat every fine-grained grid
cell as a target, computing the optimal patrolling
strategy is exceptionally computationally challeng-
ing due to the large number of targets and the expo-
nential number of patrol routes. Therefore, a key
novelty of PAWS is to provide a hierarchical model-
ing solution, the first such model in security game
research. This hierarchical modeling approach allows
us to attain a good compromise between scaling up
and providing detailed guidance. This approach
would be applicable in many other domains for large
open area patrolling where security games are appli-
cable, not only other green security games applica-
tions, but others including patrolling of large ware-
house areas or large open campuses by robots or
UAVs.

More specifically, we leverage insights from hierar-
chical abstraction for heuristic search such as path
planning (Botea, Miiller, and Schaeffer 2004) and
apply two levels of discretization to the conservation
area. We first discretize the conservation area into 1
kilometer by 1 kilometer grid cells and treat every
grid cell as a target. We further discretize the grid cells
into 50 meters by 50 meters raster pieces and describe
the topographic information such as elevation in 50-
meter scale. The defender actions are patrol routes
defined over a virtual “street map” — which is built
in terms of raster pieces while aided by the grid cells
in this abstraction as described below. With this hier-
archical modeling, the model keeps a small number
of targets and reduces the number of patrol routes
while allowing for details at the 50-meter scale.

The street map is a graph consisting of nodes and
edges, where the set of nodes is a small subset of the
raster pieces, and edges are sequences of raster pieces
linking the nodes. We denote nodes as key access
points (KAPs) and edges as route segments. The street
map not only helps scalability but also allows us to
focus patrolling on preferred terrain features such as
ridgelines. The street map is built in three steps: (1)
determine the accessibility type for each raster piece,
(2) define KAPs, and (3) find route segments to link
the KAPs.

In the first step, we check the accessibility type of
every raster piece. For example, raster pieces in a lake
are inaccessible, whereas raster pieces on ridgelines or
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Figure 3. First Four-Day Patrol in Malaysia.

Figure 3a shows one suggested route (orange straight lines) and the actual
patrol track (black line). Figure 3b shows the patrollers walking along the

stream during the patrol.

previous patrol tracks are easily accessible. Ridgelines
and valley lines are inferred from the contour lines
using existing approaches in hydrology (Tarboton,
Bras, and Rodriguez-Iturbe 2007).

The second step is to define a set of KAPs, through
which patrols will be routed. We want to build the
street map in such a way that each grid cell can be
reached. So we first choose raster pieces that can
serve as entries and exits for the grid cells as KAPs,
that is, the ones that are on the boundary of grid cells
and are easily accessible according to the accessibili-
ty type calculated in the first step. When there are
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Figure 4. Illustrative Examples.

a. Ridgeline. b. Feasible routes. c. Coverage
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multiple adjacent raster pieces that are all easily
accessible, we add the midpoint as a KAP. If there are
no easily accessible raster pieces on one side of the
boundary, we choose the raster piece with the lowest
slope as a KAP. In addition, we consider existing base
camps as KAPs as they are key points in planning the
patroller’s route. We choose additional KAPs to
ensure KAPs on the boundary of adjacent cells are
paired. Figure 6 shows identified KAPs and easily
accessible pieces (black and gray raster pieces respec-
tively).

The last step is to find route segments to connect
the KAPs. Instead of inefficiently finding route seg-
ments to connect each pair of KAPs on the map glob-
ally, we find route segments locally for each pair of
KAPs within the same grid cell, which is sufficient to
connect all the KAPs. When finding the route seg-
ment, we design a distance measure that estimates
the actual patrol effort and also gives high priority to
the preferred terrain features. The effort needed for
three-dimensional movement can be interpreted as
the equivalent distance on flat terrain. For example,
for gentle slopes, equivalent “flat-terrain” distance is
obtained by adding eight kilometers for every one
kilometer of elevation ascent according to Naismith’s
rule (Thompson 2011). In PAWS, we apply Naismith’s
rule with Langmuir corrections (Langmuir 1995) for
gentle slopes (< 20°) and apply Tobler’s hiking speed
function (Tobler 1993) for steep slopes (> 20°). Very
steep slopes (> 30°) are not allowed. We penalize not
walking on preferred terrain features by adding extra
distance. Given the distance measure, the route seg-
ment is defined as the shortest distance path linking
two KAPs within the grid cell.

The defender’s pure strategy is defined as a patrol
route on the street map, starting from the base camp,
walking along route segments and ending with base
camp, with its total distance satisfying the patrol dis-
tance limit (all measured as the distance on flat ter-
rain). The patroller confiscates the snares along the
route and thus protects the grid cells. More specifi-
cally, if the patroller walks along a route segment that
covers a sufficiently large portion (for example, 50
percent of animal distribution) of a grid cell, the cell
is considered to be protected. The defender’s goal is to
find an optimal mixed patrol strategy — a probabili-
ty distribution over patrol routes.

Poacher Action Modeling and Payoff Modeling

The poacher’s actions are defined over the grid cells
to aid scalability. In this game, we assume the poach-
er can observe the defender’s mixed strategy and then
chooses one target (a grid cell) and places snares in
this target. Following earlier work, the poacher in this
game is assumed to be boundedly rational, and his
actions can be described by the SUQR model.

Each target is associated with payoff values indi-
cating the reward and penalty for the patrollers and
the poachers. As mentioned earlier, PAWS models a
zero-sum game and the reward for the attacker (and
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Figure 5. PAWS Overview.

the penalty for the defender) is decided by the animal
distribution. However, in this game model, we need
to handle uncertainty in the players’ payoff values
since key domain features, such as animal density,
that contribute to the payoffs are difficult to precise-
ly estimate. In addition, seasonal or dynamic animal
migration may lead to payoffs to become uncertain
in the next season. We use intervals to represent pay-
off uncertainty in PAWS; the payoffs are known to lie
within a certain interval whereas the exact values are
unknown. Interval uncertainty is, in fact, a well-
known concept to capture uncertainty in security
games (Nguyen et al. 2014, 2015). We determine the
size of the payoff intervals at each grid cell based on
patrollers’ patrol efforts at that cell. If the patrollers
patrol a cell more frequently, there is less uncertain-
ty in the players’ payoffs at that target and thus a
smaller size of the payoff intervals.

Calculate Patrol Strategy

We build on algorithms from the rich security game
literature to optimize the defender strategy. However,
we find that no existing algorithm directly fits our

needs as we need an algorithm that can scale up to
the size of the domain of interest, where (1) we must
generate patrol routes over the street map over the
entire conservation area region, while (2) simultane-
ously addressing payoff uncertainty and (3) bound-
ed rationality of the adversary. While the ARROW
(Nguyen et al. 2015) algorithm allows us to address
(2) and (3) together, it cannot handle scale-up over
the street map. Indeed, while the (virtual) street map
is of tremendous value in scaling up as discussed ear-
lier, scaling up given all possible routes (approxi-
mately equal to 1012 routes) on the street map is still
a massive research challenge. We, therefore, inte-
grate ARROW with another algorithm BLADE (Yang
et al. 2013) for addressing the scalability issue, result-
ing in a novel algorithm that can handle all the three
aforementioned challenges. The new algorithm is
outlined in figure 7. In the following, we explain
how ARROW and BLADE are adapted and integrated.

ARROW attempts to compute a strategy that is
robust to payoff uncertainty given that poachers’
responses follow SUQR. The concept of minimizing
maximum regret is a well-known concept in Al for
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Figure 6. KAPs (Black) for 2 by 2 Grid Cells.

decision making under uncertainty (Wang and
Boutilier 2003). ARROW uses the solution concept of
behavioral minimax regret to provide the strategy
that minimizes regret or utility loss for the patrollers
in the presence of payoff uncertainty and bounded
rational attackers. In small-scale domains, ARROW
could be provided all the routes (the defender’s pure
strategies), on the basis of which it would calculate
the PAWS solution — a distribution over the routes.
Unfortunately, in large-scale domains like ours, enu-
merating all the routes is infeasible. We must, there-
fore, turn to an approach of incremental solution
generation, which is where it interfaces with the
BLADE framework.

More specifically, for scalability reasons, ARROW first
generates the robust strategy for the patrollers in the
form of coverage probabilities over the grid cells
without consideration of any routes. Similar to
BLADE, a separation oracle is then called to check if
the coverage vector is implementable. If it is imple-
mentable, the oracle returns a probability distribu-
tion over patrol routes that implements the coverage
vector, which is the desired PAWS solution. If it is not
implementable (see figure 4c for an example of a cov-
erage vector that is not implementable) the oracle
returns a constraint (cutting plane) that informs
ARROW why it is not. For the example in figure 4b
and 4c, if ARROW generates a vector as shown in fig-
ure 4c, the constraint returned could be
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since all implementable coverage vectors should sat-
isfy this constraint. This constraint helps ARROW
refine its solution. The process repeats until the cov-
erage vector generated by ARROW is implementable.

As described in BLADE (Yang et al. 2013), to avoid
enumerating all the feasible routes to check whether
the coverage vector is implementable, the separation
oracle iteratively generates routes until it has just
enough routes (usually after a small number of itera-
tions) to match the coverage vector probabilities or
get the constraint (cutting plane). At each iteration
of route generation (shown in the bottommost box
in figure 7), the new route is optimized to cover tar-
gets of high value. However, we cannot directly use
any existing algorithm to find the optimal route at
each iteration due to the presence of our street map.
But we note similarities to the well-studied orienteer-
ing problem (Vansteenwegen, Souffriau, and Oud-
heusden 2011) and exploit the insight of the S-algo-
rithm for orienteering (Tsiligiridis 1984).

In particular, in this bottommost box in figure 7, to
ensure each route returned is of high quality, we run
a local search over a large number of routes and
return the one with the highest total value. In every
iteration, we start from the base KAP and choose
which KAP to visit next through a weighted random
selection. The next KAP to be visited can be any KAP
on the map, and we assume the patroller will take the
shortest path from the current KAP to the next KAP.
The weight of each candidate KAP is proportional to
the ratio of the additional target value that can be
accrued and distance from the current KAP. We set
the lower bound of the weight to be a small positive
value to make sure every feasible route can be chosen
with positive probability. The process continues until
the patroller has to go back to the base to meet the
patrol distance limit constraint. Given a large num-
ber of such routes, our algorithm returns a route close
to the optimal solution.

Integrating all these algorithms, PAWS calculates
the patrol strategy consisting of a set of patrol routes
and the corresponding probability for taking them.

Addressing Additional
Practical Challenges

We have introduced the technical innovations that
lead to PAWS’s deployment. In addition to these
innovations, we have addressed a number of practi-
cal constraints to make the strategy suggested by
PAWS easier to follow by human patrollers. In this
section, we summarize these challenges and our solu-
tions to them.

First, mountaintops should be considered as key
points in the patrol route. In PAWS, we require that
the patrollers always move between KAPs, which are
located at the boundary of the grid cells or the base
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Figure 7. New Integrated Algorithm.

camps. Therefore, in some suggested patrol routes,
the patroller is asked to go to a mountaintop and go
downhill for a short distance and then backtrack.
However, this kind of short downhill followed by
returning uphill will annoy the patrollers, and they
will naturally ignore the downhill part. We address
this problem by considering mountaintops as KAPs
when building the street map. With these additional
KAPs, patrollers are not forced to take the short
downhill unless necessary (that is, when the short
downbhill covers areas with high animal density).

Second, there is a limit on working time in addi-
tion to the limit on walking distance. It takes less
time for the patroller to go to an area and then back-
track than to take a loop even if the walking distance
is the same. The reason is the patrollers need to spend
the time to record what they observe, including ani-
mal signs and human activity signs. If the patrollers
walk along the same ridgeline twice in a day, they
only need to record the signs once. Therefore, in
designing the patrol routes, we should consider the
total working time in addition to the total distance.
This is implemented in PAWS by adding additional
constraints in route generation.

Third, not all terrain features should be treated in
the same way. In building the street map, we give
preference to terrain features like ridgelines by
designing a distance measure that penalizes not walk-
ing along the terrain feature. However, how much
priority should be given to the terrain features
depends on the cost of the alternative routes, or how

much easier it is compared to taking other routes. On
the one hand, in a very hilly region of the area where
there are large elevation changes, the patrollers
would highly prefer the terrain features as it is much
easier to walk along them than taking an alternative
route. On the other hand, if the elevation change in
the region is small, the effort of taking a ridgeline for
unit distance is comparable to that of taking an alter-
native route. To differentiate these different cases, we
use secondary derivatives to check how important
the ridgeline is. Instead of penalizing not walking
along the terrain features, we can use a discount fac-
tor for taking the preferred route, and assign a high-
er discount factor for terrain features with a higher
(regarding absolute value) secondary derivative.

Finally, additional factors such as slope should be
considered when evaluating the walking effort. In
the distance measure introduced in the previous sec-
tion, elevation change and terrain features have been
considered, but there are other factors that con-
tribute to the walking effort. For example, walking
along the contour line will lead to zero elevation
change along the way, but the effort needed highly
depends on the slope. Walking along the hillside of a
steep slope takes much more effort than walking on
the flat terrain. Therefore, in the distance measure,
we penalize walking along the hillside and assign a
higher penalty factor for a higher slope.

Trading Off Exploration and Exploitation
Building on the PAWS framework, we provide a vari-
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Average # of Reachable Raster Pieces

9066.67

Average # of Reachable Grid Cells (Targets) 22.67
Average # of Reachable KAPs

194.33

Table 1. Problem Scale for PAWS Patrols.

Average Trip Length 4.67 Days
Average Number of Patrollers S
Average Patrol Time Per Day 4.48 hours

Average Patrol Distance Per Day  9.29 km

Table 2. Basic Information of PAWS Patrols.

ation of PAWS (denoted as PAWS-EvVE) that offers the
option of assigning a probability range for selecting
an explorative route. Explorative routes are those
that cover a significant portion of previously unpa-
trolled land, while exploitative routes are those that
cover a significant portion of land previously
patrolled.

The major advantage of selecting exploitative
routes is that patrollers are familiar with those patrol
routes. Having experience with the routes, patrollers
also require less effort on following the routes as they
would with unfamiliar territory, enabling them to
better cover the area they patrol. Further, the explo-
rative routes may require more effort on checking the
map, finding water refill points, and figuring out the
best way around unexpected obstacles. Some of these
tasks require experienced patrollers and additional
equipment, which are not available for every patrol.
However, if patrollers were to only take exploitative
routes, then poachers would easily be able to observe
such a strategy and then focus on targeting other
areas. With the objective of PAWS to minimize
poaching activity, it is necessary to also take explo-
rative routes. Therefore, offering the option of setting
a probability range for selecting an explorative route
would be helpful for practical use. The range is set
before generating the patrols based on these practical
concerns.

To implement the functionality of PAWS-EVE, we
modify the previously mentioned separation oracle
by introducing two sets of routes, the explorative set
and the exploitative set. Two new user-defined
parameters 6 and § are introduced and we add two
new constraints to make sure the probability of
assigning a patrol route from the explorative set lies
within a § margin of 8. Also, in route generation, we
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check if adding a route from the explorative set
would improve the solution, and then we also check
if adding a route from the exploitative set would
improve the solution.

Deployment and Evaluation

PAWS patrols are now regularly deployed at a conser-
vation area in Malaysia. This section provides details
about the deployment and both subjective and objec-
tive evaluations of PAWS patrols.

PAWS patrol aims to conduct daily patrols from
base camps. Before the patrol starts, PAWS generates
the patrol strategy starting from the base camp select-
ed by the patrol team leader. The patrol distance lim-
it considered by PAWS is 10 kilometer per day (equiv-
alent flat terrain). As shown in table 1, this leads to
about 9000 raster pieces to be considered. Thus, it is
impossible to consider each raster piece as a separate
target or consider all possible routes over the raster
pieces. With the two-level discretization and the
street map, the problem scale is reduced, with 8.57(=
194.33/22.67) KAPs and 80 route segments in each
grid cell on average, making the problem manage-
able. The strategy generated by PAWS is a set of sug-
gested routes associated with probabilities and the
average number of suggested routes associated with
probability > 0.001 is 12.

Each PAWS patrol lasts for 4-5 days and is execut-
ed by a team of 3-7 patrollers. The patrol planner will
make plans based on the strategy generated by PAWS.
After reaching the base camp, patrollers execute dai-
ly patrols, guided by PAWS'’s patrol routes. Table 2
provides a summary of basic statistics about the
patrols. During the patrol, the patrollers are equipped
with a printed map, a hand-held GPS, and data-
recording booklet. They detect animal and human
activity signs and record them with detailed com-
ments and photos. After the patrol, the data manag-
er will put all the information into a database, includ-
ing patrol tracks recorded by the hand-held GPS, and
the observations recorded in the logbook.

Figure 8 shows various types of signs found during
the patrols. Table 3 summarizes all the observations.
These observations show that there is a serious ongo-
ing threat from the poachers. Column 2 shows results
for all PAWS patrols. Column 3 shows results for
explorative PAWS patrols, the (partial) patrol routes,
which go across areas where the patrollers have nev-
er been before. To better understand the numbers, we
show in column 4 the statistics about early-stage
non-PAWS patrols in this conservation area, which
were deployed for a tiger survey. Although it is not a
fair comparison as the objectives of the non-PAWS
patrols and PAWS patrols are different, comparing
columns 2 and 3 with column 4 indicates that PAWS
patrols are effective in finding human activity signs
and animal signs. Finding the human activity signs is
important to identify hotspots of poaching activity,
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Figure 8. Various Signs Recorded During PAWS Patrols.

Patrol Type All PAWS Patrol

Total Distance (kilometers) 130.11
Average Number of Human 0.86
Activity Signs per kilometer

Average Number of Animal 0.41

Signs per kilometer

Explorative PAWS Patrol

Previous Patrol for Tiger Survey

20.1 624.75
1.09 0.57
0.44 0.18

Table 3. Summary of Observations.

and patrollers’ presence will deter the poachers. Ani-
mals signs are not a direct evaluation of PAWS
patrols, but they indicate that PAWS patrols prioritize
areas with higher animal density. Finding these signs
is aligned with the goal of PAWS — combat poaching
to save animals — and thus is a proof for the effec-

tiveness of PAWS. Comparing column 3 with column
2, we find the average number of observations made
along the explorative routes is comparable to and
even higher than that of all PAWS patrol routes. The
observations on explorative routes are important as
they lead to a better understanding of the unex-
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Figure 9. One Daily PAWS Patrol Route in August 2015.

plored area. These results show that PAWS can guide
the patrollers toward hotspots of poaching activity
and provide valuable suggestions to the patrol plan-
ners.

Along the way of PAWS deployment, we have
received feedback from patrol planners and
patrollers. The patrol planners mentioned that the
top routes in PAWS solution (routes with the highest
probability) come close to an actual planner’s routes,
which shows PAWS can suggest feasible routes and
potentially reduce the burden of the planning effort.
As we deploy PAWS in the future at other sites, the
cumulative human planners’ effort saved by using
PAWS will be a considerable amount. In addition,
patrollers commented that PAWS was able to guide
them toward poaching hotspots. The fact that they
found multiple human signs along the explorative
PAWS patrol routes makes them believe that PAWS is
good at finding good ridgelines that are taken by ani-
mals and humans. Patrollers and patrol planners also
agree that PAWS generates detailed suggested routes,
which can guide the actual patrol. Patrollers com-
mented that the suggested routes were mostly along
the ridgeline, which is easier to follow, compared
with the routes from the first trial by PAWS-Initial.
Figure 9 shows one suggested route (orange line) and
the actual patrol track (black line) during PAWS
patrol in August 2015 (shown on a 1 kilometer by 1
kilometer grid). Due to the precision of the contour
lines we get, we provide a 50-meter buffer zone (light
orange polygon) around the suggested route
(orange/light-gray line). The patrollers started from
the base camp (the green or shaded triangle) and
headed to the southeast. The patrollers mostly fol-
lowed PAWS’s suggested route, indicating that the
route generated by PAWS is easy to follow (contrast

34 AI MAGAZINE

with PAWS-Initial as shown in figure 3a). Finally, the
power of randomization in the PAWS solution can be
expected in the long term.

Lessons Learned

During the development and deployment process,
we faced several challenges, and here we outline
some lessons learned.

First, firsthand immersion in the security environ-
ment of concern is critical to understanding the con-
text and accelerating the development process. The
authors (from USC and NTU) intentionally went for
patrols in the forest with the local patrolling team to
familiarize themselves with the area. The firsthand
experience confirmed the importance of ridgelines,
as several human and animal signs were found along
the way, and also confirmed that extreme changes in
elevation require a considerable extra effort of the
patrollers. This gave us the insight for building the
street map.

Second, visualizing the solution is important for
communication and technology adaptation. When
we communicate with domain experts and human
planners, we need to effectively convey the game-
theoretic strategy generated by PAWS, which is a
probability distribution over routes. We first visualize
the routes with probability > 0.01 using ArcGIS so
that they can be shown on the topographic map and
the animal distribution map. Then for each route, we
provide detailed information that can assist the
human planners’ decision making. We not only pro-
vide basic statistics such as probability to be taken
and total distance, but also estimate the difficulty lev-
el for patrol, predict the probability of finding ani-
mals and human signs, and provide an elevation
chart that shows how the elevation changes along
the route. Such information can help planners’
understanding of the strategy, and also help the plan-
ner assign patrol routes to the appropriate team of
patrollers, as some patrollers may be good at long-dis-
tance walking with flat terrain while others would
prefer short-distance hiking with high elevation
change.

Third, minimizing the need for extra equip-
ment/effort would further ease PAWS future deploy-
ment, that is, patrollers would prefer having a single
hand-held device for collecting patrol data and dis-
playing suggested patrol routes. If PAWS routes could
be embedded in the software that is already in use for
collecting data in many conservation areas, for exam-
ple, SMART, it would reduce the effort required of
planners. This is one direction for future develop-
ment.

Summary

PAWS is a first deployed green security game applica-
tion to optimize human patrol resources to combat



poaching. We provided key research advances to
enable this deployment; this has provided a practical
benefit to patrol planners and patrollers. The deploy-
ment of PAWS patrols will continue at the site in
Malaysia. Panthera has seen the utility of PAWS, and
we are taking steps to expand PAWS to its other sites.
This future expansion and maintenance of PAWS will
be taken over by Armorway,® a security games com-
pany (starting in spring 2016); Armorway has signif-
icant experience in supporting security-games-based
software deployments.
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Notes

1. For the security of animals and patrollers, no latitude/lon-
gitude information is presented in this article.

2. The Spatial Monitoring and Reporting Tool (SMART),
www.smartconservationsoftware.org.

3. The company has now changed its name. See
avataai.com.
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