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Abstract

The aim of this paper is the classification of two-weight irreducible
cyclic codes. Using Fourier transforms and Gauss sums, we obtain
necessary and sufficient numerical conditions for an irreducible cyclic
code to have at most two weights. This gives a unified explanation for
all two-weight irreducible cyclic codes and allows a conjecturally com-
plete classification. Aside from the two known infinite families of two-
weight irreducible cyclic codes, a computer search reveals eleven spo-
radic examples. We conjecture that these are already all two-weight
irreducible cyclic codes and give a partial proof of our conjecture con-
ditionally on GRH.
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1 Introduction

The determination of the weight distribution of irreducible cyclic codes is a
fascinating problem which can be tackled by an interplay of number theoretic
and combinatorial techniques. Important contributions in this direction can
be found in [2, 4, 10, 15]. A basic identity due to McEliece shows that the
weights of an irreducible cyclic code can be expressed by linear combina-
tions of Gauss sums via the Fourier transform. This makes number theoretic
techniques available for the determination of the weights of irreducible cyclic
codes. However, McEliece’s identity also indicates that this problem is ex-
tremely difficult in general since the same is true for the evaluation of Gauss
sums.

Even the two-weight irreducible cyclic codes have not yet been classified.
Two infinite families of two-weight irreducible cyclic codes and seven sporadic
examples are known, see Section 4. In our paper, we will give a unified
explanation for all these two-weight codes, find four new sporadic examples
and provide evidence that there are no further examples.

The main point of our approach is to find “simple” necessary and suf-
ficient numerical conditions for an irreducible cyclic code to have at most
two weights. In Section 3, we will derive these conditions without evaluat-
ing the corresponding Gauss sums in McEliece’s identity; we only need to
use the factorization of Gauss sums given by Stickelberger’s theorem and
Parseval’s identity for Fourier transforms. What makes the analysis of our
“simple” conditions complicated is that they involve a parameter € coming
from Stickelberger’s theorem which behaves as irregularly as class numbers of
imaginary quadratic number fields. Nevertheless, we believe we have found
all two-weight irreducible cyclic codes. The classification is described in de-
tail in Section 4.

In Section 5, we prove the completeness of our classification in some
cases by resorting to a class number estimate conditionally on GRH due to
Louboutin [12]. We also use recent results on Gauss sums due to Mbodj [14].

Two-weight irreducible cyclic codes can also be studied in terms of two-
intersection sets in finite projective spaces and in terms of difference sets.
Since these viewpoints are enlightening sometimes, we explain them in Sec-
tion 6. The two-intersection sets corresponding to the eleven sporadic two-
weight codes all have the interesting property that the square of the difference
of their intersection numbers is not the order of the underlying geometry. Ex-
amples of such sets are rare and have received some recent interest.



Turning to the difference set interpretation, we arrive at the most elegant
way to phrase our results: subject to our conjecture, there are exactly eleven
sub-difference sets of Singer difference sets which are neither trivial nor an-
other Singer difference set. We will identify these eleven examples among the
known difference sets.

Some background material on irreducible cyclic codes and Gauss sums
will be given in the next section. The necessary results of Fourier analysis
on finite abelian groups are appended in Section 7 for the convenience of the
reader.

2 Background

We begin with the definition of irreducible cyclic codes. We first give the
usual definition and then switch to an alternative which is more useful for
our purposes. For the necessary coding terminology, see [19].

Definition 2.1 Let f be an irreducible divisor of ™ — 1 over GF(q) where
(g,n) = 1. The cyclic code of length n over GF(q) generated by (z" — 1)/ f
15 called ¢« minimal cyclic code or an irreducible cyclic code.

The following definition is narrower, but essentially equivalent to Defini-
tion 2.1, see Remark 2.3 below.

Definition 2.2 Let L/K be an extension of finite fields of degree m where
K has order q. Let n be a divisor of ¢™ — 1, write u = (¢"™ — 1)/n, and let
w be a primitive nth root of unity in L. Then

Yy € L}.

We note that the dimension of ¢(g,m, u) is ord,(q), cf. [19, Thm. 6.3.1].

n—1

g, = { o) = (D)

1s called an irreducible cyclic code over K.

=0

Remark 2.3 If we allowed w to be an arbitrary nth root of unity in Defini-
tion 2.2, then by the argument of [19, Thm. 6.5.1], the two definitions above
would be equivalent. However, in the case where w is a non-primitive nth
root of unity, the codewords of ¢(gq,m,u) are periodic with period ord(w).
Thus it suffices to consider the case where w is a primitive nth root of unity.
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Definition 2.4 Let w(y) denote the Hamming weight of ¢(y) € c¢(q, m,u).
If w takes at most two nonzero values, we call ¢(q, m,u) a two-weight ir-
reducible cyclic code.

For a description of all known two-weight irreducible cyclic codes, see
Section 4. We first show that we can restrict our attention to the case where
q — 1 divides n.

Lemma 2.5

(a) Write u' = u(q — 1,n)/(¢g —1) and n' =n(q—1)/(¢ — 1,n). The code
c(q, m,u) is a two-weight code if and only if c¢(q, m,u’) is a two-weight
code.

(b) If ¢ — 1 divides n, then q — 1 divides all weights of c(q,m, u).

Proof (a) Any primitive n’ root of unity is product of a primitive nth root
of unity and an element of K*. Thus, because of the K-linearity of the
trace, the weights of the words of ¢(q, m, ") differ just by the constant factor

(¢=1)/(g=1,n).
(b) Also follows from the K-linearity of the trace. O

An identity of McEliece [15] expresses the weights of irreducible cyclic
codes as linear combinations of Gauss sums. Before we state it, we recall the
definition of Gauss sums and their most basic property. For a proof, see [11,
Thm. 5.11]. We use the notation & = e>™/*,

Definition 2.6 Let r = p* be a prime power, F = GF(r), and let x be a
character of F*. We define

Gr(x) =Y _ x(2)&"

zeF

where Tr denotes the absolute trace map from F to GF(p).
Lemma 2.7 If x is nontrivial, then
IGr(0)” =

Now we are ready to state McEliece’s identity from [15]. For the conve-
nience of the reader, we give a proof.



Lemma 2.8 (McEliece) Let L/K be an extension of finite fields of degree
m where K = GF(q). Let u be a divisor of (¢™ — 1)/(¢ — 1) and n =
(¢™ —1)/u. Let U be the subgroup of L* of index u and let I be the subgroup
of characters of L* which are trivial on U. For a € L*, the weight of the
codeword c(a) € ¢(q, m,u) is given by

ww) = - ¥ G, 1)

7u XETV{1}

for x € P\ {1},

L) = —= 3 wlax(a). (2)

¢—1 aeLl* JU

Proof We only need to prove (2) and calculate ;. y w(a) since (1) then
follows by Fourier inversion, see Lemma 7.3 of the Appendix. We define
Ry :={x €U : Try/k(az) = 0}. Note |R,| =n — w(a) and

> (Ral = [y € s Touyue(y) = 0} = "' — 1,

a€L* U

80 > gers v w(a) = (¢ — 1)g™~'. Using Lemma 7.1 of the Appendix, we get

Gr(x) = > x(@)g™

= > XY g
a€L* /U relU
= Y x@(n-w@)+ Y )
a€L* /U z€U\R,
w(a)
- GELZ*/Uxm)( —w(a) + 5 (1)
= =7 > wlox@

a€L* /U



Corollary 2.9 Let ¢, m, u, n be as in Lemma 2.8, and write ¢ = p* where
p is a prime. Then c(q, m,u) is a two-weight code if and only if c(p, mt,u)
s a two-weight code.

Proof By (1), the weights of these two codes differ only by the constant
factor (¢ — 1)p/(p—1)g. O

Remark 2.10 In view of Lemma 2.5 (a) and Corollary 2.9, for the classifica-
tion of two-weight irreducible cyclic codes ¢(q, m, u), it is enough to consider
the case where ¢ is prime and ¢ — 1 divides n = (¢™ — 1) /u.

Now we list some facts on Gauss sums needed later. A well known result
of Stickelberger [18] completely determines the factorization of Gauss sums
into prime ideals. As a preparation for the formulation of Stickelberger’s
theorem, we recall the factorization of rational primes in certain cyclotomic
fields. A proof of this result can be found in [9, pp. 196-198]. Let ¢ denote
the Euler totient function.

Result 2.11 Let p be a prime, and ¢ = p’ be a power of p. Then p factors
in Q(&-1) as

wheret = ¢(q—1)/f and the m; are prime ideals. Furthermore, in Q(&,-1,&,),
each m; is the (p — 1)th power of a prime ideal.

Now we state Stickelberger’s theorem. For a proof, see [20, Prop. 6.13].
For a positive integer z, let S,(x) denote the sum of the p-digits of .

Result 2.12 Let p be a prime, and g = p* be a power of p. Let m be a prime
ideal of Q(&4—1) above p, let T be the prime ideal of Q(&4-1,&p) above w. By v
we denote the T-adic evaluation. Let w = w(m) be the Teichmiiller character
of F, corresponding to m (see [20, p. 96] for the definition of w). Then

vi(G(W)) = Sp(4)
for1<j<qg-1.

We will also need the Davenport-Hasse Theorem, see [11, Thm. 5.14],
which we recall in the following.



Result 2.13 Let r be a prime power and let E be an extension field of F' =
GF(r) of degree s. Let x be a character of F* and define a character X' of E*
by xX'(z) = x(Ng/r(x)) where Ng,p denotes the norm function of E relative
to F. Then

Gu(X') = (=1)*"'Gr(x)".

Corollary 2.14 Let p be a prime u be a positive integer with (u,p) = 1.
Write f := ord,(p). Define

u

O(u,p) := ﬁmin{sp(j(”fl)) 1< j <u}.

Let s be a positive integer. If u divides (p*f — 1)/(p — 1), then p**®P) is the
largest p-power dividing G(x) for every nontrivial character x of GF(p*/)*
such that x* s trivial.

Proof By (2), we have G(x) € Z[{,]. Thus Stickelberger’s theorem and
Result 2.11 imply that (u,p) is an integer. Now the assertion follows from
Stickelberger’s theorem together with the Davenport-Hasse theorem. O

3 The main result

We now state and prove the necessary and sufficient numerical conditions
on the parameters of an irreducible cyclic code to have at most two nonzero
weights. In view of Remark 2.10, it suffices to consider the codes ¢(p,m, u)
where p is a prime and u divides (p™ — 1)/(p — 1).

Theorem 3.1 Let p be a prime, and let u, m be positive integers such that
u divides (p™ —1)/(p—1). Write 8 = 0(u,p) and m = fs with f := ord,(p).
Then c(p,m,u) is a two-weight code if and only if there ezists a positive
integer k satisfying

kE|lu—1
kp*® = +1(mod u) (3)
k(u—k) = (u—1)p*/—29)



Proof L denotes GF(p™). Let U be the subgroup of L* of index u and let
I be the subgroup of characters of L* which are trivial on U. Let G = L*/U.

Necessity. Define v(a) = p(w(a) —w(1))/(p—1). Note that we may consider
v as a function on G and also that I" is isomorphic to the character group of
G. Calculate the Fourier transform of v:

=G0 if x # 1,

Pl pEul) iy =1

The latter uses the fact that >, ,w(a) = (p — 1)p*/~'. If ¢(p, fs,u) has
at most two weights, then v(a) € {0,0} for some nonzero integer 6. By
Lemmas 2.7 and 2.8 and Proposition 2.14 it follows that 6 = +p*’. Now
define D = {a € G|v(a) =0} and d = |D|. Then

Z :tdpsﬂ .
aEG’

Compare with the previous expression for (1) to obtain
dp*® = +1(mod u).
Finally, from the Parseval identity we have
udp®® = d*p?® 4 (u — 1)p*!

or diu —d) = (u—1)p*U=29_ If f = 20 then take k = u — 1. Otherwise p
divides exactly one of d and v — d, and thus the other divides u — 1. Let k
equal the latter.

Sufficiency. Let

T =

(p = D> (U= — ek)
m Y
where € = 41 is determined by kp*’ = e(mod u). Define

 w(a) -z
a) = (p—1)po-1

Note that v is integer-valued as (p — 1)p*®~! divides w(a) for every a € G
and v divides ek — p*t/=9).



Since Y .o w(a) = (p— 1)p*/~" , then >, s 7v(a) = k. Also,
N T if x = 1
70 = { pfu i G(x) ifx#1
Applying the Parseval identity we obtain,

2
S ote = £y L
acG u u

Since k(u — k) = (u — 1)p*U=29 it follows that >, v(a)? = k. Therefore
v(a) € {0,¢} for every a € G and hence the weight function w is two-valued.
O

Corollary 3.2 Suppose the irreducible cyclic code c(p, fs,u) has at most two
weights and let k,e be as in Theorem 3.1. Then these weights are

wi = (p— 1" ("0 — k) /u,
wy = wy +e(p— 1)p?.

4 All two-weight irreducible cyclic codes?

Using Theorem 3.1 we can attempt to classify all two-weight irreducible cyclic
codes by finding all solutions to (3). In the following, we only consider codes
c(p, m, u) with p prime, see Remark 2.10.

4.1 Subfield and semiprimitive codes

There are two known infinite families of two-weight irreducible cyclic codes:
the subfield codes and the semiprimitive codes. We now describe the corre-
sponding solutions of (3). We use the notation of Definition 2.2. The most
obvious two-weight codes ¢(p, m, u) arise if w generates a subfield of L.

Proposition 4.1 If w is a primitive element for a subfield F = GF(p®) of
L = GF(p™), then c¢(p, m,u) has only one nonzero weight.

Proof Let y € L*. If Try/p(y) = 0, then Try/g(yw’) = 0 for all 4. If
Trrr(y) # 0, then {w' : Trp/x(yw®) = 0} U {0} is a K-vector space of
dimension @ — 1. Thus the only nonzero weight of c¢(p,m,u) is p* — p?~'. O
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We call the codes appearing in Proposition 4.1 subfield codes. From the
proofs of Theorem 3.1 and Proposition 4.1 we see that k = (p™~*—1)/(p®—1)
in (3) and thus #(u,p) = a for a subfield code ¢(p, m,u). Thus we have the
following.

Proposition 4.2 The subfield codes c¢(p,m,u) exactly correspond to the so-
lutions of (3) of the form

" -1)/("-1)
(" =1)/(p" - 1)
1.

U
k
s

Now we come to the semiprimitive codes. A prime p is called semiprim-
itive modulo v if —1 is power of p modulo u. Note that (3) has a solution
with k € {1,u — 1} if and only if 6(u,p) = f/2. By [3, Thms. 1,4], we have
O(u,p) = f/2 if and only if p is semiprimitive modulo u. Thus we have the
following.

Proposition 4.3 There is a solution of (3) with k € {1,u— 1} if and only if
p is semiprimitive modulo u. The corresponding two-weight codes c(p, m,u)
are called semiprimitive codes.

4.2 The exceptional codes

Two-weight irreducible cyclic irreducible codes which are neither subfield nor
semiprimitive codes will be called exceptional. The corresponding solutions
of (3) will also be called exceptional. Theorem 3.1 makes possible a com-
puter search for exceptional codes. This can be done as follows. For every
proper divisor k > 1 of u—1 compute k(u—£k)/(u—1). If it is a prime power,
say p", check whether f — 26 divides r. If so and the quotient is s, then as
long as the congruence condition of (3) holds, ¢(p, fs,u) is a two-weight irre-
ducible cyclic code. The following table lists all exceptional solutions of (3)
with u < 100, 000.
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lulp[s[f 10 [k[c]
11[3|1] 5] 25 |+]
19 [5|1] 9] 4|9 |+1
35 |3 (1] 12| 5 |17 | +1
37 (7 (1] 9 | 4 | 9 [+1
3111 7 | 3 |21 [+
67 |17]1] 33 | 16 | 33 | +1
107| 3 | 1|53 | 25 | 53 | +1
1335 1|18 | 8 |33 |1
163 | 41| 1| 81 | 40 | 81 | 11
323 3 |1]144] 70 | 161 | +1
199 5 | 1]249]123 | 249 | +1

The two-weight codes from above with v € {11, 19,67, 107,163,499} were
already found by Langevin [10]. His proof relies on the fact that the Gauss
sums in McEliece’s indentity can be evaluated if w is prime and f = (u —
1)/2. Batten and Dover [1] verified by computer that ¢(7,9,37) is a two-
weight code. The result in [1] is presented as a certain two-intersection set in
PG(2,7%); see Section 6 for more on the correspondence between two-weight
codes and two-intersection sets. We believe that ¢(3,12,35), ¢(11,7,43),
¢(5,18,133) and ¢(3, 144, 323) are new two-weight, codes.

The fact that there are no exceptional solutions with 500 < » < 100, 000
and the results of the next section provide evidence for the following.

Conjecture 4.4 An irreducible cyclic code c(p, m,u) is a two-weight code if
and only if it s a subfield code, a semiprimitive code or appears in the above
table of exceptional codes.

5 Partial proof of Conjecture 4.4

Conditionally on GRH, we give a partial proof of Conjecture 4.4. Again we
only consider codes ¢(p, m,u) with p prime, see Remark 2.10.

One of the tools we will need is a bound on class numbers of imaginary
quadratic fields due to Louboutin [12]. Let K be an imaginary quadratic
number field, and let (x(s) denote its Dedekind zeta function, see [6, p. 309].
We recall that the generalized Riemann hypothesis (GRH) for K asserts that
s = 1/2 for all zeros s of (x(s) with 0 < Rs < 1.
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Result 5.1 (Louboutin [12]) Let d be a square-free positive integer and
let h(—d) denote the class number of K = Q(v/—d). Assuming GRH for K,

we have i
T™d
h(=d) = 3elogd

To prove the following Theorem, we combine Louboutin’s bound with
work of Baumert and Mykkelveit [4] and recent work of Mbodj [14] on Gauss
sums

Theorem 5.2 Conditionally on GRH, there are no two-weight irreducible
cyclic codes c(p, m,u) for which the triple (p,m,u) satisfies any of the fol-
lowing conditions.

(a) u=0 (mod 3), u# 3, p=1 (mod 3) and

31
_ Blog((u+ 1/4)
logp

(b) There is a prime divisor r = 3 (mod 4) of u with r > 3,

ordr(p) = (r —1)/2 (5)
and

s 3e(r — l)éjrgi}";(l)fg(]()u + 1)/4). (©)

(c) There are two odd prime divisors r, s > 3 of u such that

ord:(p) =1 — 1, 0rdrs(p) = (r — 1)(s — 1)/2 (7)
and

3e(r — 1)(s — 1)logrslog ((u+ 1)/4)
m > 3m/rs Togp i (8)

Proof (b) Assume that ¢(p, m,u) is a two-weight code. Write f = ord,(p),
m = ft, g = (r —1)/2, and let x be a character of GF(pY) of order r. By
4], the exact power of p dividing the Gauss sum G() is pl9="/2 where h is
the class number of Q(v/—r). Thus, by the Davenport-Hasse theorem and
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Corollary 2.14, 20(u,p) < f—hf/g. Recall that k(u—k) = (u— 1)p"f=20(wp))
for some divisor £ of u — 1 by Theorem 3.1. Note that k(u — k)/(u — 1) <
(u+ 1)/4. Putting this together, we get

u Z R
Now assertion (b) follows by taking logarithms and using Result 5.1.

The proof of part (c) is similar. If s = 3 (mod 4) and ord,(p) = (s —1)/2
then the bound from part (b), with s in place of r, implies the bound in
(c). Otherwise, we may use Proposition 3.8 of [14] applied to a character of
GF(p?) of order rs in the estimation of §(u,p). Here g = (r — 1)(s — 1)/2.
Proceed as in part (b).

To prove (a), note that sp(l%) = f(p — 1)/3. By Corollary 2.14,

t0(u,p) < m/3. As in part (b), the result follows by Theorem 3.1. O

Following Mbodj [14], we say that the pair (u,p) falls under the index
2 case if u is odd and ord,(p) = ¢(u)/2. Note that u can have at most
two distinct prime divisors in this case. The corresponding codes c¢(p, m, u)
will be called index 2 codes. Index 2 codes are promising candidates for
two-weight codes because of the following.

Proposition 5.3 The number of different nonzero weights of a code c(p, m,u)
15 at most the number of orbits of x — 2P on Z;.

Proof The weight of a codeword ¢(y) only depends on the coset (w)y. This
implies the assertion since the Frobenius automorphism y — y? of GF(p™)
is trace-preserving. O

In particular, an index 2 code with u prime has at most three differ-
ent nonzero weights. Note that eight of the eleven exceptional two-weight
codes listed in Section 4.2 are index 2 codes. Thus it is desirable to verify
Conjecture 4.4 for index 2 codes.

Theorem 5.4 Conditionally on GRH, Conjecture 4.4 is true for all index 2
codes.

Proof Let C = c¢(p, m,u) be a two-weight index 2 code. If C' is a semiprimi-
tive code, then there is nothing to show. Thus assume that p is not semiprim-
itive modulo u. First suppose 3 divides u and p = 1 (mod 3) If u = 3%s®, for

14



a prime s > 3, then Theorem 5.2 (a) implies

i Blog((u+ 1)/4)

3 (s =1
(5= < logp

Hence,
ulog7 u+1
< log
12 =%y
a contradiction. The case v is a power of 3 is similar and once again there
are no admissible values of v by Theorem 5.2(a).
Next suppose that (u,3) = 1. We claim that

log 1
/U ogp ., u+ (9)

log .
3elogu 6Ty

We carry out the proof of (9) only for the case where u has two distinct
prime divisors s, 7. The case where u is a prime power is similar. Write
u = r%s® where a,b > 1. As ord,(p) = ¢(u)/2, (5) or (7) holds for the pair
(u,p). If (5) holds, then

ra-tsb=1(s — 1)  3elogrlog (u+1)/4
2 - 2my/rlog p

by Theorem 5.2. If (7) holds, then

ra=lgh=t  3elogrslog (u+1)/4
2 - 2my/rslogp

by Theorem 5.2. Each of these implies (9).

Note that (9) implies u < 86,909 if p > 2. Since the table in Section 5
contains all exceptional codes with u < 100, 000, this shows that Theorem
5.4 is true for p > 2. If p = 2, then (9) implies u < 125,383. A computer
search shows that there are no exceptional codes with p = 2 in this range. O

6 Two-intersection sets and sub-difference sets

In this section we will discuss the connections between two-weight irre-
ducible cyclic codes, two-intersection sets in finite projective spaces and sub-
difference sets of Singer difference sets.
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6.1 Two-intersection sets in PG(m — 1, q)

Let K = GF(q), L an extension of K of degree m, and ¢ a power of a prime
p. Consider the model of PG(m — 1, ¢) in the m-dimensional K-vector space
L. Multiplication with elements of L* induces a cyclic automorphism group
G = L*/K* called the Singer cycle acting regularly on the points and
hyperplanes of PG(m — 1, q).

Definition 6.1 A subset X consisting of h points of PG(m — 1,q) such
that every hyperplane meets X in hy or hy points is called a projective
(h,m, hq, he) set. Other common terms for X are a set of type (hy, hy) or
projective two-intersection set.

It is well-known that projective two-weight codes are equivalent to two-
intersection sets in finite projective geometries. We refer the reader to the
survey [7] of Calderbank and Kantor for a thorough treatment of this fact,
as well as connections to other objects.

The following simple fact establishes the equivalence of two-weight, irre-
ducible cyclic codes and certain two-intersection sets. The proof is staight-
forward and left to the reader.

Proposition 6.2 Let G be the Singer cycle of PG(m — 1,q). Suppose u
divides (¢™ — 1)/(qg— 1) and let let U be the subgroup of G of index u. Then
c(g, m,u) has at most two nonzero weights if and only if each orbit of U on
the points of PG(m — 1,q) is a two-intersection set.

Our main theorem gives a necessary and sufficient condition for an orbit
of a subgroup of the Singer group of PG(m — 1, ¢) to be a two-intersection
set, and thus furnishes a proof for the examples recently found by Dover and
Batten [1] in PG(2,5%) and PG(2,7%). Those two examples appear on our
list of exceptional solutions as v = 19 and u = 37, respectively.

The problem of finding two-intersection sets in projective planes has re-
ceived special attention. Until recently, all known examples of sets of type
(h1, hy) in projective planes (except those with h; = 1 or h; = ¢ + 1) had
the property that (hy — h)? = g, the order of the plane. In particular, these
planes all had square order. The examples of Batten and Dover are interest-
ing in that they do not share this property. In fact none of the exceptional
two-intersection sets has the property that the square of the difference of the
intersection numbers equals the order of the underlying geometry.
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6.2 Sub-difference sets of Singer difference sets

A third point of view for the question we have all along been considering is
that of difference sets and we include here a few remarks on the problem in
this context.

Recall that a (v, k, A)-difference set in a finite group G of order v is a
k-subset D of G such that every element g # 1 of G has exactly A represen-
tations ¢ = did, "' with di,dy € D. The parameter k — ) is called the order
of D. For a detailed treatment of difference sets, see [5].

Let L, K, G be as before. It is well-known that Hy = {K*z | Tr(z) = 0}
is a difference set in G with parameters

qm_l qm—l_l qm—Z_l)

¢g—1" ¢g—1 " ¢-1

(v,k, \) = (

called the Singer or trace zero difference set.
The following observation is basically due to McFarland [16].

Proposition 6.3 Let D be a (v, k, \)-difference set in a group G, and let
N be a normal subgroup of G. If |[D N Ng| € {a,b} for some nonnegative
integers a, b and all g € G, then

E:={Ng:|DNNg|=a}
is a difference set in G/N

In the situation of Proposition 6.3, we will call £ a sub-difference set
of D in G/N. It is straightforward to prove the following.

Corollary 6.4 Let q be a power of a prime p, let G be the Singer cycle of
PG(m—1,q) and let Hy C G be the Singer difference set. The point orbits of
a subgroup V' of G are projective two-intersection sets in PG(m—1,q) if and
only if Hy has a sub-difference set E in G/V. Furthermore, p is a multiplier
of E.

We conclude this section by identifying the sub-difference sets correspond-
ing to the known two-weight irreducible cyclic codes among the known dif-
ference sets. We find it remarkable that not less than five different types
of difference sets correspond to the eleven exceptional codes, see the table
below.
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From the proof of Theorem 3.1, we have that E is a (u, k, A)-difference set
in L*/U, where k comes from equation (3). It follows immediately that the
sub-difference sets corresponding to the semi-primitive codes are trivial. Sim-
ilarly, it is straightforward to check that the sub-difference sets corresponding
to the subfield codes are again Singer difference sets.

The following table lists the sub-difference sets corresponding to the
known exceptional codes. Each of the difference sets on this list except
the (43,21,10) Hall difference set is determined up to equivalence by its
parameters (u, k, \) and the condition that it admits p as a multiplier.

‘ U ‘ k ‘ A ‘ name ‘ P ‘
1] 5] 2] QR | 3
19 9 4 QR 5
35| 17 8| Twin 3
37 9 2 4th 7
43| 21| 10| Hall 11
67| 33| 16 QR 17

107 | 53| 26 QR 3

133 | 33 8 | Hall Sp.| 5

163] 81| 40| QR |41

3231161 | 80| Twin 3

499249 124] QR | 5

Here QR stands for the quadratic residues modulo u; Twin denotes the
twin-prime power difference sets due to Stanton and Sprott [17]; 4th denotes
the set of fourth powers modulo u; Hall Sp. is the (133,33,8) sporadic
example found by M. Hall [8].

There are two inequivalent (43,21, 10) difference sets in Z/437Z admitting
the multiplier 11, the quadratic residues and the so-called Hall difference set.
Note that 19 is a primitive element and 19° = 11(mod 43). Let

C; ={19%%|j=0,...,6},

fori=0,...,5. The quadratic residues are QR = Cy U C5 U Cy and the Hall
difference set is H = CoUC,UC;3. Pick y € Cy. Consider 0 € Gal(Q(&43)/Q)
defined by o : &3+ ;. Let L = GF(117) and let x be a character of L* of
order 43. By (2) and Corollary 3.2,

GL(x) = 11°x(E)
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where E is a sub-difference set of the Singer difference set in L*/GF(11)*.
Furthermore, using Result 2.12 one checks that

(GL(x)” # (GL(x))-

It follows that the FE cannot be equivalent to QR and therefore is equivalent
to the Hall difference set.

The following is equivalent to Conjecture 4.4.

Conjecture 6.5 Any nontrivial sub-difference set of a Singer difference set
1s equivalent either to a Singer difference set or to one of the eleven difference
sets in the above table.

7 Appendix: Fourier analysis

We list some facts about Fourier analysis on finite abelian groups. See [13]
for proofs. For an abelian group G, we denote its character group by G*,
and for a subgroup W of G, we write W+ for the subgroup of all characters
which are trivial on W. We identify G with (G*)* by g <> 1, where 7, is the
character of G* with 7,(x) = x(g). The following orthogonality relations
are extremely useful.

Lemma 7.1 Let G be an abelian group, let U be a subgroup of G, and let W
be a subgroup of G*. Then

a) Y e X(g) =0 for all x € G*\ Ut and
b) > ew x(9) =0 forallg e G\ W,

As a consequence of the orthogonality relations, one gets the so-called
Fourier inversion formula.

Lemma 7.2 Let G be an abelian group, and let A=Y, _;a.9 € Z|G|. Then

geG
0= = 3" x(Ag™)
7G|

XEG*

forall g € G.
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Sometimes it is convenient to express Lemma 7.2 in terms of Fourier
transforms. Let G be an abelian group, and let f : G — C be a function.
The Fourier transform f : G* — C of f is defined by

f(x) \/I?Zf

geG

Lemma 7.3 Let G be an abelian group, and let f : G — C. Then JA? = f.

As a consequence of Lemma 7.2, we get Parseval’s identity. Note that
> gec [F(9)[? is the coeffient of 1 in AATY if we let A =" . f(9)g.

Lemma 7.4 Let G be an abelian group, and let f : G — C be a function.

Then X
S If@P =Y 1fr

geG XEG*
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