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Abstract

We show that for an odd prime p the exponent of an abelian group
of order p®*? containing a relative (p@, p®, p, p?~°)-difference set can-
not exceed pl®/2/+1, Furthermore, we give a new local ring construc-
tion of relative (g%, q,q%*,¢** !)-difference sets for prime powers gq.
Finally, we discuss an important open case concerning the existence
of abelian relative (p2, p, p®, p® 1)-difference sets.

AMS Subject Classification 05B10, 05B25

1 Introduction

An (m,n, k, \)-difference set (RDS) in a group G relative to a subgroup
N is a k-subset R of G, such that every element g of G \ N has exactly A
representations g = ri75 " with r1,75 € R while no element of N \ {1} has
such a representation. Here n denotes the order of N and m is the index of
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N in G. Usually N is called the forbidden subgroup. We say that R is
abelian, cyclic etc. if G has this property. For N = {1} we speak of an
ordinary difference set with parameters (m, k, A).

The concept of RDSs is a generalization of the notion of difference sets
and was introduced by Bose (1942), Butson (1962) and Elliott and Butson
(1966). For a detailed introduction to RDSs, please consult the survey by
Pott (1996). Recently, semiregular RDSs, i.e. RDSs with parameters of the
form (k,n, k,k/n) have been studied intensively, see Chen, Ray-Chaudhuri,
Xiang (1996), Davis, Jedwab, Mowbray (1998), Davis, Sehgal (1997), Ma,
Schmidt (1995) and Schmidt (1997). Semiregular RDSs are closely con-
nected to other parts of combinatorics. For instance, (n,n,n,1)-RDSs are
equivalent to projective planes with semiregular automorphism group, see
Pott (1996). Semiregular RDSs can also be used to construct sequences
with ideal auto- and cross-correlation and are closely related to generalized
Hadamard matrices, see de Launey, Vijay Kumar (1985). Recently, a very
important application of semiregular RDSs to ordinary difference sets was
discovered in the major work of Davis and Jedwab (1997). These authors
used semiregular RDSs in a recursive construction process which works for a
large class of (ordinary) difference sets, including a new infinite family.

In this paper, we study semiregular RDSs with parameters (p?, p°, p?, p®~°).
Pott (1995, p. 109) raises two problems concerning these RDSs, namely to
find new constructions for (p?, p®, p%, p?~%)-RDSs and to find new exponent
bounds, in particular, for even a. We will provide new results on both of this

problems.
In order to understand the need for a new exponent bound in the case that
a is even, say a = 2¢, a comparison with the case where a is odd, say

a = 2d + 1, is enlightening. We will only consider odd primes p. The case
p = 2 is quite different. Ma and Pott (1995) proved that the exponent
of an abelian group of order p?***1 containing a (p??*1, pb, p2d+1 p2d=b+1).
RDS cannot exceed p?t!'. This exponent bound is quite satisfactory, as it
is known from constructions of Davis (1991, 1992) that it can be attained
for all d and all b < d. For (p*, p°, p*¢, p?**)-RDSs, the situation had not
been that nice. There are a lot of rather strong nonexistence results [see Pott
(1994) and Schmidt (1997)], but no exponent bound comparable to the one
for (p?d+1 pb p?dtl p?d=5+1)_RDSs had been known. In the present paper,
we will close this gap by showing that for an odd prime p an abelian group
of order p?***, containing a (p?, p°, p*, p**~?)-RDS cannot have an exponent
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exceeding pT!. This bound is quite satisfactory, because it is known that it
can be attained for all ¢ and all b < ¢, see Davis (1992).

Concerning the second of Pott’s problems, we will give a new construction
of RDSs with parameters of the form (¢, q, ¢*, ¢**~') using local principle
ideal domains. Such rings, which are also called chain rings [see MacDonald
(1974, chapter 17)|, have proved very useful for the construction of various
types of difference sets. Examples can be found in Leung, Ma (1990), Chen,
Ray-Chaudhuri, Xiang (1996) and Ray-Chaudhuri, Xiang (1996). Although
Davis and Jedwab (1997) have alternative constructions, our construction
has the advantage to give the RDSs explicitly without using recursive proce-
dures.

Finally, we will discuss an important open problem concerning the existence
of abelian (p?, p, p*, p**)-RDSs, i.e., the case b = 1. For b = 1, a complete
solution of the existence problem is already in sight. We do not obtain the
final answer, but we are able to present a promising method to attack the
last open cases. For p = 2 and for p > 2 and even a, the existence problem of
abelian (p?, p, p*, p* 1)-RDSs was already completely settled in our previous
paper Ma, Schmidt (1995). Roughly speaking, in these cases the RDS exists
if and only if the exponent of the underlying group does not exceed pl®/2+1,
In the case were both p and a are odd the situation is quite similar, but there
are two open cases left. The results in Ma, Schmidt (1995) were improved
by Davis and Jedwab (1997, Cor. 8.2) who showed the following.

Result 1.1 Let G be an abelian group of order p***2, and let N be a subgroup

of G of order p. Then G contains a (p*@*', p,p?@*t p*@)-RDS if and only
if exp(G) < p*™, except possibly when G = Zyan1 X Zyarr or d > 1 and
Gg Zpd+1 X Zpd x N.

The two cases left open in Result 1.1 seem to be very difficult. We will focus
on the first of these cases, and we will prove that a putative (p3, p, p?, p?)-
RDS in Z,2 x Z,2 necessarily is a union of translates of (p, p, p, 1)-RDSs living
in the subgroup isomorphic to Z, x Z,. For p = 3, it can be shown in this
way that such an RDS cannot exist.

As usual, we will use the group ring ZG together with characters for the
study of RDSs. A subset R of G is a relative (m,n, k, \)-difference set in G
relative to N if and only if the equation

RRY = ke + A(G — N)
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holds in ZG where we identify a subset A of G with the element 3~ 4 g in
ZG and write ACY =¥ 4 g, We also use the notation |B| = ¥ ¢ b, for
B =3 ,ccbyg9 € ZG. The following lemma is well known and can easily be

proven by using the inversion formula for abelian characters [see Pott (1996,
Lemma 1.2.2)].

Lemma 1.2 Let R be a k-subset of an abelian group G and denote the char-
acter group of G by G*.
a) R is an (m,n, k, \)-difference set relative to N if and only if

k if xe G\ N*
X(R)x(R)=<{ k—An if x € N*\ {xo}
k? if x = xo

for every x € G* where N* = {x € G* : x is principal on N} and x, is the
principal character of G.

b) If (m,n,k, X)) = (p,p°, p*,p*?), then R is a difference set with these
parameters relative to N if and only if

&p° if x € G\ N+
0 if xe N*\ {xo}

p* if x =xo

X(R) =
for every x € G* where the &, are roots of unity.

2 Preliminaries

In this section, we summarize some useful results that will be needed later.
First we recall a lemma from Ma, Schmidt (1997, Lemma 2.1) which was
used there to study McFarland difference sets.

Let G be a finite abelian group, and let P be be the Sylow p-subgroup of
G. For any h € P and any subgroup A = (b;) X ---(b,) of P such that
AN ({h) ={1} and o(h) > exp(A), define

S(h,A) ={U < P| U = (a1by) x ---{a,b,), a; € (h), o(a;) < o(b;)}.

Let D = > cq ag9 be an element of ZG. For U < G and f € G, we define
DU f) = X4evsag- Now we are ready to state the lemma.
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Lemma 2.1 Let D = 3" cc aq9 be an element of ZG with a; > 0 for all g.
Let h € P, and let A = (b) x W be a subgroup of P, such that AN (h) = {1},
o(h) = p* > exp(A) and o(b) > p. Assume that there exists a positive integer
d, such that for any U € S(h, A) and g € G either

(1a) DUg) — D(Ugh*™") > and
(1b) D(Ugh® ") <§/pfori=1,..,p—1 or
(2) DUg) < 6/p,

and there is at least one coset Ug satisfying (1a) and (1b). Let B = (bP >
xW. Then for any U € S(h,B) and g € G, the coset U'g satisfies either
(1) or (2); and there is at least one coset U'g satisfying (1).

Corollary 2.2 ( Ma, Schmidt (1997)) In the situation of the Lemma 2.1
we have
d <max{a, : g € G}.

Lemma 2.3 (Ma (1985)) Let p be a prime and let G be a finite abelian
group with a cyclic Sylow p-subgroup. If Y € ZG satisfies

x(Y) =0 mod p*
for all nontrivial characters x of G, then there exist X1, Xy € ZG such that
Y = anl + PXQ:

where P is the unique subgroup of order p of G.
Furthermore, if Y has nonnegative coefficients only, then X1 and X5 also can
be chosen to have nonnegative coefficients only.

We now state a result due to Ma and Pott (1995) which will be needed for
the proof of the unified exponent bound as well as for the study of abelian
(p*, p,p% p* ')-RDS:s.

Lemma 2.4 Let P be a cyclic group of order p* where p is an odd prime,
and let P; be the unique subgroup of order p' of P (0 <i < 1).
a) If A € ZP satisfies

X(A)x(4) = p*
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for otlleP*\PnL where 1 < n <t andn < c+ 1, then we have

n—1
A - Z 6m(p07um - p67milpm+l)gm + PnY
m=0

with €, = 1, ¢, € P and Y € ZP.
b) If A € ZP satisfies
x(A)x(A) = p**
for all x € P*\PnL where 1 < n <t andn < c+ 1, then we have
n—1
A= Z EmXmm + PY
m=0
_ _ c—m Pl (i\1i
where €, = +1,9,, € P, X, = p Yico (E)hp

(1—)) denotes the Legendre symbol.

t—m—1

,and Y € ZP. Here

3 A unified exponent bound

A lot of previous work has been done on the problem of finding the best
possible exponent bounds for abelian (p?, p°, p®, p®~°)-RDSs, see Davis (1992),
Pott (1994), Ma, Pott (1995), Schmidt (1997), but the complete answer has
not been found for p > 2, a even, and in the case p = 2. These remaining
cases are by far the most difficult. In this section, we will provide the answer
for p > 2, a even, by showing that the exponent of an abelian group of order
p**? containing a (p*¢, p°, p*¢, p?*~*)-RDS cannot exceed p°*!. This bound is
best possible since it is known from constructions of Davis (1991,1992) that it
can be achieved for all pairs (¢, b) with b < c. Parts of the proof of Theorem
3.2 have already been obtained in Schmidt (1997). For the convenience of
the reader, we will recall these arguments here.

Before we state our theorem, we recall an exponent bound on the forbidden
subgroup due to Ma, Pott (1995) which will help us avoiding an undesired
case distinction in the proof of Theorem 3.2.

Result 3.1 Let G be an abelian group of order p***® and let N be a subgroup

of G of order p°. If there exists a (p**,p°, p*®, p?¢=°)-RDS in G relative to N,
then
exp(N) < p®.



The following is the main result of this paper.

Theorem 3.2 Let p be an odd prime. If an abelian group G of order p®t®

contains a (p*, p°, p®, p**)-RDS, then exp(G) < plo/2+1,

Proof For odd a, the assertion was already proved by Ma, Pott (1995).
Hence we only need to consider even a, say a = 2¢c. Let R denote the RDS
and assume exp(G) > p“™2, say exp(G) = p' = p*™"? where r > 0. We show
that this assumption leads to a contradiction. Write G = (g) X H where g is
an element of G of order p'. We will show that the assumptions of Lemma 2.1
are satisfied for P=G, A= H, D = R, h = g and § = p°. Then Corollary
2.2 will imply 0 < 1 which is the desired contradiction.

We note that, in the notation of Lemma 2.1, S(g, H) is the set of all com-
plements of (g) in G. Let U be any of these complements. Then G/U is
cyclic of order p'. First of all, we want to show that the forbidden subgroup
N cannot be contained in U. Assume the contrary. By elementary charac-
ter “theory” we can choose a character x of G with Kerx N (g) = {1} and
|Kerx N N| = |N|/p. Write K = Kerx and let 7 : G — G/K denote the
canonical epimorphism. Since no two elements of R are in the same coset, of
N, the coefficients of 7(R) cannot exceed |K|/|[KNN| < p¢~"~!. However, we
know from Lemma 1.2 b) and Ma’s Lemma that 7(R) = p°X; + P' X5 where
P’ is the subgroup of order p of G/K and X;, X, are elements of the group
ring Z|G /K] with nonnegative coefficients. If we also view x as a character
of G/K, we obtain x(R) = p°x(X1), and this implies X; # 0, since x(R) # 0
by Lemma 1.2 b). Hence 7(R) has a coefficient > p®, which contradicts the
upper bound for the coefficients of 7(R) obtained above. This shows that N
indeed cannot be contained in U.

Let p : G — G/U be the canonical epimorphism. By the same argument
as above we see that the coefficients of p(R) cannot exceed |U|/|U N N| and
that p(R) has at least one coefficient > p° (note that the argument for the
existence of a coefficient > p° requires that N is not contained in U). Hence
p¢ <|U|/|[UNN| and

[V PINL
Ip(N)| = 2 =p

[UnN| = |U|

We write |p(N)| = p* with z > r 4+ 2. By Result 3.1 we can assume z < c.
From Lemma 1.2 b) and Lemma 2.4 a) we get (using the notation of Lemma
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2.4)
z—1

p(R) - Z €mpC—WL—1(me - Pm+1)gm + PzY
m=0

Since ¥ (p(R)) = 0 and ¥ (pPy, — Ppy1) = 0form = 0,...,x—1 for all¢p € P}
by Lemma 1.2 b), we conclude ¢(P,Y) = 0 for all nontrivial ¢ € (G/U)*.
By the Fourier inversion formula, P,Y must be a multiple of G/U = P, 2.
As |R| = p*, we must have P,Y = p*"2P,,,,,; thus

rz—1
p(R) = Z fmpc_m_l(ppm — Pry1)gm + pc_T_QPc+r+2- (1)
m=0
We claim
€ =€ =+ =641 =1 and Figo = Pg; (2)

fort=0,1,...,7+ 1.
We prove (2) by induction. For h € G/U let C(h) be the coefficient of g in

p(R).
(a) Assume ¢y = —1. Then by (1) (recall that p > 2)

Clgo) < —p +p +p —p 24 p 24— p T =T T
= —p 2T = pTT T <0,

a contradiction. Hence ¢y = 1.
b) Let 1 < I <r+1,¢ =€ =---=¢1 = 1and Pgy = Py; for
i=0,1,...,0 — 1. We have to show ¢, = 1 and P,go = P,g;. From (1) we have

z—1

p(R) = (p° = p*'P)go + Z emD " (PP — Pri1)gm + 07 Pegrio

m=l

Let g € Pigo \ {g0}- If ¢ = —1 or Pgy # Pg;, then

C(gl) < _pc—l + pc—l—l +pc—l—1 o pc—l—2 4 +pc—m+1 o pc—m +pc—r—2

— _pc—l + 2pc—l—1 _pc—x _|_pc—r—2 <0
a contradiction. Thus we have proved (2). Hence we get
T—1

p(R) = (pc _pc_r_QPH-?)gO + Z empc_m_l(me - Pm—i—l)gm +pc_r_2Pc+r+2
m=r+2



from (1). We infer

C(go) > pc _ pc—r—Q _|_pc—r—3 _ pc—'r—3 e — pc—a:—H T pc—m
— pc . pcfr72 4 pcfw,
C(h) < _pc—'r—2 _|_pc—7'—2 _ pc—r—3 4o +pc—z+1 _ pc—z + pc—r—2

c—r—2 c—T
-Dp

p
for h € Pry2go \ {90} and

C(hl) < pc—r—2 _ pc—r—3 _|_pc—'r—3 — e pc—z—l—l _ pc—z 4 pc—r—2

c—r—2 _ ,c-T

p

for b € (G/U) \ Pr1290- As p(R) has at least one coefficient > p° we get
C(g0) > p".

Together with the upper bounds on C(h) and C(h') obtained above, this
shows that U satisfies the conditions of Lemma 2.1 (with 6 = 1). Since U
was chosen as an arbitrary element of S(g, H), we have indeed verified that
Lemma 2.1 can be applied, and this proves the theorem. O

4 A construction using local rings

Constructions of (p?, p°, p®, p®~?)-RDSs with b > 1 are quite rare. It is for this
reason that Pott (1995) raises the problem to find new constructions for RDSs
of this type. In this section, we present a construction of (¢*“, q, ¢**, ¢**')-
RDSs where ¢ is an arbitrary prime power using local rings.

First we describe the elementary properties of the rings we need. For a
reference on the algebraic background, please consult McDonald (1974). A
finite ring R with identity is called local if R/Rad(R) is a finite field where
Rad(R) denotes the radical of R. For our construction, we need a special
type of local rings, namely, local principal ideal rings which are also called
chain rings, see (MacDonald, p. 339). A complete characterization of these
rings can be found in MacDonald (1974, Theorem XVIL5). Let us summarize
some of their most important properties, see also MacDonald (1974, chapter
XV-XVII).

Let ¢ = p" be any prime power, let n, s and ¢ be positive integers with ¢t < s
and define u := (n—1)s+t—1. By GR(p", r) we denote the Galois ring over



Z,» of degree 7, see MacDonald (1974, chapter XVI). Let g be an Eisenstein
polynomial of degree s over GR(p™, r) [MacDonald (1974, p. 342)]. Then

R = GR(p", r)lz]/(g(z),p" " 'a")

is a chain ring of characteristic p™ with the following properties.

a) R contains a unique maximal ideal I, and R/I is a finite field of order q.
b) The set of units of R is R\ I.

c) |[I*| = ¢“~*"! for 1 < a < wu+ 1, in particular, I**' = {0}.

d) If 7 is a generator of I, then every element x of R can be written in the
form z = w5 where ¢ is a unit, 0 < b < u + 1, and b is uniquely determined
by z € I’ and x ¢ I°*L.

e) If z = 7% as in d), then Rz = I® and Iz = I**,

f) Concerning the additive groups, we have

(R, +) = Zy. x Z2714,
(I, +) = Z,. x 231,
(I, +) = Zn.

The following consequence of Lemma 3.2 of Leung, Ma (1990) will be needed
in the proof of the correctness of our construction. Here by a “character” we
mean a complex character of the additive group.

Lemma 4.1 Let R and I be defined as above, and let T be a character of R,
which is nonprincipal on I*. Then for every character x of I X I there are
c,d € R, such that

x(z,y) = 7(cx + dy)
for all (x,y) € I x 1.

Now we are ready to state the construction. Using the notation introduced
above, let G be any group of order ¢***! containing (I x I,+) in its center.
Let {z1,...,2qu-1}, {y1,..-,Yyq} and {21, ..., z,} be complete systems of coset
representatives of I* in I, I in R and I x I in G, respectively. For i =
1,2,...,¢* ' and j = 1,...,q we define

Dij:{([xierj]a,a):aGI} clIxlI

10



and

Finally, let
q
D= J(D;+2).

Theorem 4.2 The set D is a (¢**,q,¢**,¢** 1)-RDS in G relative to the
subgroup N = I" x {0} contained in I X I.

Corollary 4.3 Let ¢ = p" be any prime power, let n,s,t be any positive
integers with t < s and let w = (n — 1)s +t — 1. Then there exists a
(¢**, q,q%*, ¢** 1)-RDS in any group of order ¢*** which contains a subgroup

2t—2 2(s—t)
X Zp

1somorphic to an n_1  in 1ts center.

For the proof of Theorem 4.2, we need the following lemmas.
Lemma 4.4 If j # j', then D;; + Dyjy =1 x I for all 7.

Proof Since the D;;’s are subgroups of order ¢“ of I x I, it suffices to
prove D;; N Dy = {(0,0)}. Let € D;; N Dyjr. Then x = ([z; + y;la, a) =
([z#+y,]b, b) for some a, b € I. This implies a = b and [z; —zy +y;—y,/]a = 0.
But z; —xy +y; —y; is a unit in R, since x; —xy € I and y; —y; ¢ I. Hence
a=0andz=(0,0). O

Lemma 4.5 Let x be a nontrivial character of 1 x I which is principal on
N = 1" x {0}. Then x(D;) =0 for all j. Furthermore, D; has no repeated
elements.

Proof Since |D;| = ¢** ' = |(I x I)/N]|, it suffices to show that each coset
of N in I x I contains at most one element of D;. Suppose N + (z; + [z; +
yjla),a) = N + (zy + [z + y;]b,b) for some a,b € I and %,i'. This implies
a="band (z; —zy)(1+a) € I*. But 1 +a is a unit in R since a € I. Hence
x; — oy € I¥ implying 7 = 7' by the choice of the x;. O

Lemma 4.6 Let x be a character of I x I which is nonprincipal on N. Then
X(Digjo) = q* for exactly one pair (g, jo) and x(D;;) = 0 for all (3,7) #
(40, Jo)-
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Proof Choose T,¢,d as described in Lemma 4.1. Write z;; = ¢(z; +y;) +d.
Since x is nontrivial on /N, ¢ must be a unit in R. Hence, by the choices of
the z; and y;, we have z;, ;, € I" for exactly one pair (i, jo) and z; ¢ I* for
all (4, 7) # (ig, jo). We also have

x(Dij) =Y 7(z;a).

acl

Since ziyy, € I%, it follows that x(Di,) = |I| = ¢*. Now fix a pair
(4,7) # (@0, jo). Since I" C Iz, (see property e) of R mentioned above)
and 7 is nontrivial on I*, we can find v € I with 7(z;;v) # 1. From
[1 = 7(2iv)] Zaer 7(zija) = Laer 7(2ij0) — Laer (zijla + v]) = 0 we con-
clude x(D;;) =0. O

Proof of Theorem 4.2 From Lemma 4.5 we know that D has no repeated
elements. Since we want to work in the group ring, we have to introduce
a suitable notation in order to avoid confusion of the multiplications in the
local ring and the group ring. Let G be a multiplicatively written group iso-
morphic to G and denote the isomorphism G — G by a bar. Using the group
ring notation, we have to prove DD"1) = ¢%* 4 ¢**~'(G — N). W.l.o.g., we
may assume z; € I x I. We have

_ q — = (_ g — = (—
DDUD =3 3 DD V)7 + 3 D;D, Y. (3)
= aa-De(IxD) =1

It follows from Lemma 4.4 that the first sum in (3) equals ¢** (G — [I x ).
It remains to show

q

— = (—1 ” w— —
S DD Y = 4 (T x T) - N (4)
7j=1

By the Fourier inversion formula it suffices to show that both sides of equa-
tion (4) have the same character values. For the principal character xq this is
true, since |D;| = ¢®*~! for all j and |(I x I) — N| = ¢** — q. For a character
in N+ \ {xo} or G*\ N* the character values of both sides of (4) are equal
in view of Lemma 4.5 and Lemma 4.6, respectively. O
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Example 4.7 Let R = Z,[a] where o® = 1+ a. Then R is a chain ring with
maximal ideal I = (2) = {0,2,2a,2 + 2a} and I? = {0} (i.e. v =1). Let
z1=0,11=0,9%=1,y3s =0, y4 =1+ aand z = (y;,0), 1 = 1,2,3,4.
Then

R = {(0,0), (0,2), (0,2a), (0,2 +2a), (1,0), (3,2), (1 +2a,2a),
(34 20,2+ 20), (a,0), (20,2), (2+30,20), (2+ 2,2+ a),
(1+a,0), (3+3,2), 3+ ,2a), (1+ 3,2+ 2a)

is a (16,4,16,4)-RDS in R x I relative to N = I x {0}. In terms of the
additive groups, we have R X I = Zy X Zy X Zy x Zy, N = (2000, 0200) and

R = {0000, 0010, 0001, 0011, 1000, 3010, 1201, 3211,
0100, 0310, 2301, 2100, 1100, 3310, 3101, 1311}

5 Abelian relative (p?, p, p?, p* !)-difference sets

It was already mentioned in the introduction that the existence problem for
abelian (p?, p, p®, p* 1)-RDSs is almost completely settled. However, there
are the following two obstinate cases remaining for odd p and odd a. Write
a = 2c + 1 and denote the forbidden subgroup by N.

Case 1
G = Zpe+1 X Zyet1, N arbitrary.

Case 2
G:ch+1 X ch X N.

Here we encounter a situation frequently occurring in the study of difference
sets: The really hard cases are those with high exponent and low rank. A
widely known example for this phenomenon is Hadamard difference sets in
Zoi X Ziga and Zigar1 X Zgya—1. Here a Hadamard difference set means an
ordinary difference set with parameters (4u?, 2u® —u, u? —u) for some positive
integer u. After the cases Zgis X Zga and Ziga+1 X Zisa—1 had been settled by
Davis (1991), the way was cleared for the complete solution of the existence
problem for Hadamard difference sets in abelian 2-groups by Kraemer (1993).
We would like to stress here that there are interesting connections between
Hadamard difference sets and (p?, p°, p?, p* °)-RDSs. The most obvious ones
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are the exponent bounds and the construction methods. An important open
case of abelian HDSs which should be compared with Case 1 from above, is
groups of the form H x Zya x Z,4, ged(p, |[H|) = 1, see Arasu, Davis, Jedwab
(1995).

In this paper, we will study Case 1. Our main result will be that for ¢ = 1
the RDS must be a union of translates of (p, p, p, 1)-RDSs which reduces the
original problem considerably, since all (p, p, p, 1)-RDSs are known. It seems
probable that our method also can be used for ¢ > 1, see the remark following
Lemma 5.8. We think that our technique also may be useful for the study of
other difference sets, in particular, for Hadamard difference sets.

Let G = Zyet1 X Zyer1 = (a)(b) and assume that R is a (p***1, p, p?“t1, p*¢)-
RDS in G relative to N = (a”"). Let (5) denote the Legendre symbol.
Lemma 5.1 Let Uy = (aP**'b), 0 <k <p°—1,0<1<p—1. Then

p—1

pri(R) = pf[G + 8(k, Da™) >~ (£)a’]
=1

where pgy : G — G := G /Uy, is the natural epimorphism, §(k,1) € {—1,1},
G(ka l) € {07 “.’pc—|—1 - 1}: a = pk,l(a)'

Proof From Lemma 1.2 a) and Lemma 2.4 b) we get

p—1

pra(R) = pto(k, a0 3 (1)a™ + Py

i=1
where P, is the subgroup of order p of G. Let x be any nontrivial charac-
ter of G which is trivial on (@”°). Since x(R) = 0 by Lemma 1.2 a) and
(22! (%)d”’c) = 0, we conclude ¥(P,Y) = 0 for all nontrivial ¢ € G*.
By the Fourier inversion formula, P;Y must be a multiple of G. Because of
|R| = p°|G|, we must have P,Y = p°G. O
The following lemma in particular shows that R can easily be recovered from
the 6(k,!1) and €e(k,1).

Lemma 5.2 Let P; = {(a*'¥')g : 0 < k < p*t' —1, g € G}. Let
A =3 cqag9 be an element of ZG, and write A(X) = Y jcx ay for X C G.
Furthermore, assume

A(NU) = |U| for every U € P;, m <i<n, (5)
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for some m, n. Then, for every U € P,, we have

n—m_1{

p
A(U) _ pc—n _ pc—m +pm—n Z A(UZ)
=1

where Uy, ..., Upn-m_1 are the elements of Py, containing U.

Proof The assertion is true for n» = m. Assume that it is true for some
n > m. It suffices to show that it is also true for n + 1.

Let U € Py, say U = (akp"+1bp"+l) g. The elements of P,, containing U are
W; = (a?"t%°p")g, 0 < i < p—1. Let H;, 0 < j < p" ™ — 1, be the
elements of P, containing one of the W;. The H; are exactly the elements
of P, containing U. It is easy to see that

p—1
K:=NUU U W; = NW,,

1=0

since each two of the cosets NU, Wy, ..., W,_; intersect in U. Hence

A(K) = A(U) + (A(NU) — A(U)) +§O<A<m-> —AY),
AU) = %(—A(K) FAND) + S AW

Using (1) and induction gives

1 - C—N C—MN cC—m
AU) = ];[—pc o pt T p(pt Tt =™
pn—m+171
+p™ " Y A(H;))
1=0

pn—m+1 —1

— pc—n—2 o pc—m—l 4 pm—n—l Z A(Hj),
=1

proving the assertion. O
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Corollary 5.3 a) For every W € Py we have
R(W) =p“(6(W) + 1)
for some 6(W) € {—1,0, 1}.
b) Let U € P, and let Wy, .., Wyn_y be the elements of Py containing U. Then

R(U) = K”1+§:5

Proof a) This is immediate from Lemma 5.1.
b) From Lemma 5.2 we get

p"—1
RU) = p™—p“'+p " > RW)
=0
U, =
- ‘7‘<1+ S 5()).
1=0

completing the proof. O

We skip the straightforward proof of the next lemma.

Lemma 5.4 Let U, = (a” "), 0 < | < p—1. The elements of Py containing
U (0<r<ptt—1,0<s<p°—1) are Uk,la’_s(pk”), 0<k<pt—1.

We will need the following reformulation of Lemma 5.1.

Lemma 5.5 Set f(k,l,z) = 1 if e(k,l) = = mod p° and f(k,l,z) = 0
otherwise. Then

R(Ugga®) = p°(1 + f(k, 1, 2)d(k, 1) (=)

p

Corollary 5.6 Let T(r,s,l) = {k : 0 < k < p°—1, r —s(pk +1) =
€(k,l) mod p°}. Then

R(Ularbs): 1+ Z (S(k l)(z e(k,l))/p° )

kET(r,s,0)
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Proof The assertion easily follows from Cor.5.3, Lemma 5.4 and Lemma
5.5 0

In the following, the numbers F(r,s,1) := |T(r,s,l)| will play a central role.
We first list two properties of these numbers which are immediate from the
definition.

Lemma 5.7
a) YL F(r, s, 1) = p° for all 7, s, 1.
b) F(r +ip° + jlpc Y, s + jp¢ — 1,1) = F(r,s,1) for all r,s,1,i,].

We now come to a crucial lemma describing important properties of the
numbers F(r, s,1). Define L := (a?"){(b").

Lemma 5.8

@) SV F(r,s,1) > p—1 for allr,s.

b) If iy F(r,5,1) = p—1, then F(r, s,ly) = p—1 for some ly, and RN La’b*
15 a coset of Uy, .

Remark

By a rather lengthy argument the following further property can be derived.
As we do not need this result here, we state it without proof. We think that
it could be useful in the further investigation of the problem.

c) If Zg’;olF(r,s,l) = p, then either F(r,s,1) =1 for 0 <1 <p-—1 or
F(r,s,ly) = p for some ly and RN La"b® is a coset of Uy, .

Proof of Lemma 5.8 a) Let x € RN La"b®. Viewing La"b® as an affine
plane and considering all lines through x gives

p = R(Ld'V’)
— 1+[§(R(le)—l)]+[R(Nx)—1]
= —p+1+1:i:R(le).
Hence - _

> R(Uz) =2p—1. (6)

=0
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From Lemma 5.6 and Lemma 5.7 we know that
R(Ux) <1+ F(r,s,l). (7)

Hence
p—1

2p—1§p—|—ZF(T,S,l),
=0

proving the assertion.

b) Assume Zf’;ol F(r,s,l) = p—1. Then we have equality in (7) for all [, and
hence R(Ujx) =1+ F(r,s,l) for 0 <! <p-—1andall z € RN La"b*. Hence
p = R(La"b*) is divisible by 1 + F(r,s,!) for all [. Thus F(r,s,ly) =p—1
for some [y, and RN La"b® is a coset of Uj,. O

The next lemma provides a condition implying F(r, s, 1) =1 for all r, s, (we
denote this by F' = 1 in the following). We think that F' = 1 always must
be the case; unfortunately, we can prove this only for ¢ = 1. We remark
that F' = 1 would imply that, for any ¢, the subgroup (a?){b?) contains a

(p*<, p,p*7, p?*=?)-RDS relative to N. Thus, assuming F' = 1, we presum-

ably could dispose of all cases with ¢ > 1 by an inductive argument.

Lemma 5.9 Let 0 <r,s <p“!—1. If
p—1
YN F(r+ip* ' s,)=p
i=0
for0<I<p-—1, then
F(r+iapts+p°t)=1
forall0<q,5 <p—1.

Proof Write G(4,4,1) = F(r +ip°', s+ jp°',1). From Lemma 5.7 b) we
have G(i + kl,j + k,1) = G(i,4,1) for 0 < k <p—1. Let H(i,1) = G(3,0,1).
By the assumption,

T HGY = ®)

for 0 <1 < p— 1. Furthermore, from Lemma 5.8 we have
Y700 Gy ji ) = Yooy G(i = 41,0,1) = Ypog H(i = jl,1) > p— 1 for all 4,5,
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and if Y0 H(i — jl,1) = p — 1, then H(i — jlp,lp) = p — 1 for some Iq.
Consider H as a function on an affine plane A; for every line G of A write
H(G) = YyeqgH(z). We know H(G) > p — 1 for all G. Considering the
parallel class of G, it follows that H(G) < 2p — 1, and if H(Gy) = 2p — 1,
then H(G) = p — 1 for all G parallel to Gy. We also know H(G) = p for all
G parallel to ((1,0)) (from (8)).

Assume H(Gy) = p — 1 for some Gy, and let = be the point on Gy with
H(z) = p—1. Let Gy, ..., Gp be the lines through z. Then p* = 3,4 H(y) =
H(z) + £ (H(G) — H(x)) = —pH (z) + X1=g H(G)).

W.lo.g, assume that g; is parallel to ((1,0)). Then H(G;) = p; recall
H(G,) = p—1. Hence p?+p(p—1)—p—(p—1) = 2p*=3p+1 = X107 H(G).
Thus H(G;) = 2p— 1 for 2 < i < p—1 (recall H(G;) < 2p — 1). Hence
H(G) = p — 1 for all lines G # G, parallel to G5. Hence there is a point y
not on Gy with H(y) = p — 1. By the same argument as above, the line G}
through y parallel to G5 must satisfy H(G%) = 2p—1. But this is impossible,
since at most one line G parallel to Gy has H(G) = 2p — 1.

Thus H(G) > p for all lines G. This implies H(x) = 1 for all points z. O

Theorem 5.10 If p is an odd prime and R is a (p3, p,p3,p?)-RDS in G =
(a)(by = Z,2 x Z,> relative to N = (a), then
p_l . .
R = Z a%’RU

i,j=0
where each R;j is a (p,p,p,1)-RDS in L = (a?)(bP) relative to N.

Proof By considering all translates of R we see that it suffices to show
that RN L is a (p,p,p,1)-RDS in L relative to N. By Lemma 5.7 a), the
assumption of Lemma 5.9 is satisfied. Hence F(r,s,l) = 1 for all r, s,l. Write
T(0,0,1) = {k(l)}. From Lemma 5.6 we have

R(Ua™) = 1+ 8(k(1), 1) (2=E0:01p)

foe i = 0,...,p — 1. This implies [x(RN L| = ,/p for all characters of L
nontrivial on N. Since no two elements of R are in the same coset of N, the
character sum is also correct for all characters trivial on N. O

It is important for our purpose that the (p,p,p,1)-RDSs can be character-
ized completely. This result was independently obtained by Gluck (1990),
Hiramine (1989) and Ronayi, T. Szonyi (1989).
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Result 5.11 Let p be an odd prime. A subset R of G = (g){(h) =2 Z, x Z,
is a (p,p,p,1)-RDS in G relative to {g) if and only if

p—1
R=z Z gtjzhj
§=0

for some z € G and t € {1,2,...,p — 1}.

Combining Theorem 5.10 with Result 5.11 yields the following.

Theorem 5.12 If p is an odd prime and R is a (p3, p,p3,p?)-RDS in G =
(a)(by = Z,2 x Z,> relative to N = (a”), then

p—1 p—1
R=Y aedp+ipuiie+i 3~ gptid)s pps
4,5=0 s=0

We are now going to use Theorem 5.12 together with some further obser-
vations to derive a necessary and sufficient condition for the existence of a
(P, p,p®,p*)-RDS in Z,> X Z,>. This reduces the complexity of the problem
considerably, and thus we believe that our condition will be useful for the
further study of these RDSs.

Lemma 5.13 Let g be a generator of G = Z,. If the equation
p—1 p—1 ) =1
Y 9% 9" =pg*Y g"” (9)
i=0  s=0 j=0

holds in ZG with0 < a;, a <p—1landl <t;, t <p—1, thenay =---ap_1 =
a and (qu) = (tpT—l) _ (127)

Proof Let x be the character of G defined by x(z) = €*/P =: £, It is

well known [Lidl, Niederreiter (1994, Thm. 5.15)] that S := ¥0=! (£)&' =

(—1)»=1/2p. From (9) we get
p—1

e (s) =)
i=0
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Using the Cauchy-Schwarz inequality, we conclude £% (%) =& (;f) for all ¢
proving the lemma. O

In the following, we will consider z(3, j), y(i, j) and (7, ) from Theorem 5.12
as functions from Z, x Z, to Z,. We define a function f in the following
way. For every triple (r,7,0), 0 < r, j,I < p — 1 there is exactly one pair
(3, f(r, 4, 1)) with 0 <, f(r,5,0) <p—1with r +1j =i+ pf(r,j,1). Using
the notation of Lemma 5.1 and Theorem 5.12, a straightforward calculation
gives

p—

,Okl Z Z GPR(rsisk,l) Z gPtr+li.g)s (10)

r=0 7=0

where

Q(r g, k1) = —f(r,5,0) + a(r +1j,5) = ly(r +1j, ) — kj — (4t(r + 14, 5)) "

(note that ¢ only takes values in Z, \ {0}, so the inverse of 4¢(r + 13, j) in Z,
exists). On the other hand, we know from Lemma 5.1 that

p—1

pri(R) = p(G — a“®D (@) + pat) Yy~ arihD? (11)
i=0

where d(k,l) € Z, with (J—l) = §(k,l). Now we compare coefficients in
(10) and (11) and arrive at the following. We write €(k, 1) = pa(k, 1) + B(k, 1)
with 0 < a(k, 1), B(k,1) <p— 1.
(1) Q(B(k,1),4,k,1) = afk,l) and (t(ﬁ(k’gﬂm)) _ (d(z’l)) for j =0,...,p—1
and all &, (this follows from Lemma 5.13).
(ii) {Q(B(k, 1), 4, k', 1) : 5 =0,...,p—1} = Z, for all k # k' (this follows from
(i) togther with Q(r,j, K,1) = (K — k)j + Q(r, 4,k 1))
(iii) {B(k,0) : £k =0,...,p — 1} = Z, (this follows from (ii)).

Let ZE denote the set of nonzero squares in Z,,.

Theorem 5.14 Let p be an odd prime. A (p®,p,p*,p*)-RDS in Z,> X Zy> ex-
ists if and only if there are functions x,y : Z,xZ, — Z, andt : Z,xZ, — ZE
such that the function @) defined by

Q(Tajakal) - _f(raja l) +l'(’f'—|-l],_]) - ly(7'+lj,j) - k] - 12(4t(T'—|— ljaj))_l
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satisfies the following condition.
(x) For every pair (k,1), 0 < k, | < p—1, there exists exactly one r(k,l),
0<r(kl)<p-—1 with

{Q(r(k, 1), 4, k1) : §=0,...,p— 1} = 1.

Proof We first show that () is necessary. From (i) we know that we have
H{Q(B(k, 1), 7,k 1) : 7 =0,...,p— 1} = 1 for all k,I. This shows that we
can take r(k,l) = 5(k,l) in (x). Furthermore, no r' # S(k,l) can satisfy (x)
because of (ii).

It remains to show that ¢ can be assumed to takes values in ZE only. W.lo.g.,
Wwe can assume (d((;,o)) = 1. Then (i) implies (M) =1forj=0,..,p—

1. Let (z,y) € Z, x Z, be arbitrary. We choose jo # y and let [ = %jo_ol.

Then by (iii), we can find k with 3(k,1) = yﬂ 00) Note that z = B(k,1) + ly

and 3(0,0) = B(k,l) + ljo. Thus by (i) we get ( (z ’y)) = (t(ﬁm’%) = 1.
Hence ¢ indeed can be assumed to take values in Z; only.

Now we show that (x) is also sufficient for the existence of an RDS. Assume
that (%) holds and define z(k,l) by {Q(r(k,1),j,k, 1) : 5 = 0,..,p— 1} =
{z(k,1)}. Recall

pP—

Dk, n Z Z GPR(r:3.k:0) Z gPtr+1d.g)s*

r=0 7=0

From (x) we conclude {Q(r(k,l),j,k',1):j=0,..,p—1} =Z, for all K" # k
and all . Also, {r(k,l) : k=0,...,p— 1} = Z, for all I. Hence, for fixed k
and [, we have

{Q(T’jak,l) _7 = 0, ey P — 1} = Zp
for all r # r(k,1). Thus, recalling (t i;j ) =1 for all 7, j, we get

p—1 p—1
pri(R) = Z a (a?) Z P’ + par(k,l)+pz(k,l) Z aPi’?
r#r(k,l) s=0 Jj=0

p—1 "
= p(G = (@) (k1)) + pa ®+0=60 5 o,

J=0

Hence the equation in Lemma 5.1 holds for all k,I with §(k,l) = 1 and
e(k,l) =r(k, 1)+ pz(k,1).
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Since every character nontrivial on N is trivial on some Uy ;, we know that all
these characters have a correct character sum on R. From the definition of
R it is clear that every coset of N contains exactly one element of R. Hence
the nontrivial characters trivial on N have also the right character sum, and
this concludes the proof. O

Remark Condition (*) seems to be too strong to admit solutions. We
conjecture that actually there are no functions z, y and ¢ satisfying (x). For
p = 3 this was shown by C. Remling (1996), hence there is no (27, 3,27, 9)-
RDS in Zg x Zg. We think that Theorem 5.14 is a good starting point for
further investigation of these RDSs.
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