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Abstract

In the 20 months after our previous update [36] of the first author’s
survey [33] had been finished there has been further rapid progress in
the theory of difference sets. Therefore, a second update has become
necessary.

1 Introduction

This paper is an update of the update [36] of the survey [33] of the first author.
Many exciting theorems have been proven in the meantime we would like to
report on. One of the reasons why we love to study difference sets is that, in
this field, methods from combinatorics, geometry, algebra and number theory
can be combined in an almost unparalleled way to a beautiful theory. The
results surveyed in this paper will provide excellent examples.

In Section 2, we will treat a new general exponent bound for difference
obtained by Schmidt [52]. His results combine a new approach to the absolute
value problem for algebraic integers in cyclotomic fields with a refinement of
the classical method of Turyn [56].

Section 3 is devoted to a new development in the theory of Singer-type
difference sets initiated by Maschietti [41]. Maschietti proved that monomial
hyperovals in PG(2,24) are equivalent to Singer-type difference sets in cyclic
groups of order 2¢ — 1. In this way, the Segre hyperovals [53] and the Glynn
hyperovals [21] give rise to three new infinite families of difference sets. The



difficult problem of showing that these families of difference sets are inequiv-
alent to the previously known series was tackled by Evans, Krattenthaler and
Xiang [20]. They reduced the problem to counting certain binary sequences
and found a complete solution for the difference sets corresponding to the
Segre hyperovals.

In Section 4, we sketch Chen’s construction [8] of of a new infinite family
of difference sets. We also discuss the new results on building sets, a fruitful
concept introduced by Davis and Jedwab [11] which already has become a
well established tool for the study of difference sets.

In Section 5, we give an exposition of Ionin’s new method [30] for the
construction of symmetric designs. By combining incidence matrices of sym-
metric designs corresponding to difference sets which can be built up from
building sets with balanced generalized weighing matrices, Ionin obtained
seven new infinite families of symmetric designs.

Some new results on Hadamard difference sets in elementary abelian 2-
groups and on perfect binary sequences will be described in Sections 6 and
7, respectively. Finally, some miscellaneous recent results are collected in
Section 8. The bibliography not only contains the papers mentioned in this
survey, but also the papers quoted in our last survey which have appeared
in the meantime.

A detailed exposition of the present state of art in the theory of difference
sets will appear as Chapter VI of [2]. In particular, we recommend this source
for a detailed treatment of Schmidt’s exponent bound and its consequences
as well as a complete exposition of the Davis-Jedwab theory of building
blocks and its applications, including most of the known constructions for
Hadamard difference sets and the new difference sets of Chen.

We conclude this section with some definitions. A (v, k, A, n)-difference
set in a group G of order v is a k-subset D of GG such that every element
g # 1 of G has exactly ) representations ¢ = did," with di,dy € D. The
parameter n = k — ) is called the order of the difference set.

Difference sets with parameters of the form

(v, k, A\, n) = (4u?, 2u® — u, u* — u, u?)

are called Hadamard difference sets.
If the parameters are of the form

qd+1 -1 qd -1 qd—l -1 d—l)

(’U’k7A7n):( q—]_ )q_]_’ q—]_ 7

for some prime power ¢ and some postive integer d, we speak of Singer-type
difference sets.



Let G be a group of order nm,and let N be a subgroup ofG of order n. A
subset R of G is called an (m, n, k, \)-difference set in G relative to N
if every ¢ € G\ N has exactly ) representations g = ry7, ' with ry,79 € R,
and no nonidentity element of N has such a representation.

2 Existence theory without self-conjugacy

The existence theory of (v, k, A, n)-difference sets in groups G concerns the
problem of finding the solutions D of the group ring equation

DDY =n 4+ \G (1)

which have coefficients 0 and 1 only. For abelian groups,there are two clas-
sical methods to tackle this problem, namely, Hall’s multiplier concept [24]
and Turyn’s self-conjugacy approach [56]. However, both methods need se-
vere technical assumptions and thus are not applicable to many classes of
problems. Despite many efforts over a period of more than 30 years, no gen-
eral way has been found to overcome these difficulties. Recently, Schmidt [52]
obtained a new method for the study of group ring equations which works
under considerably weaker assumptions.

In order to understand Schmidt’s method, it will be instructive to start
with a brief discussion of the self-conjugacy condition. Turyn [56] demon-
strated that the character method for the study of group ring equations works
very nicely under this restriction. ERWAEHNEN Recall that a prime p is
called self-conjugate modulo an integer m if there is an integer j with
p’ = —1 mod m’, and that a composite integer n is called self-conjugate
modulo m if every prime divisor p of n has this property. In more number
theoretic language, this just means that all prime ideals above n in the m-
th cyclotomic field Q(&,,) are invariant under complex conjugation. Under
this condition it is possible to find all cyclotomic integers in Q(&,,) of ab-
solute value n*/? for any positive integer ¢. It is the complete knowledge of
the cyclotomic integers of prescribed absolute value which makes the char-
acter method work so well under the self-conjugacy condition. Since Turyn’s
fundamental work [56] there have been dozens of papers extending and re-
fining his approach. However, all these results are restricted to the case
of self-conjugacy, and that is a very severe restriction indeed. Namely, the
“probability” that n is self-conjugate modulo m decreases exponentially fast
in the numberof distinct prime divisors of n and m, see [52, Remark 2.2].
One may ask if it is possible to extend Turyn’s method in order to get rid of
the self-conjugacy assumption. It turns out that in general this is impossible
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— at least with present day methods. The required complete knowledge of
the cyclotomic integers of prescribed absolute value would yield an almost
complete determination of the class group of the underlying cyclotomic field
modulo the class group of its maximal real subfield [51, Proposition 3.1].
However, this is a problem of algebraic number theory far beyond the scope
of our present knowledge.

Thus there is an urgent need for more general results on cyclotomic inte-
gers of prescribed absolute value. Schmidt [52] presents a new approach to
the absolute value problem. He shows that up to multiplication with a root
of unity a cyclotomic integer of prescribed absolute value n often already can
be found in a small subfield of the original cyclotomic field K, see Theorem
2.2. This is achieved by exploiting the decomposition groups of the prime
ideals above n in K.

Using the reduction to subfields one can obtain a general bound on the
absolute value of cyclotomic integers with strong implications on virtually
all problems accessible to the character method.In particular, Schmidt [52]
obtains strong asymptotic exponent bounds for groups containing difference.
In many cases, previously literally nothing had been known on the existence
of these difference sets. Schmidt’s results are a major steps towards Ryser’s
conjecture and the circulant Hadamard matrix conjecture.

By &, we denote a primitive complex t-th root of unity. The integer
F(n,m) defined below describes a subring Z[{p(nm)] of Z[&,] that already
contains all solutions X € ZI[,,] of XX = n up to multiplication with a root
of unity. All results of this section are due to Schmidt [52].

Definition 2.1 Let m, n be positive integers, and let m = HEZI p;¥ be the
prime power decomposition of m. For each prime divisor ¢ of n, let

S { 1,2, Pi if m is odd,

411, 404pi i mis even.

We define F'(m,n) = [['_, pi® to be the minimum multiple of the square-
free part of m such that for every prime divisor ¢ of n and i = 1, .., ¢, at least
one of the following conditions is satisfied.

(a) ¢ =p; and (pi’bi) £ (2’ 1)’
(b) bz = C;,
(c) ¢ #pi and qomq(q) # 1 (mod p?i+1).

The following basic result is very useful for virtually all combinatorial
problems accessible to the character method. It can also be used to study
the class groups of cyclotomic fields, see [51].
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Theorem 2.2 Assume XX = n for X € Z[,,], where n and m are positive
integers. Then

ngn € Z[gF(m,n)]

for some j.

In order to understand the significance of Theorem 2.2 it is important to
note that the order of magnitude of F(m,n) usually is the squarefree part of
m, see [52, Remark 3.6]. A combination of Theorem 2.2 with a refinement of
a method of Turyn [56] leads to the following bound on the absolute value
of cyclotomic integers.

Theorem 2.3 Let X € Z[¢,,] be of the form
m—1
X =) ag,, (2)
i=0
where ag, ..., Qy_1 GT€ integers with 0 < a; < C for some constant C. Fur-
thermore, assume that XX = n s an integer. Then
n < 2°7'C2F(m,n),

where s is the number of distinct odd prime divisors of m.
If the assumption on the coefficients a; is replaced by |a;| < C, then

n < 2'C%F(m,n),
where t is the number of distinct prime divisors of m.

The application of Theorem 2.3 gives us the following general exponent
bound.

Theorem 2.4 Assume the existence of a (v, k, A, n)-difference set in an abelian
group G. Then

25-1F :
),
n

exp(G) < (
where s is the number of distinct odd prime divisors of v.

Theorem 2.4 has many striking consequences, the nicest of which is as
follows.



Theorem 2.5 For any finite set P of primes there is a computable constant
C(P) such that
exp(G) < C(P)|G|'?

for any abelian group G containing a Hadamard difference set whose order

u? is a product of powers of primes in P.

Note that the bound in Theorem 2.5 is in some sense optimal, since there
are infinite families of abelian groups G' containing Hadamard difference sets
such that exp(G) > C|G|*? for some constant C, see [2] or [11].

Ryser’s conjecture [48, p. 139] asserts that there is no (v, k, A, n)-difference
set with ged(v,n) > 1 in any cyclic group. We want to apply Theorem 2.4
to the parameters of all known difference sets, as given in the following list.

(i) Hadamard parameters:

(v, k, A\, n) = (4u?, 2u® — u, u® — u, u?),

where v is any positive integer.

(ii) McFarland parameters:

(v, k0, m) = (¢ [E 410,070 00 )

qg—1 qg—1 q—17
where ¢ = p/ # 2 and p is a prime.

)

(iii) Spence parameters:

_ (ad+13%H1_1 9439141 od3941 924
(v, k, A\, n) = (34T 5=, 34512, 3955, 3%9),

where d is any positive integer.

(iv) Chen/Davis/Jedwab parameters:

2 _ 2t _ B 2t—1 B
(Ua ka )\a n) = (4q2t22—,11a th 1[% + ]-]aq% l(q - 1)(][14—71—1-1)’ q4t 2)a

where ¢ = p/, p is a prime, and ¢ any positive integer.

Note that we do not allow ¢ = 2 for the McFarland parameters, since then
(v,k,\,m) = (22442 22d+1 _ 9d 92d _ 9d 92d) and these are Hadamard pa-
rameters with u = 2. Difference sets of type (iv) are known to exist only if
f is even or p < 3, see [7, 8, 11]. However, in this section we will consider
arbitrary f and p. The next theorem shows that Ryser’s conjecture is true
for most of the parameters of known difference sets.

Theorem 2.6

a) Assume the ezistence of a Hadamard difference set in a cyclic group of
order 4u?. Then F(4u?,u?) > 275 2 where s is the number of distinct odd
prime divisors of u.

b) If there is a difference set withMcFarland parameters in acyclic group
of order qd“[% +1], ¢=p/, thend = f = 1.
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¢) No cyclic group can contain o difference set with either Spence or
Chen/Davis/Jedwab parameters.

The ctrculant Hadamard matrixz conjecture asserts that there is no
Hadamard difference set in any cyclic group of order greater than 4. Among
other things, Turyn [56] proved that v must be odd if a Hadamard difference
set in the cyclic group of order 4u? exists. Since Turyn’s results in 1965, there
had not been any progress toward the circulant Hadamard matrix conjecture.
Recalling that the order of magnitude of F'(4u?, u?) usually is u, we see that
part a) of Theorem 2.6 comes close to a proof of this conjecture.

3 Singer-type difference sets, hyperovals and
codes

Maschietti [41] discovered a beautiful connection between monomial hyper-
ovals in II := PG(2,q), where ¢ = 2%, and difference sets with Singer-type
parameters (v,k, \) = (2¢ — 1,2471 — 11,2972 — 1). We recall that a hyper-
oval in Il is a set of ¢ + 2 points no three of which are collinear. By a result
of Segre (see [25, Thm. 8.4.2]), every hyperoval in PG(2,q) is projectively
equivalent to some hyperoval of the form

H(f) = {(1,%, f(x)) ‘T e ]Fq} U {(07 L, 0)7 (0707 1)}7

where f is a permutation polynomial over I, of degree at most ¢ — 2 with
f(0) =0 and f(1) = 1 such that the map f, defined by

fs(0)=0 and fs(x)= f(x+sx)+f(s) forx £0

is a permutation of I, for every s € IF,. Conversely, if f satisfies all these
conditions, then H(f) is a hyperoval in PG(2,q). If f is a monomial, then
H(f) is called a monomial hyperoval. The known monomial hyperovals
are given in the following list. Glynn [21] conjectured that this list actually
comprises all monomial hyperovals, but this conjecture remains unresolved.

o Translation hyperovals (see [54, 45]): H(z*"), (n,d) =1,
e Segre hyperovals [53]: H(z®), d > 5 odd,

e Glynn hyperovals [21]: H(z°") and H(x3°*7), where d > 7 is odd,
o =20@+0/2 and v = 2™ for d = 4m — 1 and v = 2°™*! for d = 4m + 1.
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The first step toward Maschietti’s result is the following characterization
[41] of the monomial hyperovals; its proof is just a straightforward verifica-
tion.

Lemma 3.1 The set H(x*) is a hyperoval in PG(2,q) if and only if (k(k —
1),q — 1) = 1 and the mapping 7 : F, — F,,z — x* + x is two-to-one (that
is, the preimage of each y € T, is either empty or consists of two elements).

Let 7(F,) denote the image of F}, under 7, and write D(z*) := 7(F,)\ {0}.
Note |D(z*)| = 2¢=1 — 1 if 7 is two-to-one. Using Lemma 3.1, geometric ar-
guments and some counting, Maschietti [41] obtained the following beautiful
result.

Theorem 3.2 The set H(z¥) is a hyperoval if and only if D(z*) is a (2¢ —
1,241 — 1,292 — 1)-difference set in IF;.

Maschietti [41] also proved that H(z¥) is a translation hyperoval if and
only if D(«*) is the trace zero Singer difference set in F;. This shows that
difference sets corresponding to nonequivalent hyperovals can be equivalent.
However, in a profound paper, Evans, Krattenthaler and Xiang [20] show
that, subject to the truth of some plausible conjectures, the difference sets
corresponding to the Segre and Glynn hyperovals (except for the two Glynn
hyperovals H(z3%7) for d = 7 or 9) are all inequivalent, and that they are
also inequivalent to the previously known families of (2¢4—1,2471—1,24-2—1)-
difference sets (that is, Singer, GMW, quadratic residue and Hall difference
sets, see [33]). The results of Evans, Krattenthaler and Xiang [20] are based
on the following neat proof of Maschietti’s Theorem 3.2; we note that their
approach is quite different from Maschietti’s.

Partial proof of Theorem 3.2:

Assume that H(z*) is a hyperoval. Let x be a nontrivial character of F;.
We need to show |x(D(z*))|? = 2¢-2. By Lemma 3.1, we have (k(k —1),q —
1) = 1. Thus there is a character ¢ of F} with y = ¢)*~!. Recall that 7 is a
two-to-one mapping. We compute

x(D(@%) = x(1(F,))
= % > x@k + 2)

TEFy
1 _
= 5 2 x@xE T+
TEFy
1
= 52 v )
TEFy
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= LY vt ).

TEF,

But > cp ¥(z)x(z + 1) is a Jacobi sum of absolute value 21/2 (see [59,
Lemmas 6.1, 6.2]), so we are done. 0

The above proof shows that all nontrivial character values of the dif-
ference sets D(z¥)are Jacobi sums. The prime ideal decomposition of the
principal ideals of cyclotomic fields generated by Jacobi sums is known from
Stickelberger’s theorem, a classical number theoretic result, see [59, p. 96].In
principle, this allows the computation the 2-ranks Cs(d, k) of the incidence
matrices of the designs corresponding to the difference sets D(z*) using the
following lemma which is essentially due to MacWilliams and Mann [40].

Lemma 3.3 Let G be an abelian group of exponent e, let p be a prime not
dividing e, and let P be a prime ideal above p in Z[&.], & = e2™/¢. Let D be
a difference set in G. Then the p-rank of the incidence matrixz of D is the
number of complex characters x of G with x(D) # 0 (mod P).

Proof Note that F := Z[£.]/P is a finite field of characteristic p which
contains a primitive e-th root of unity (namely P+¢&,), see [31, Prop. 13.2.3].
Thus the lemma follows from the result of MacWilliams and Mann [40] (see

also [2, Lemma 2.3.11]) by viewing the characters G — C* as characters
G—F*. O

Thus the 2-ranks Cy(d, k) are, in principle, given by Stickelberger’s the-
orem and Lemma 3.3. However, it turns out that the enumeration of the
characters x with x(D(z*)) Z 0 (mod P) actually leads to a difficult count-
ing problem involving certain binary sequences. Evans, Krattenthaler and
Xiang [20] solve this counting problem for the difference sets corresponding
to the Segre hyperovals H(2%) and obtain the following surprising recursion
for the 2-ranks Cs(d,6) which had been conjectured by Xiang [63] on the
basis of computational evidence.

Theorem 3.4 The 2-rank Cy(d, 6) of the cyclic (2% —1,2%71 — 11,2472 — 1)-
difference set corresponding to the Segre hyperoval in PG(2,2%) is divisible
by d, and the numbers A(d) := Cy(d, 6)/d satisfy the recursion

A(d) =A(d—2)+ A(d—4) +1

with initial values A(2) = 0, A(3) =1, A(4) = 1 and A(5) = 3. Thus, for
any positive integer m,

Cy2(2m,6) = 2m(F,, — 1) and
Co@m+1,6) = (2m+ 1)(2F, — 1),
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where F,, is the n-th Fibonacci number.

Further interesting results on the difference sets corresponding to the
Segre hyperovals can be found in the paper of Dillon, Dobbertin and Xiang
[14]. In particular, these authors characterize the nonroots of the binary
cyclic codes associated with the Segre difference sets. They also give a further
alternative proof for the fact that D(z*) is a difference set if H(z*) is a
hyperoval which makes use of Parseval’s relation.

For the difference sets D(z*) corresponding to the Glynn hyperovals, the
problem of counting the characters x with x(D(z*)) # 0 (mod P) seems to
be even more difficult and has not been solved yet. However, on the basis
of “abundant computational evidence”, Evans, Krattenthaler and Xiang [20]
conjecture that the 2-ranks of these difference sets satisfy certain 5-term
recurrence relations. They show that subject to the truth of this conjecture
the difference sets corresponding to the Segre and Glynn hyperovals (except
for the two Glynn hyperovals H(x3%7) for d = 7 and 9) are all inequivalent.

4 Chen difference sets and building sets

Chen [7] not only constructed Hadamard difference sets of order m* for every
positive integer m, but also discovered a new infinite family of difference sets
with parameters

2t _
4q2t%2_11a
—172(¢*t -1

q2t 1[ (qq+1 ) 1]’

2t—1 ¢t
q (q - 1) g+1
4t—2

qa

(3)

S > = <
|

where ¢ = p/ is a power of 3 or a square of an odd prime power and ¢ is

any positive integer. The family of Davis/Jedwab difference sets [11] has

parameters

— 22t+2(22t _ 1)/3’

— 22t71(22t+1 + 1)/3’
22t71(22t71 + 1)/3’

24t72

(4)

S > > <
I

where ¢t > 2 is a positive integer. If we set ¢ = 2 in (3), we recover the
parameters (4). Chen [8] concluded that there should be difference with
parameters (3) for any power ¢ of 2 — and proved it. In order to give a
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flavor of this construction, we first recall the definition of covering extended
building sets (CEBSs) which were introduced by Davis and Jedwab [11].

An (a,m,h,+) CEBS in an abelian group G is a family {Dy, ..., Dy} of
subsets of G with the following properties.

a) |[Di| =a+m and |D;| =a for i =2, ..., h.

b) For every nonprincipal character x of G there is exactly one i with
Ix(D;)| =m and x(D;) = 0if j # 4.

JFrom a CEBS in G one can construct difference sets in many groups
which contain G as a subgroup.

Theorem 4.1 ([11], Thm. 2.4) Suppose that { By, ..., By} is an (a,m, h, £)
CEBS in an abelian group G. Let H be an abelian group containing G as a

subgroup of index h, and let {g,...,gn} be a complete system of coset repre-

sentatives of G in H.Then
h

D := U Big;
i=1
is an (h|G|,ah + m,ah £ m — m?)-difference set in H.

Proof Surely, D is a subset of H with the right cardinality. Let x be a
nontrivial character of H. We have to show |x(D)| = m. If x is nontrivial on
G, this follows from condition a) in the definition of a CEBS. If x is trivial on
G, then 32" x(hi) = 0 and thus x(D) = 31, |Bilx(hi) = a2 x(hi)
mx(hy) = £mx(hy). Hence |x(D)| = m, since x(hy) is a root of unity. O

We now sketch Chen’s construction [8] of difference sets with parameters
(3) for all powers ¢ of 2. This construction depends on the following conse-
quence of Menon’s direct product construction [43] for Hadamard difference
sets and the existence of trivial Hadamard difference sets in Zy X Zo and Z,.

Lemma 4.2 Any abelian 2-group of square order and exponent at most 4
contains a Hadamard difference set.

Of course, we know from the celebrated Davis/Kraemer theorem [37] that
an abelian 2-group G of square order contains a Hadamard difference set if
and only if exp G < 24/|G|, but we only need the simple Lemma 4.2here.

Let A be an elementary abelian group of order 2¢* and m = q;;:‘f Chen

L.
first finds subgroups Kjy, ..., Ko, of A with |Ky| = ¢**72, |K;| = 2¢**~? and
|K; N Ky| = ¢**=* for i = 1, ..., 2m such that every nonprincipal character of
A is trivial on exactly one K;, 0 <17 < 2m.
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Let G be an abelian group containing A as a subgroup of index 2. Note
exp G < 4. The quotient group Hy := G/Kj has order 4¢* and thus there
is a Hadamard difference set Dy in Hy by Lemma 4.2. For the same reason,
there are also Hadamard difference sets D; in A/H; for i = 1,...,2m. Now
let Uy C G be the preimage of Dy, and let U; C A, i = 1,...,2m, be the
preimage of D;. Choose g € G\ A. Then {Uy, U1 U Usg, ..., Usy—1 U Uspng} is
a (2¢*Yqg—1),¢* 1, - +)-CEBS in G. Thus Theorem 4.1 yields

@2—1"

Theorem 4.3 Let q be any power of 2,2tlet t be any positive integer, and
let G be an abelian group of order 4q2“;2—:11 which contains an elementary
abelian subgroup of order 2¢*t. Then there is a difference set with parameters

(8) in G.

Theorem 4.3 is an example demonstrating how fruitful the concept of
building sets of Davis and Jedwab [11] is. Further examples are provided by
Hou and Sehgal [27] who found an abundant number of new building sets.
The focus of their work is on secondary (or second hand) building sets, i.e.
building sets which can be obtained from other building sets by contraction
or extension. A thorough analysis of these methods led Hou and Sehgal to
the construction of many new families of semiregular relative difference sets.
The maximum exponent of the abelian p-groups covered by their method is
in general significantly higher than in all previously known constructions.

Up to now, only a few nonexistence results on CEBS have been obtained.
Surely, this is a topic which deserves more attention. The only significant
result known at present is due to Chen [9] who studied the family of CEBSs
in abelian groups G with parameters of the form (a, |G| — 2a, h,+). He calls
these CEBSs (a, h)-covering systems. There are two known families of
such systems corresponding to Hadamard and Spence difference sets. Chen
obtained the following useful restrictions on the parameters of a covering
system.

Theorem 4.4 Let G be an abelian group with an (a, h)-covering system.
Then there are nonnegative integers u and v, where u odd, such that

G| = v?[1+v(u®—1)/4,
o = "y o -1y
h = u?v+4.

In particular, G is of odd order. Furthermore,
o(exp G) < (u? —1)/4,

where ¢ denotes the Euler o-function.
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5 Ionin’s construction of symmetric designs

Ionin [28, 29, 30] discovered a powerful technique for the construction of
symmetric designs which uses difference sets with (v, k) > 1 as an essential
ingredient. In this way, he found seven new infinite families of symmetric
designs. Because of its importance, we describe Ionin’s method in somne
detail. His construction starts with an incidence matrix M of a (smaller)
symmetric (v, k, \)-design. Let K be a set of v X v matrices with entries 0
and 1 containing the zero matrix, where each matrix in K \ {0} is obtained
from M by some “harmless” modification, for instance, by applying the same
cylic shift to each row of M.

Strategy: Try to arrange the matrices from K into a block matrix 7’
such that T" becomes an incidence matrix of a larger symmetric design. The
crucial point here, of course, is to find sufficient conditions on K and T to
make this construction work. Before we describe Ionin’s conditions, we need
to recall the following definition.

A balanced generalized weighing matric BGW (w, [, i) over a group
G is a w x w matrix W = (g;;) with entries from G := GU{0} such that each
row of W contains exactly [ nonzero entries, and for every a,b € {1,...,w},
a # b, the multiset {gaig;; : 1 < i < w, gai, goi # 0} contains exactly u/|G]|
copies of each element of G.

Ionin’s sufficient conditions are given in the following theorem. By I and
J we denote the identity matrix and the all-one matrix of the appropriate
sizes, respectively.

Theorem 5.1 Let K be a set of v X v matrices with entries 0-1 containing
the zero matriz. Let G be any group of order w := |K| — 1 and write K =
{M, : g € G}, where My is the zero matriz. Assume that there is some
BGW (w, 1, u) over G, say W = (gi;). Then the block matriz T := (M,,)7_,
is an incidence matriz of a symmetric (vw, kl, \l)- design, provided that the
following conditions are satisfied.
(i) My is an incidence matriz of a symmetric (v, k, \)-design, that is
MiME = (k= MNI+\J
(i) My My, = M,MF for all g,h, k € G,
(iii) 3 e My =",
(iv) k*u=vll.

The proof is by straightforward computation. For instance, for a # b, we
have to show >, My, MI = Al.J. Let us verify this:
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Z M, ai ng;z (2) Z ]\4_c]a,-_(]b_i1 MlT

=1 =1
BGW H
= @(Z Mg)MlT
geG
i) pk|G| 7
= JM
Glv "
D) 17 o

The first ingredient needed to satisfy the conditions of Theorem 5.1 are
the well known BGWSs which can be obtained from the classical relative
difference sets associated with affine spaces.

Theorem 5.2 Let q be a prime power, and let s be a divisor of ¢ — 1. Then
d+1
there is a BGW (4 ;71_1,qd, g% — q% 1) over Zs for every positive integer d.

The construction of these BGW's is easy: Let R be the set of elements of

Fyar1 of trace 1 relative to ;. Then R is a (qd;j; 1

set in ]F’:IdJrl relative to F,. By projection, one obtains (

,q —1,¢% ¢% 1)-difference

i S qdfl(q—l))_
g—1 124> S

difference sets R, relative to N, = IF; /U, for every divisor s of ¢ — 1, where
Us is the subgroup of F; of index s.Let a be a primitive element of Fga+1.

We define a (qd;ll_l X qd(:l_l)—matrix W = (n;;) with entries in Ny U {0}
as follows. If there is a (necessarily unique) element 7 of R,a’ in the coset
Ny then we set n;; = a’r, and otherwise n;; = 0. Then W is the desired
BGW.

The second ingredient is incidence matrices of symmetric designs corre-
sponding to difference sets with (v,n) > 1. The unifying construction [11] of
Davis and Jedwab shows that such difference sets in direct products R x S

of abelian groups R and S can be obtained in the form

D=|JBs

sES

with B; C R such that {B; : s € S} is a covering extended building set
on R, see Thorem 4.1. This means that — with an appropriate ordering of
the points and blocks — the incidence matrix M of the symmetric design
corresponding to such a difference set is an (|S| x |S|)-block matrix, where
each block is an (|R| X |R|)-matrix corresponding to some building block
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B, C R such that each building block is represented exactly once in each row
of M.

Now, we take M; := M in Theorem 5.1. Then condition (i) is satisfied.
The main problem here is to satisfy condition (iii). This can be done by
deriving the matrices M, from M by “harmless” operations not violating
(ii) such that (iii) will be fulfilled. Examples of such harmless operations are
applying the same cyclic shift to each row of the block matrix M or replacing
each building block B, by a translate of B, in R. Let’s consider the nicest
examples, namely, the designs Ionin constructed from McFarland difference
sets.

Let ¢t be any prime power, and let a be any positive integer. McFarland
difference sets can be obtained in groups R x S, where R is the additive group
of an (a + 1)-dimensional vector space over F; and where S is any group of
order r+1; here r = ta:_ll_ L is the number of hyperplanes of R. Define By := ()
and let {Bs : s € S, s # 1} be the set hyperplanes of R. Then D := UgcsBss
is a difference set in R X S with parameters

(v,k, A) = (t*TH(r + 1), 1%, (r — 1));

this fact was discovered by McFarland [42] in 1973. Now, the incidence
matrix M of the symmetric design corresponding to such a difference set can
be chosen as an ((r+ 1) x (r + 1))-block matrix such that every row contains
exactly one zero block (coming from B; = ()) and r blocks corresponding to
all the hyperplanes of R. For each hyperplane Bs, let {Byy, ..., Bs;} be the
set of all translates of By in R. We construct matrices M, x = 0,...,r,
y=1,...,t, from M as follows.

To get M,, from M, shift each row (of blocks) of M cyclically by x
positions and replace each hyperplane B,, s € S\ {1}, by Bs,.

In this way, we get a set K of (r + 1)¢ matrices such that Y . X is a
multiple of the all-one matrix. The reason for this is that the translates of a
hyperplane cover each point of R exactly once and that the zero block occurs
exactly once in each position during the cyclic shifting.

Now, let G' be any group of order (r + 1)¢, and write K = {M, : g € G}
with M; = M. It is not difficult to verify that K satisfies the conditions

(1) — (i4i) of Theorem 5.1. Suppose that r = ta:_ll_ L is a prime power. Let

q := r% Then (r + 1)t divides ¢ — 1 = (r + l)ta:_ll_t, and thus there is
a BGW(%,qd,qd — ¢**) over Z, 41y, for every d > 1 by Theorem 5.2.

Also note k?p = t20r2(q% — ¢4 1) = [t*T(r 4+ 1)][t* 1 (r — 1)]¢% = vAl, that is,
condition (7v) of Theorem 5.1 is satisfied, too.

Taking G = Z(;41): and applying Theorem 5.1, we get Ionin’s first infinite
family of symmetric designs. We remark that this generalizes a construction
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of Jungnickel and Pott [34] who obtained Theorem 5.3 under the more re-
strictive assumption that ¢ is a prime.

Theorem 5.3 Let t be a prime power, and let a be a positive integer such

that r := ta:_ll_t 18 also a prime power. Then there is a symmetric design with

parameters

24+2 _

1
(U, k‘, )\) — (ta—f—l%’ta,rzd-f—l’ (T _ 1)7’2dta_1)

for every positive integer d.

Applying the method leading to Theorem 5.3 to the complements of Mc-
Farland difference sets, Spence and Davis/Jedwab difference sets and their
complements, and to Hadamard difference sets of order 4¢ -9, d > 0, Ionin
[30] obtained six further infinite families of symmetric designs. All these
constructions use Theorems 5.1 and 5.2.

6 Elementary Hadamard difference sets

An elementary Hadamard difference set (EHDS) is a difference set
with parameters(v, k, \) = (22¢, 2271 4 2171 22072 4 9871} in the elementary
abelian group FA(2%*). Sometimes these difference sets are (but shouldn’t
be) called bent functions. EHDSs were studied intensively in Dillon’s
thesis [13]. Since then, several new constructions of EHDSs have been found.
Dobbertin [15] and Xiang [62] used maximally nonlinear functions on Fy: for
the construction of EHDSs in EA(2%). Carlet [3] introduced the concept
of generalized partial spreads for the construction and characterization of
EHDSs. A generalized partial spread in G = EA(2%) is a subset S of G
for which there are integers Ay, ..., A, and subgroups Uy, ..., U, of order 2! of
G with

S=-2""+ XT:)\iUi
i=1

in the group ring Z[G|. It can be checked that a subset D of G is an EHDS if
and only if x(D) = 2! (mod 2') for all characters x of G, see [3, Lemma 1],
for instance. Note that x(U;) = 0 (mod 2%), by the orthogonality relations.
Thus we have

Lemma 6.1 Any generalized partial spread is also an EHDS.
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This fact was used in [3] to construct a new family of EHDSs. Carlet
and Guillot [4, 5] gave characterizations of EHDSs in terms of generalized
partial spreads. These results were improved considerably by Guillot [22]
who obtained the following nice theorem.

Theorem 6.2 There exists a set U of 2% — 1 subgroups of G = EA(2%) of
order 2t such that up to translation any EHDS in can be written in the form

D= -2 4 Z ApU
veld

with uniquely determined integers Ay .

7 Perfect binary sequences

Cyclic difference sets are intimately related to certain periodic sequences, a
fact which is still not as well known as it should be — such sequences have
many extremely important real world applications. The “autocorrelation
function” of a sequence is a measure for how much the given sequence differs
from its translates. Periodic binary sequences with good correlation proper-
ties are needed for applications in various areas of engineering. In order to
explain the connection to difference sets, we have to recall a few definitions.

A sequence a = (a;)i=0,1,2... is called periodic with period v provided
that a; = a;4, for all i. We will only consider binary sequences, that is, all
entries are either +1 or —1. The (periodic) autocorrelation function C
of a is defined by

v—1
C(t) = Zaiai+t.
1=0

Note that the sequence C = C(t) is again periodic with period v, so that it
suffices to consider the autocorrelation coefficients C(t) fort =0,.....v—
1. As already mentioned, the autocorrelation function is a measure for how
much the original sequence differs from its translates: C(t) just counts the
number of agreements of a with its translate by a shift of ¢ minus the number
of disagreements. In particular, C'(0) = v. All other autocorrelation coeffi-
cients are called nontrivial or the off-peak autocorrelation coefficients. In
what follows, we shall always denote the number of entries +1 contained in
one period of a by k.

For practical applications, one requires sequences with a two-level au-
tocorrelation function, that is, all nontrivial autocorrelation coefficients
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equal some constant . Such sequences turn out to be equivalent to cyclic
difference sets, as the following simple but fundamental result shows.

Lemma 7.1 A periodic binary sequence with period v, k entries +1 per pe-
riod and two-level autocorrelation function (with all nontrivial autocorrelation

coefficients equal to 7y) is equivalent to a cyclic (v, k, X)-difference set, where
y=v—4(k - X).

For some applications, it is more natural to use sequences with entries
0 and 1, instead of entries £1. If we replace every entry —1 in a periodic
binary sequence a by 0, we obtain a 0/1-sequence a. Formally applying
the definition of the autocorrelation function C' of a to a, we obtain another
periodic function which we will denote by C. Fortunately, these two functions
are related in a very simple manner:

Lemma 7.2 Let a be a periodic binary sequence with period v, and let a be
the corresponding 0/1-sequence. Let k be the number of entries +1 in one
period of a. Then the autocorrelation coefficients C(t) and C(t) are related
as follows:

Ct) = v—4(k - C(t).

Corollary 7.3 Let a be a periodic binary sequence with period v. Then all
autocorrelation coefficients C(t) are congruent to v modulo 4.

A +1-sequence (a;) of period v is called perfect if it has a two-level au-
tocorrelation function where the off-peak autocorrelation coefficients v are
as small as theoretically possible (in absolute value). It is not at all clear
that perfect sequences exist, and indeed for many values of v no such se-
quences can exist. In order to determine the (theoretically) smallest values,
we have to distinguish the period v of the sequence modulo 4, since always
v = v mod 4, by Corollary 7.3. Not surprisingly, we call the difference sets
corresponding to perfect sequences perfect difference sets. Let n denote the
order of such a difference set D. Using the connection between the auto-
correlation coefficients v and the parameters of D given in Lemma 7.1, we
have
v—7

1

n =

Hence we obtain the following table.

off-peak autocorrelation 7 | order n of difference set
v=0mod 4 0 1
v=1mod 4 1 %
v =2 mod 4 2or —2 %or%
v =3 mod 4 -1 %
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Thus there are five different classes of perfect difference sets, correspond-
ing to the five different nontrivial autocorrelation coefficients. In the older
literature, only the sequences with period = 1 mod 4 were called perfect, but
this seems a bit arbitrary. Given the size v and the order n of a difference set,
the k-value has to be a solution of the trivial equation & —k = (k—n)(v—1)
connecting the parameters of a difference set; hence

v [v?
k 5 n(v —1)

Without loss of generality, we can choose the negative square root (the other
sign corresponds to the complementary difference set). The different orders
n yield the following parameters:

I (U, U_\/E, U_2\/5) of order Z

2 4

1T ( v—vV2u—1 v+1-2/20 -1
U’ )

U —
5 1 ) of order

V—2—0v v—2—2/2—
IIIa | v, 5 , 1

2
of order - + (autocorrelation —2)

vV—V3W—2 v+2—23v—2
IITb | v, ,

2 4
of order ~— (autocorrelation +2)
—1 v— 1
IV | v, U—, v=3 of order 2 +
2 4 4

We shall discuss only the two most interesting cases, namely types I and
IV. For more details and a discussion of the remaining cases, we refer the
reader to the recent survey [35]; this paper also treats variations on the notion
of perfectness (perfect ternary sequences, almost perfect sequences, perfect
arrays etc.) and describes a specific real world application in some detail.

Of course, difference sets of type I are just Hadamard difference sets, since
v has to be an even square, say v = 4u?. Then we can write the parameters
in the more familiar way

(4u?, 2u® — u,u* — u).
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The circulant Hadamard matrix conjecture already discussed at the end of
Section 2 states that the only cyclic Hadamard difference set occurs for u = 1,
so that the only perfect sequence of a period v divisble by 4 has v = 4. Note
that Schmidt’s Theorem 2.6 immediately yields the following asymptotic re-
sult:

Corollary 7.4 Let Q be any finite set of odd primes. Then there are only
finitely many cyclic Hadamard difference sets of order u?, where all prime
divisors of u are in Q.

Actually, Theorem 2.6 should prove the circulant Hadamard catrix con-
jecture for almost all large u. Schmidt [52] confirmed this hinch by the
following results of a computer search.

Range of u # of cases not ruled
(u odd) out by Theorem 2.6 a)
3 <u<10t 26

10° < uw < 10° 4 10*
108 < uw < 108 4 10%
107 < u < 107 + 10*
10% < < 108 + 10*

S = =N

By the results of Turyn [56], one can rule out 12 of the 26 cases with
u < 10,000 which are not covered by Theorem 2.6 a). The remaining open
cases with v < 10,000 are v = 165, 231, 1155, 2145, 2805, 3255, 3905, 5115,
5187, 6699, 7161, 8151, 8645, 9867. In particular, the smallest integer u
for which the nonexistence of a cyclic Hadamard difference set is still open
is u = 165. Schmidt’s results also have strong implications for a related
problem, namely the Barker sequence conjecture.

A Barker sequence of length [ is a sequence (a;)'_; with a; = +1 such
that |Zi;]f a;aik] < 1for 1 < k <1 —1. It is known that the existence
of a Barker sequence of length [ > 13 implies the existence of a Hadamard
difference set in the cyclic group of order I, see [56, 57]. Thus [ = 4u? where
u is odd. Furthermore, it is shown in [17] that [ cannot have a prime divisor
p = 3 mod 4 if [ > 13 is the length of a Barker sequence. Combining these
two results with Theorem 2.6 a), Schmidt [52] gets the following bound by
a computer search. It improves the previously known bound [16, p. 363] by
a factor greater than 10°. Note that Turyn’s inequality [56, Thm. 6] is not
needed to obtain this result.
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Theorem 7.5 There is no Barker sequence of length | for 13 < 1 < 4-10'2.

Difference sets of type IV are called Paley-Hadamard difference
sets. The known series of cyclic Paley-Hadamard difference sets (and their
associated perfect sequences) are given in the following list, cf. [33] or [2].

(1) Singer difference sets (m-sequences):
(2 —1,2m=1 —1,2m2 1)

(2) Paley difference sets (Legendre sequences):

p—1p=3 : :
P ) where p is a prime.

(3) Twin prime difference sets (Uniformly redundant arrays):

(p(p L9) p(p +22) —1 o +42) —3
primes. (It is quite usual in the engineering literature to write the
perfect sequence as an array in this case, corresponding to writing the
underlying cyclic group in the form Z, x Zj,.».)

, where both p and p + 2 are

A recent systematic investigation of cyclic Paley-Hadamard difference
sets is in [55]. It is generally conjectured that every such difference set has
parameters as in one of the three series above (but there are, of course, further
nonequivalent examples); this conjecture has been verified in [55] for orders
n < 10,000 with 17 possible exceptions:

Theorem 7.6 Assume the existence of a Paley-Hadamard difference set D
i a cyclic group of order v, where v < 10,000. Then v is either of the form
2™ — 1, or a prime = 3 mod 4, or the product of two twin primes, with the
possible exceptions of v = 1295, 1599, 1935, 3135, 3439, 4355, 4623, 5775,
7395, 7743, 8227, 8463, 8591, 8835, 9135, 9215, 9423.

A concrete application of the perfect sequences corresponding to the cyclic
twin prime difference sets in Applied Optics (“Coded aperture imaging”) is
discussed in [35, Section 8|.

8 Miscellanea
Difference sets with (v,n) > 1 seem to prefer to live in groups with low

exponent and high rank. This phenomenon can be viewed as the central
theme of most papers on difference sets, but is not completely understood

21



yet. Of course, the character method shows that the exponent of an abelian
group containing a difference set with (v,n) > 1 usually has to be rather
small, see Section 2. Moreover, many constructions of difference sets with
(v,m) > 1 only work for groups with high rank. However, in most cases we do
not know why (if at all) this has to be the case. An interesting contribution
to the understanding of these phenomena is due to M. Hagita [23]. Roughly
speaking, he shows that in some cases the existence of a difference set in an
abelian group G implies the existence of difference sets in all abelian groups
of the same order which have a higher rank and whose exponent does not
exceed the exponent of G.

Some new nonexistence criteria for difference sets using the classical self-
conjugacy approach can be found in the paper [18] of Enomoto, Hagita and
Matsumoto. Arasu and Sehgal [1] filled ten missing entries of the table
[58] by showing nonexistence in all these cases. Finally, we mention that
Jia [32] proved that a difference set with Spence parameters (v, k, A\, n) =
(351,126, 45, 81) in an abelian group G exists if and only if exp(G) = 39. His
proof uses the techniques developed by Ma [38].
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