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Abstract

We show that the assumption n1 > λ in the Second Multiplier

Theorem can be replaced by a divisibility condition weaker than the

condition in McFarland’s multiplier theorem, thus obtaining signifi-

cant progress towards the multiplier conjecture.
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1 Introduction

A (v, k, λ, n) difference set in a finite group G of order v is a k-subset

D of G such that every element g 6= 1 of G has exactly λ representations

g = d1d
−1
2 with d1, d2 ∈ D. As usual, we assume 1 < k < v/2. The positive

integer n = k − λ is called the order of the difference set.

Hall [5] introduced the concept of multipliers of difference sets. An integer

t is a multiplier of D if {dt : d ∈ D} = {dg : d ∈ G} for some g ∈ G.

In 1947, Hall [5] proved that every prime divisor of the order of a planar

difference set is a multiplier of the difference set. In 1951, Hall and Ryser [7]

generalized this result and obtained what is now called the First Multiplier

Theorem. The following conjecture, which is a classical unsolved problem,

originated from their paper [7].

Conjecture 1.1 (Multiplier Conjecture) Let D be a (v, k, λ, n) differ-

ence set in an abelian group. If p is a prime dividing n, but not v, then p is

a multiplier of D.

Another substantial result on the multiplier conjecture was obtained by

Hall [6]. Later it was generalized by Menon [11] to what is now known as

the Second Multiplier Theorem.

Result 1.2 (Second Multiplier Theorem) Let D be a (v, k, λ, n) differ-

ence set in an abelian group G of exponent v∗. Let n1 be a divisor of n with

(v, n1) = 1. Suppose that t is an integer such that for every prime divisor u

of n1, there is an integer fu with t ≡ ufu (mod v∗). If n1 > λ, then t is a

multiplier of D.

A beautiful approach to the multiplier conjecture was developed by Mc-

Farland [9] in 1970. The Second Multiplier Theorem is a simple special case

in his work, thus giving an elegant, short proof of this theorem. More im-

portantly, he obtained the following result, which goes much further and is

the strongest known multiplier theorem. For the definition of the function

M ′ used in this theorem, please see Section 5.
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Result 1.3 (McFarland [9, Thm. 6, p. 68]) Let D be a (v, k, λ, n) dif-

ference set in an abelian group G of exponent v∗. Let n1 be a divisor of n

with (v, n1) = 1. Suppose that t is an integer such that for every prime divi-

sor u of n1, there is an integer fu with t ≡ ufu ( mod v∗). If v and M ′(n/n1)

are coprime, then t is a multiplier of D.

Qiu [13, 14, 15], Muzychuk [12], and Feng [3] improved Result 1.3 for

certain values of n/n1, e.g., n/n1 ∈ {2, 3, 4, 5}. Beyond that there has not

been significant progress towards the multiplier conjecture since McFarland’s

work. A generalization of the Second Multiplier Theorem to divisible differ-

ence sets can be found in [1].

We will show that, in general, M ′(n/n1) in McFarland’s result can be

replaced by a significantly smaller number, thus obtaining a substantial im-

provement upon existing multiplier theorems. For the formulation of our

result, we define a function M(m, b) for all positive integers m, b recursively

as follows. We set M(1, b) = 1 for all b. For m > 1, let p be a prime divisor

of m, and let pe be the highest power of p dividing m. Then M(m, b) is the

product of the distinct prime factors of

m,M(
m2

p2e
,
2m2

p2e
− 2), p− 1, p2 − 1, ..., pb − 1.

The following is the main result of this paper.

Theorem 1.4 Let D be a (v, k, λ, n) difference set in an abelian group G

of exponent v∗. Let n1 be a divisor of n with (v, n1) = 1. Suppose that t is

an integer such that for every prime divisor u of n1, there is an integer fu

with t ≡ ufu (mod v∗). If v and M(n/n1, bk/n1c) are coprime, then t is a

multiplier of D.

Note that M(m, b) in general is not uniquely defined, as it depends on

the order in which the prime divisors of m are chosen for the recursion.

But Theorem 1.4 holds no matter which of the possible values for M(m, b)

is chosen. The flexibility in choosing the order of the prime divisors of m

for the computation of M(m, b) is significant. For a given parameter set

(v, k, λ, n), one choice for the order of prime divisors might give a value for
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M(m, b), which is coprime to v, while another choice may result in a value

for M(m, b), which has a common divisor with v.

A remark concerning the formulation of Theorem 1.4 is in order. To

avoid the ambiguity concerning M(m, b), we could replace M(m, b) by the

setM(m, b) of all values forM(m, b), which can be obtained from some choice

of the order of prime divisors of m. Then the statement of Theorem 1.4 would

be “If v is coprime to at least one number inM(m, b), then t is a multiplier

of D”. We follow McFarland, however, and avoid this clumsier formulation,

which might be considered more precise, but only from a superficial point of

view.

Theorem 1.4 is a significant improvement of Result 1.3. The improvement

is obtained by a new way to study putative nontrivial solutions of group ring

equations XX(−1) = m over abelian groups G. McFarland [9] discovered a

lower bound on the number of nonzero coefficients of X, which leads to a

contradiction if m is too small compared to the orders of prime divisors of m

modulo prime divisors of |G|. Our approach is to look at the behavior of the

coefficient of the identity in X in a sequence of homomorphic images of X.

Quite surprisingly, this coefficient can be controlled over this sequence under

reasonable conditions. Eventually, when we reach the homomorphic image

of X in the trivial group, bounds on the coefficient of the identity produce a

contradiction, which means that X itself must be trivial.

2 Preliminaries

Let G be a finite abelian group of order v. The least common multiple of

the orders of the elements of G is called the exponent of G. We denote the

group of complex character of G by Ĝ. The character sending all elements

of G to 1 is called trivial.

We will make use of the integral group ring Z[G]. Let X =
∑
agg ∈ Z[G],

and let t be an integer. The ag’s are called the coefficients of X. We write

|X| =
∑
ag and X(t) =

∑
agg

t. The set supp(X) = {g ∈ G : ag 6= 0} is

called the support of X. Let 1 denote the identity element of G. For a ∈ Z
we simply write a for the group ring element a · 1. The coefficient of 1 in a
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group ring element is called the coefficient of the identity (and will play

an important role in this paper). For S ⊂ G, we write S instead of
∑

g∈S g.

We say that X ∈ Z[G] is trivial if X = ag for some integer a and g ∈ G.

Using the group ring notation, a k-subset of G is a (v, k, λ, n) difference

set in G if and only if

DD(−1) = n+ λG (1)

in Z[G]. Furthermore, this group ring equation holds if and only if χ0(D) = k

for the trivial character χ0 of G and |χ(D)|2 = n for all nontrivial characters

χ of G.

We need the following fact.

Lemma 2.1 Let G be a finite group of order qa where q is a prime, and let t

be a positive integer with (q, t) = 1. Let Y be an orbit of x 7→ xt on G \ {1}.
Then |Y | ≡ 0 (mod ordq(t)).

Proof Choose g ∈ G \ {1} such that Y = {gti : i ∈ Z}. Let y be the

smallest positive integer with gt
y

= g. Note that Y = {g, gt, . . . , gty−1} and

thus |Y | = y. Moreover, gt
y−1 = 1, which implies ty − 1 ≡ 0 (mod o(g)),

where o(g) denotes the order of g in G. As g 6= 1, we have o(g) ≡ 0 ( mod q).

Hence ty − 1 ≡ 0 (mod q) and thus |Y | = y ≡ 0 (mod ordq(t)). �

We write ζv = exp(2πi/v). For a simple proof of the following result, see

[2, Chapter VI, Theorem. 15.2].

Result 2.2 Let p be a prime, and let m be a positive integer with (m, p) = 1.

Let σ ∈ Gal(Q(ζm)/Q) such that ζσm = ζp
i

m for some positive integer i. Then

σ fixes all prime ideals above p in Z[ζm].

For a proof of the following result, see [2, Section VI.3].

Result 2.3 Let G be a finite abelian group, and let D =
∑

g∈G dgg ∈ Z[G].

Then

dg =
1

|G|
∑
χ∈Ĝ

χ(Dg−1)

for all g ∈ G (Fourier Inversion Formula).
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We will use the following consequence of Results 2.2 and 2.3 repeatedly.

In the proof we will use some basic facts from algebraic number theory. We

refer to [8] for the necessary background.

Corollary 2.4 Let G be a finite abelian group of exponent v∗. Suppose that

X ∈ Z[G] satisfies

XX(−1) + αG ≡ 0 (mod w) (2)

for some integers α and w with (|G|, w) = 1. Moreover, suppose that z is a

positive integer with (|G|, z) = 1 such that, for every prime divisor p of w,

there is an integer fp with

z ≡ pfp (mod v∗). (3)

Then

X(z)X(−1) + αG ≡ 0 (mod w). (4)

Proof Let p be any prime divisor of w and let pe be the largest power of p

dividing w. We will show that X(z)X(−1) + αG ≡ 0 (mod pe), which implies

(4).

Let

pZ[ζv∗ ] =
∏

pi

be the prime ideal factorization of the ideal pZ[ζv∗ ] in Z[ζv∗ ]. Note that the

pi’s are pairwise distinct, as p is coprime to v∗ by the assumption (|G|, w) = 1.

Let νi be the valuation corresponding to pi, i.e., for every y ∈ Z[ζv∗ ], the

highest power of pi dividing yZ[ζv∗ ] is p
νi(y)
i .

Let χ be any nontrivial character of G. By (2), we have

χ(X)χ(X) = χ(XX(−1)) ≡ 0 (mod pe)

and thus

νi (χ(X)) + νi

(
χ(X)

)
≥ e (5)

for all i.
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Let σ ∈ Gal(Q(ζv∗)/Q) be defined by ζσv∗ = ζzv∗ . It follows from Result

2.2 and (3) that σ fixes all prime ideals pi. Note that χ(X(z)) = χ(X)σ. As

σ fixes each pi, we have νi (χ(X)σ) = νi (χ(X)). Hence

νi
(
χ(X(z))

)
= νi (χ(X)σ) = νi (χ(X))

for all i. Combining this with (5), we conclude

νi
(
χ(X(z))

)
+ νi

(
χ(X)

)
≥ e

for all i. Hence

χ(X(z)X(−1) = χ(X(z))χ(X) ≡ 0 (mod pe) (6)

for all nontrivial characters χ of G.

Write F = X(z)X(−1) + αG. By (6), we have χ(F ) ≡ 0 (mod pe) for

all nontrivial characters χ of G. Let χ0 denote the trivial character of G.

Note that χ0(X
(z)) = χ0(X

(−1)) = χ0(X). By (2), we have χ0(X)2 + α|G| ≡
0 (mod pe). Thus

χ0(F ) = χ0(X
(z))χ0(X

(−1) + α|G| = χ0(X)2 + α|G| ≡ 0 (mod pe).

In summary, we have shown χ(F ) ≡ 0 (mod pe) for all characters χ of

G. Recall that p is coprime to |G| by assumption. Thus Result 2.3 implies

F ≡ 0 (mod pe). �

The next result is due to McFarland [9]. We include a proof for the

convenience of the reader.

Result 2.5 Let G be an abelian group, and let t be an integer with (v, t) = 1.

(a) Suppose F ∈ Z[G] satisfies FF (−1) = n for some integer n. If F (−1)F (t)

is divisible by n, then F (t) = Fg for some g ∈ G.

(b) Let D be a (v, k, λ, n) difference set in G. If D(−1)D(t) − λG is divisible

by n, then t is a multiplier of D.

Proof

(a) Write F =
∑

h∈G ahh and F (t) =
∑

h∈G bhh. Note
∑
a2h =

∑
b2h. Since
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FF (−1) = n, we have
∑
a2h = n. Write X = F (−1)F (t). Since FF (−1) = n,

we have XX(−1) = n2. Hence the sum of the squares of the coefficients of X

is n2. As X is divisible by n by assumption, this implies X = gn for some

g ∈ G. Comparing the coefficient of g on both sides of F (−1)F (t) = gn, we

get
∑

h∈H ahbgh = n. Hence∑
h∈H

(ah − bgh)2 =
∑
h∈H

a2h +
∑
h∈H

b2h − 2
∑
h∈H

ahbgh = n+ n− 2n = 0.

Thus bgh = ah for all h ∈ G, i.e., F (t) = Fg. This proves part (a).

(b) Write E = D(−1)D(t) − λG and suppose that E is divisible by n. A

straightforward computation shows that EE(−1) = n2 and DE = nD(t).

Note that |E| = k2 − λv = n > 0. As E is divisible by n and EE(−1) = n2,

we conclude that E has at most one nonzero coefficient. Hence E = ng for

some g ∈ G. This implies nD(t) = DE = nDg and thus D(t) = Dg. �

Remark 2.6 The proof of Result 2.5 (b) shows that t is multiplier of D if

E = D(−1)D(t) − λG is trivial. Furthermore, EE(−1) = n2.

McFarland and Mann [10] showed that every multiplier of a difference set

fixes at least one translate of the difference set. This implies the following.

Result 2.7 Suppose D is a (v, k, λ, n) difference set in an abelian group G,

where v = qb for a prime q and a positive integer b. Let t be an integer

with (q, t) = 1 and write f = ordq(t). If t is a multiplier of D, then k ≡
0 (mod f) or k ≡ 1 (mod f).

Proof By [10], we can assume D(t) = D. Thus D is a union of orbits of

x 7→ xt on G. By Lemma 2.1, the sizes of all orbits of x 7→ xt on G \ {1} are

divisible by f . Hence k = |D| ≡ 0 (mod f) if 1 6∈ D and k ≡ 1 (mod f) if

1 ∈ D. �

3 Triviality of Solutions to XX(−1) = m2

Let G be an abelian group and let m be a positive integer. In view of

Remark 2.6, the triviality of solutions to XX(−1) = m2 can be used to prove
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the existence of multipliers. This fundamental idea is due to McFarland. In

this section, we improve upon McFarland’s results by providing new sufficient

conditions for the triviality of solutions to XX(−1) = m2.

First we define a function M(m), which is similar to McFarland’s M -

function, but has significantly smaller values for m ≥ 5.

Definition 3.1 Let M(m, t) be the function defined in Section 1. Define

M(m) =

{
(4m− 1)M(m, 2m− 2) if 4m− 1 is a prime,

M(m, 2m− 2) otherwise.

Again, note that the function M(m) is not uniquely defined in general, but

all our results hold, no matter which version of M(m) is used. One may

wonder why there is an extra term when 4m − 1 is a prime. As it can be

seen in the proof of Theorem 3.4, the case where 4m − 1 is a prime plays a

special role. In fact, it can be shown that there are nontrivial solutions to

XX(−1) = m2 when 4m− 1 is a prime.

Now we are ready to state the main result of this section.

Theorem 3.2 Let G be a finite abelian group and suppose that X ∈ Z[G] is

a solution of XX(−1) = m2, where m is a positive integer. If the order of G

is is coprime to M(m), then X is trivial.

The proof of Theorem 3.2 turns out to be complicated. We first need to

consider the problem with the additional condition X(z) = X, where z is an

integer with (|G|, z) = 1.

Theorem 3.3 Let G be a finite abelian group and let m, z be positive integers

with (|G|, z) = 1. Let X ∈ Z[G] be a solution of XX(−1) = m2 and suppose

that X(z) = X. Let b0 be the coefficient of the identity in X.

If there exists a positive real number a such that −a ≤ b0 and ordq(z) >

m+ a for all prime divisors q of |G|, then X is trivial.
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Proof Suppose that X is nontrivial. Note that |X| = ±m, since XX(−1) =

m2. Replacing X by −X if necessary, we may assume |X| = m. Let q1, . . . , qs

be the distinct prime divisors of |G| and write

G = G1 × · · · ×Gs,

where Gi is the Sylow qi-subgroup of G, i = 1, . . . , s. For convenience, we

may assume

ordq1(z) ≥ ordq2(z) · · · ≥ ordqs(z). (7)

We consider the sequence of homomorphisms

ρi : G→ Gi+1 × · · · ×Gs, i = 0, . . . , s− 1,

defined by ρi(g) = 1 for g ∈ G1×· · ·×Gi and ρi(g) = g for g ∈ Gi+1×· · ·×Gs.

Moreover, define ρs by ρs(g) = 1 for all g ∈ G. The subsequent application

of ρ1, . . . , ρs sends all elements of G to the identity, and we may visualize

this process by

G
ρ1−→ G2 × · · · ×Gs

ρ2−→ · · · ρs−2−→ Gs−1 ×Gs
ρs−1−→ Gs

ρs−→ {1}.

Note that ρs(X) is trivial. Hence there exists a smallest integer r ≤ s such

that ρr(X) is trivial. Our aim is to show r = 0 by deriving a contradiction

if r > 0. Thus suppose r > 0.

Recall that XX(−1) = m2 and X(z) = X by assumption. Hence

ρi(X)ρi(X)(−1) = m2 and ρi(X)(z) = ρi(X)

for all i. Furthermore, |ρi(X)| = |X| = m for all i.

For i = 0, . . . , s, let bi be the coefficient of the identity in ρi(X). The key

to our proof is to investigate how the bi’s are related.

We have |bi| ≤ m for all i. To see this, write ρi(X) = bi +
∑

g∈G\{1} agg

with ag ∈ Z. Comparing the coefficient of the identity on both sides of

ρi(X)ρi(X)(−1) = m2 gives b2i +
∑

g∈G\{1} a
2
g = m2. This implies |bi| ≤ m.

We now show that ρi(X) is trivial if and only if bi = m (this holds for

all i including i = 0). To this end, first suppose that ρi(X) is trivial. Recall
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that we assume |X| = m. Hence |ρi(X)| = m and thus ρi(X) = mk for some

k ∈ ρi(G). Recall that ordq(z) > m + a > 1 for all prime divisors q of |G|
by assumption. This implies (|G|, z − 1) = 1. As ρi(X)(z) = ρi(X), we have

kz = k and thus kz−1 = 1. As (|G|, z − 1) = 1, we conclude k = 1. Thus

ρi(X) = m, i.e., bi = m.

Now suppose bi = m. Recall that b2i +
∑

g∈G\{1} a
2
g = m2. As bi = m, this

implies ag = 0 for all g ∈ G \ {1} and thus ρi(X) = bi = m. Hence ρi(X)

is trivial. This completes the proof for the claim that ρi(X) is trivial if and

only if bi = m.

Recall that r is the smallest positive integer such that ρr(X) is trivial.

Hence, by what we have shown, r is the smallest positive integer such that

br = m. Furthermore, bi < m for all i < r.

Next we claim that

bi+1 = bi + yi+1ordqi+1
(z) (8)

with yi+1 = {−1, 0, 1}, for i = 0, . . . , s− 1. Recall that

ρi(X) ∈ Z[Gi+1 × · · · ×Gs]

by the definition of ρi. Hence we can write

ρi(X) = Yi + Zi (9)

with supp(Yi) ⊂ Gi+1 and supp(Zi) ⊂ (Gi+1 × · · · ×Gs) \Gi+1.

Now we consider the action of x 7→ xz on Gi+1 × · · · × Gs. Recall that

ρi(X)(z) = ρi(X). As G
(z)
i+1 = Gi+1, we conclude Y

(z)
i = Yi and Z

(z)
i = Zi. As

Y
(z)
i = Yi, we can write

Yi = bi +
∑

ajTj, (10)

where aj ∈ Z and the Tj’s are orbits of x 7→ xz on Gi+1 \ {1}. Recall that

the order of Gi+1 is a power of qi+1. Hence

|Tj| ≡ 0 (mod ordqi+1
(z)) (11)

for all j by Lemma 2.1. Recall that bi+1 is the coefficient of the identity in

ρi+1(X). Applying ρi+1 to (9), we get bi+1 = |Yi|. Thus (10) and (11) imply

bi+1 = |Yi| ≡ bi (mod ordqi+1
(z)).
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Hence bi+1 = bi + yi+1ordqi+1
(z) for some integer yi+1. Moreover, as |bi| ≤ m,

|bi+1| ≤ m, and ordqi+1
(z) > m + a > m, it follows that |yi+1| ≤ 1. This

proves (8).

Recall that r is the smallest integer such that br = m and that bi < m for

i < r. Suppose r > 0. Then br−1 < m. By (8), we have br = br−1+yrordqr(z).

Since br = m > br−1, this implies yr = 1. As ordqr(z) > m + a, we conclude

br−1 = br − ordqr(z) = m− ordqr(z) < −a.

Next, we claim that b0 = b1 = · · · = br−1. We proof this by induction.

First recall that |bi| ≤ m for all i = 0, . . . , s and ordqi(z) > m + a for

i = 1, . . . , s. Suppose bj = bj+1 = · · · = br−1 for some j with 1 ≤ j ≤ r − 1.

Then bj < −a, as br−1 < −a. We have bj = bj−1+yjordqj(z) by (8). If yj = 1,

then bj ≥ −m+ ordqj(z) > −m+ (m+ a) > a, contradicting bj < −a. Now

suppose yj = −1. Recall that br−1 = br − ordqr(z) = m− ordqr(z). Hence

bj−1 = bj − yjordqj(z) = br−1 + ordqj(z) = m− ordqr(z) + ordqj(z).

As j < r, we have ordqj(z) ≥ ordqr(z) by (7). Hence bj−1 ≥ m and thus

bj−1 = m. Thus ρj−1(X) is trivial. As j − 1 < r, this contradicts the

definition of r. Therefore, yj = 0 and bj−1 = bj. This completes the proof

for the claim that b0 = b1 = · · · = br−1.

Finally, we conclude that b0 = br−1 < −a, which contradicts the assump-

tion on b0. Thus we have shown that r > 0 is impossible. Hence r = 0, which

implies that X is trivial, a contradiction.

�

Theorem 3.4 Let G be a finite abelian group and let m, z be positive integers

with (|G|, z) = 1. Let X ∈ Z[G] be a solution of XX(−1) = m2 with |X| = m,

and suppose that X(z) = X. Furthermore, suppose that ordq(z) ≥ 2m− 1 for

all prime divisors q of |G|. Then at least one of the following holds.

(i) X is trivial.

(ii) 4m− 1 is a prime dividing |G| and ord4m−1(z) = 2m− 1.

Proof As before, we assume that X is nontrivial and denote the coefficient

of the identity in X by b0. As argued before, we have |b0| ≤ m− 1.
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Suppose b0 ≥ −(m−2). Then we can apply Theorem 3.3 with a = m−2,

which shows that X is trivial. Hence we can assume b0 = −m+ 1.

Using the assumption X(z) = X, we can write

X = −m+ 1 +
∑

aiTi

with ai ∈ Z, where the Ti’s are orbits of x 7→ xz on G \ {1}. Note that

|Ti| ≥ 2m − 1 for all i by Lemma 2.1, since ordq(z) ≥ 2m − 1 for all prime

divisors q of |G| by assumption.

Recall that the sum of the squares of the coefficients of X is m2, since

XX(−1) = m2. Hence m2 = (m− 1)2 +
∑
|Ti|a2i ≥ (m− 1)2 + (2m− 1)

∑
a2i ,

which implies ai = ±1 for one i, aj = 0 for all j 6= i, and |Ti| = 2m − 1.

Hence X = −m+ 1 + aiTi with ai = ±1. Since |X| = m and |Ti| = 2m− 1,

we have m = |X| = −m+ 1 + ai(2m− 1), i.e., ai = 1. In summary, we have

shown

X = −m+ 1 + T,

where T = Ti is an orbit of size 2m− 1 of x 7→ xz on G. Let H = {1} ∪ T ∪
T (−1). We will show that H is a subgroup of G and that |H| = 4m − 1 is a

prime.

Note that H = H(−1). Moreover, H = H(z) since T (z) = T . It is straight-

forward to check that XX(−1) = m2 implies supp(TT (−1)) ⊂ H. As T is an

orbit of x 7→ xz on G, we can write T =
∑f−1

i=0 k
zi for some k ∈ G and some

integer f . Let i, j ∈ {0, ..., f − 1}, i 6= j, be arbitrary. Note that kz
i 6= kz

j
.

Since supp(TT (−1)) ⊂ H, we have kz
i−zj = k±z

c
for some positive integer c.

Hence

(kz
i+zj)±z

c

= (kz
i+zj)z

i−zj = kz
2i−z2j ∈ H.

Since H = H(z), this implies kz
i+zj ∈ H.

So far we have shown H = H(−1) and that x, y ∈ H, x 6= y, implies

xy ∈ H. Now let x ∈ H, x 6= 1, be arbitrary, say x = k±z
i
. Choose j

such that kz
j 6= x. Then, by what we have shown, y := k±z

i+zj ∈ H and

y1 := k±z
i−zj ∈ H. Hence x2 = yy1 ∈ H. We have thus shown that H

is a group. The order of H is 1 + 2|T | = 1 + 2(2m − 1) = 4m − 1. Let

q be a prime divisor of 4m − 1. If q 6= 4m − 1, then q < 2m − 1. Hence
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ordq(z) < q < 2m − 1. But q divides |G| since H is a subgroup of G. This

contradicts the assumption ordq(z) ≥ 2m− 1. Hence 4m− 1 is a prime and

ord4m−1(z) = |T | = 2m− 1. �

Proof of Theorem 3.2

First we deal with the case m = 1. In this case, XX(−1) = 1 and thus

the sum of the squares of the coefficients of X is 1. Hence X = ±g for some

g ∈ G, i.e., X is trivial.

Now let m ≥ 2 and suppose that X is nontrivial. As in the proof of [9,

Thm. 3, p. 36], we proceed by induction on the number of distinct prime

divisors of m.

Let p be a prime factor of m, and let pe be the highest power of p dividing

m. Note that p does not divide |G| as p is a prime factor of M(m). First,

we claim that we may assume X(p) = X.

Write F = X(−1)X(p). Note that XX(−1) = m2 ≡ 0 (mod p2e). Hence

F ≡ 0 (mod p2e) by Corollary 2.4 (with α = 0, w = p2e, z = p). Thus

E := F/p2e ∈ Z[G] satisfies EE(−1) = m4/p4e.

To apply the inductive argument, we need to show that M(m2/p2e) di-

vides M(m). First of all, M(m) is divisible by M(m, 2m− 2) by the defini-

tion of M(m). Furthermore, again by definition, M(m, 2m − 2) is divisible

by M(m2/p2e, 2m2/p2e − 2). Since 4m2/p2e − 1 = (2m/pe − 1)(2m/pe + 1)

is not a prime, we have M(m2/p2e, 2m2/p2e − 2) = M(m2/p2e) by Definition

3.1. Therefore, M(m2/p2e) divides M(m).

Note that the number of distinct prime factors of m2/p2e is less than

that of m. Recall that, by assumption, |G| is coprime to M(m). Since

M(m2/p2e) divides M(m), we have (|G|,M(m2/p2e)) = 1. Hence E is trivial

by induction.

As E as trivial, it is divisible by m2/p2e. Thus X(−1)X(p) = F = p2eE

is divisible by m2. This implies X(p) = Xg for some g ∈ G by Result 2.5

(a). Note that, by definition, M(m) is divisible by all prime divisors of p−1.

Hence (p− 1, |G|) = 1, since (|G|,M(m)) = 1 by assumption. Thus there is
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g1 ∈ G with gp−11 = g−1. We have

(Xg1)
(p) = Xggp1 = (Xg1)(gg

p−1
1 ) = Xg1.

Hence, replacing X by Xg1, if necessary, we can assume X(p) = X.

We are going to complete the proof by applying Theorem 3.4 to X. Let q

be any prime divisor of |G|. Then q 6= p, since m divides M(m) by definition.

Moreover, q does not divide any of the numbers p − 1, p2 − 1, ..., p2m−2 − 1

by the assumption (|G|,M(m)) = 1 and the definition of M(m). Hence

ordq(p) ≥ 2m − 1 for every prime divisor q of |G|, which means that the

assumptions of Theorem 3.4 are satisfied.

Recall that we assume that X is nontrivial. Hence 4m − 1 is a prime

dividing |G| by Theorem 3.4. But then 4m− 1 divides M(m) by definition,

contradicting the assumption (|G|,M(m)) = 1. �

4 Proof of Theorem 1.4

Our argument is similar to the proof of [9, Thm. 6, p. 68]. Let

F = D(t)D(−1) − λG. (12)

A straightforward computation using (1) shows that FF (−1) = n2. By Result

2.5 (b), to prove that t is a multiplier of D, it is sufficient to show that F is

trivial.

We proceed as before. Recall that, by the assumptions of Theorem 1.4,

for every prime divisor u of n1, there is an integer fu with

t ≡ ufu (mod v∗). (13)

Furthermore,

DD(−1) − λG = n ≡ 0 (mod n1) (14)

by (1). Hence, from (12), (13), (14), and using Corollary 2.4 (with w = n1

and α = −λ), we conclude F ≡ 0 (mod n1). Hence E := F/n1 is in Z[G].

Note that EE(−1) = n2/n2
1.
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Let p be a prime divisor of n/n1 and pe be the largest power of p dividing

n/n1. Write E1 = E(−1)E(p). Then

E1E
(−1)
1 = EE(−1) (EE(−1))(p) =

n4

n4
1

. (15)

We will apply Theorem 3.2 to show that E1 is trivial. Note that

EE(−1) =
n2

n2
1

≡ 0 (mod p2e). (16)

Hence E1 = E(−1)E(p) ≡ 0 (mod p2e) by Corollary 2.4 (with α = 0 and

z = p). Thus E2 := E1/p
2e is in Z[G]. By (15), we have

E2E
(−1)
2 =

n4

n4
1p

4e
. (17)

To apply Theorem 3.2, we need to show that M(n2/(n2
1p

2e)) divides

M(n/n1, bk/n1c). Note that, by definition, M(n2/(n2
1p

2e), 2n2/(n2
1p

2e) − 2)

divides M(n/n1, bk/n1c). Furthermore,

M(n2/(n2
1p

2e)) = M(n2/(n2
1p

2e), 2n2/(n2
1p

2e)− 2),

since 4n2/(n2
1p

2e)− 1 is not a prime. Hence M(n/n1, bk/n1c) is divisible by

M(n2/(n2
1p

2e)).

We have (v,M(n/n1, bk/n1c)) = 1 by assumption and therefore v and

M(n2/(n2
1p

2e)) are coprime. Thus E2 is trivial by (17) and Theorem 3.2.

Hence E1 = E(−1)E(p) is trivial, too. By applying a similar argument as in

the proof of Theorem 3.2, we may assume E = E(p).

Suppose that E is nontrivial. Let a0 and b0 be the coefficients of the

identity in F , respectively E. Note that b0 = a0/n1. Recall that F =

D(−1)D(t)−λG. Hence a0 = |D∩D(t)|−λ ≥ −λ. Furthermore, as we assume

that E is nontrivial, we have |b0| < n/n1. Hence

− λ

n1

≤ b0 <
n

n1

. (18)

Let q be a prime divisor of v. Then ordq(p) > k/n1, since q does not

divide any of the numbers p − 1, p2 − 1,. . . ,pbk/n1c − 1 by the assumption

16



(|G|,M(n/n1, bk/n1c)) = 1 and the definition of M(n/n1, bk/n1c). Set a =

λ/n1. Then b0 ≥ −a by (18) and ordq(p) > k/n1 = n/n1 + λ/n1 = n/n1 + a

for all prime divisors q of |G|. Thus we can apply Theorem 3.3 with m = n/n1

and a = λ/n1 and conclude that E is trivial, a contradiction. Hence E and

thus F is trivial and this completes the proof of Theorem 1.4. �

Corollary 4.1 Let D be a (v, k, λ, n) difference set in an abelian group G of

exponent v∗. Let n1 be a divisor of n with (v, n1) = 1. Suppose that t is an

integer such that for every prime divisor u of n1, there is an integer fu with

t ≡ ufu (mod v∗). If v and M(n/n1) are coprime, then t is a multiplier of

D.

Proof Define E as in the proof of Theorem 1.4. Then E is trivial by Theorem

3.4, since EE(−1) = n2/n2
1 and (v,M(n/n1)) = 1 by assumption. Hence the

same argument as in the proof of Theorem 1.4 shows that t is a multiplier of

D. �

5 Examples

McFarland [9] defined his M -function as follows. Let m be a positive integer.

For m ≤ 4, define M ′(m) by

M ′(1) = 1, M ′(2) = 2 · 7, M ′(3) = 2 · 3 · 11 · 13, M ′(4) = 2 · 3 · 7 · 31.

For m ≥ 5, let p be a prime factor of m, and define M ′(m) as the product of

the distinct prime factors of

m,M ′(m2/p2e), p− 1, p2 − 1, ..., pu − 1,

where pe is the highest power of p dividing m, and u = (m2 −m)/2 . Note

that M ′(m) is not uniquely defined in general, as it depends on the order in

which prime divisors of m are chosen for the recursion.

Example 5.1 Corollary 4.1, and all the more Theorem 1.4, strengthen Mc-

Farland’s Result 1.3 substantially, since (for m ≥ 5) M(m) is much smaller

than M ′(m). For instance, we have
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M ′(5) = 2 · 3 · 5 · 7 · 11 · 13 · 19 · 31 · 71 · 313 · 521 · 829 · 19531,

M ′(6) = 2 ·3 ·5 ·7 ·11 ·13 ·23 ·31 ·41 ·61 ·73 ·547 ·757 ·1093 ·3851 ·4561 ·797161,

M ′(7) = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 29 · 31 · 37 · 43 · 113 · 181 · 191 · 281 · 419 ·
911 · 1063 · 1123 · 1201 · 2801 · 4021 · 4733 · 14009 · 117307 · 159871 · 169553 ·
293459 · 2767631689 · 11898664849 · 16148168401 · 4534166740403,

and

M(5) = 2 · 3 · 5 · 7 · 11 · 13 · 19 · 31 · 71 · 313 · 19531,

M(6) = 2 · 3 · 5 · 7 · 11 · 13 · 23 · 31 · 41 · 61 · 757 · 1093,

M(7) = 2·3·5·7·11·13·19·29·37·43·181·191·1063·1123·1201·2801·4733·293459.

Of course, for larger values of m, the difference in order of magnitude between

M(m) and M ′(m) becomes much more significant.

Example 5.2 To demonstrate that M(m) can take different values depend-

ing on the order in which the prime divisors of m are chosen in the recursion,

we compute M(6) in the two possible ways. Note that 4 · 6 − 1 = 23 is a

prime. Hence 23 divides M(6).

First we choose p = 3 as the first prime divisor of 6. Then, by def-

inition, M(4, 6) = M(6) is the product of the distinct prime divisors of

6, 23,M(4), 3 − 1, 32 − 2, . . . , 310 − 1. Moreover, M(4) is the product of the

distinct prime divisors of 2, 22 − 1, 23 − 1, . . . , 26 − 1. This gives M1 :=

2 · 3 · 5 · 7 · 11 · 13 · 23 · 31 · 41 · 61 · 757 · 1093 for M(6), which is the number

given in Example 5.1.

Now let us choose p = 2 as the first prime divisor of 6. Then M(6) is the

product of the distinct prime divisors of 6, 23,M(9), 2−1, 22−2, . . . , 210−1.

Moreover, M(9, 16) = M(9) is the product of the distinct prime divisors of

3, 3− 1, 32 − 1, . . . , 316 − 1. This gives M2 := 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 ·
31 · 37 · 41 · 61 · 73 · 127 · 193 · 547 · 757 · 1093 · 1871 · 3851 · 4561 · 34511 · 797161

for M(6).

In this case, the first way of choosing the order of the prime divisors of m

is “optimal” since M1 divides M2. However, in general, there is no optimal

way to choose the order of the prime divisors of m. Hence we need to allow

the ambiguity of M(m) and M(m, b) in order to keep the full strength of our
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multiplier theorem. The same phenomenon was observed by McFarland [9]

concerning his version of the M -function.

Example 5.3 A good test case for multiplier results is the parameters of

known cyclic Paley-Hadamard difference sets. Such difference sets have pa-

rameters (v, k, λ, n) = (p, (p−1)/2, (p−3)/4, (p+1)/4) where p ≡ 3 ( mod 4)

is a prime, and they are known to exist for every prime p ≡ 3 (mod 4), see

[2].

There are 39322 primes p ≡ 3 (mod 4) with 7 ≤ p < 106.

• The Second Multiplier Theorem implies the validity of the multiplier

conjecture for Paley-Hadamard parameters for 23125 of these primes.

• The Second Multiplier Theorem together with Hall’s result on 6th

power difference sets [6] implies the validity of the multiplier conjecture

for 6587 of the remaining 16197 cases.

• McFarland’s result 1.3 implies the validity of the multiplier conjecture

for 5068 of the remaining 9610 cases.

• Thus, prior to the results of this paper, there were 4542 open cases

for of the multiplier conjecture for Paley-Hadamard parameters in this

range. Theorem 1.4 implies the validity of the multiplier conjecture for

3034 of these cases. There are 1508 cases in this range which remain

unresolved.

The computational details of the search described in this example are avail-

able in electronic form upon request.

Example 5.4 A list of open cases for the existence of cyclic difference sets

can be found under [4]. Our multiplier theorem can be used to rule out some

of these cases: Difference sets D with the following parameters do not exist.

v k λ n

419 133 42 91

1123 154 21 133

1381 276 55 221
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Proof For v = 419, we take t = n1 = 13 in Corollary 4.1. Note that v

and M(n/n1) = M(7) are coprime. Hence 13 is a multiplier of D. A quick

computer search based on this fact rules out this difference set. Note that

Result 1.3 does not imply that 13 is a multiplier as M ′(7) is divisible by 419.

For v = 1123, we take t = n1 = 19 in Theorem 1.4. As ordv(7) =

11 > k/n1 = 154/19, we conclude that M(n/n1, bk/n1c) is not divisible by

v. Hence 19 is a multiplier of D. As ordv(19) = 561, Result 2.7 rules out

this difference set.

For v = 1381, take t = n1 = 17, in Theorem 1.4. As ordv(13) = 23 >

k/n1 = 276/17, we conclude that 17 is a multiplier of D. As ordv(17) = 84,

Result 2.7 rules out this difference set. �

Example 5.5 Theorem 1.4 often can be used to show that known differ-

ence with certain parameters are unique. Here is an example of twin prime

difference sets: Up to equivalence, there is a unique difference set D with

parameters (v, k, λ, n) = (213443, 106721, 53360, 53361).

Proof A difference set with these parameters exists as v = 461 · 463, and

461 and 463 are primes, see [2]. Note that n = 32 · 72 · 112 and 11 ≡
331459 (mod v). Hence we can take t = 3 and n1 = 32 · 112 in Corollary 4.1.

Since ord461(7) = 460, ord463(7) = 154 and 154 > 2 · 49 − 2 we infer that

M(n/n1) = M(49) is coprime to v. Hence 3 is a multiplier of D by Corollary

4.1, and we can assume D = D(3). Note that x 7→ x3 has exactly 5 orbits on

the cyclic group of order v of size 106260, 106260, 460, 462, 1, respectively.

As k−106260 = 461, we conclude that D consists of one orbit of size 106260,

and the orbits of size 460 and 1. As there is an automorphism of the cyclic

group of order v, which maps the two orbits of size 106260 to each other and

fixes the orbits of size 460 and 1, respectively, we conclude that D is unique

up to equivalence.

We note that Result 1.3 does not imply that 3 is a multiplier of D, since

both 461 and 463 divide M ′(49).
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