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Abstract

Let p be a prime and let b be a positive integer. If a (v, k, A\, n)
difference set D of order n = p® exists in an abelian group with cyclic
Sylow p-subgroup S, then p € {2,3} and |S| = p. Furthermore, either
p=2and v=X=2 (mod 4) or the parameters of D belong to one

of four families explicitly determined in our main theorem.

1 Introduction

A (v,k,\,n) difference set in a finite group G of order v is a k-subset
D of G such that every element g # 1 of G has exactly \ representations
g = didy " with dy,dy € D. The positive integer n = k— \ is called the order
of the difference set. The existence of a (v, k, A\, n) difference set implies the
existence of a symmetric (v, k, A) design (see [2]). For detailed treatments of
difference sets, see [1, 2, 3, 4, 5, 8].

Lander [5, p. 224] proposed the following conjecture.
Conjecture 1.1 (Lander 1983) Let G be an abelian group of order v con-

taining a difference set of order n. If p is a prime dividing v and n, then the

Sylow p-subgroup of G cannot be cyclic.
In [6, Thm. 1.3], the following was proved.

Result 1.2 Lander’s conjecture is correct in the case where n is a power of

a prime p > 3.

In the current paper, we obtain further progress towards Lander’s conjec-
ture in the case of difference sets of prime power order and prove the following

result.



Theorem 1.3 Let G be an abelian group of order v containing a (v, k, \,n)
difference set with k < v/2. Assume that n is a power of p where p € {2, 3},
and that the Sylow p-subgroup S of G is cyclic. Then n = p* for some
positive integer t, and S has order p. Furthermore, one of the following
holds.

(i) p=2 and v =X =2 (mod 4).

(i) (v,k,A,n) = (92271 —2 3.22-1 92i=1 92

(idi) (v, k, \,n) = (253” =3 5.3l 9. 321 32t).
(iv) (v, kA n) = (493% =3 3% 3 32f+1 3 32t)
(v) (v, kA n) (6432‘ 3 832t 3. 32‘+1 3 32t)

2 Preliminaries

In this section, we list the definitions and basic facts we need in the rest of
the paper. We first fix some notation. Let G be a finite group, and let R be a
ring. We will always identify a subset A of G with the element gea g of the
group ring R[G]. For B =3 _,byg € R[G] we write B .= > g bag ™
and |B| == > 4b;. We call {g € G : b, # 0} the support of B. For
X,Y € R[G], we write X C Y if the support of X is contained in the
support of Y. For X € R[G] and g € G, the group ring element Xg is called
a translate of X. A group homomorphism G — H is always assumed to be
extended to a homomorphism R[G] — R[H| by linearity. For integers a, b, c,

b > 0, we write a®||c if a®, but not a*™!, divides ¢

Since D is a difference set in G if and only if G \ D is a difference set in
G, we can restrict our attention to (v, k, A\, n)-difference sets with k < v/2.
Counting the number of quotients didy", di,do € D, d; # dy, gives the
trivial parameter condition k(k — 1) = A(v — 1). This implies that k = v/2
is impossible. Thus we can assume k < v/2. Note that in this case A\ < k/2
and n > k/2 since A\ = k(k —1)/(v — 1) < k?/v < k/2. Hence, throughout



this paper, we will only consider difference sets with

v k
k< -and A< - <n. 1
5 an 5 <1 (1)
In the group ring language, difference sets can be characterized as follows |2,

Lemma VI.3.2].

Result 2.1 Let D be a k-subset of a group G of order v. Then D is a
(v, k, A\, n) difference set in G if and only if in Z|G| the following holds.

DDV =n + )G (2)

Notation 2.2 The following notation and assumptions will be used through-

out the rest of the paper.

e G = (a) x H is an abelian group with cyclic Sylow p-subgroup («)
where p € {2,3}.

The order of o in G is p®, s > 1.

H is the complement of (a) in G.

o P= <oﬂ’sil> is the unique subgroup of G of order p.

D is a (v,k,\,n) difference set in G where n = p" for some positive
integer 7, and (1) holds.

e If p = 2, then v is even and thus n is a square by Schiitzenberger’s
theorem [9]. So r = 2t for some positive integer ¢. For p =2 and t < 2,
no difference set D as described above exists [2]. Thus we assume r = 2t

and ¢ > 3 in the case p = 2.

3 Proof of Theorem 1.3

Let ¢ denote the Euler totient function. By [7, Theorem 4.3], we have

4°|\H
| |:2|H| for p =2 and
4p(4)
n < (3)
P om
—— =—— forp=3.
10(3) ~ 8 b



Lemma 3.1 Let p = 2. Replacing D by a translate, if necessary, we have
D=A+o* B+ PC (4)

with A,B C H and C C G, such that A, B, and C' are pairwise disjoint.
FPurthermore,

A4 =" B = P g o= 5)
Proof By [7, Thm. 4.1], we have D = g(X —Y) + PZ with X,Y C H,
g€ G, ZCG,and XNY = (. Replacing D by Dg™!, if necessary, we can
assume D = X — Y + PZ. Since D has only non-negative coefficients, this
implies Y C PZ. Hence, by replacing appropriate elements z of Z by a2z,
if necessary, we can assume Y C Z. Hence we can write Z =Y + T for some
TCG Wehave D=X-Y+PZ=X-Y+P{Y+T)=X+a*>'Y+PT.
Taking A = X, B =Y, and C' = T shows that (4) holds. Note that A, B,

and C' are pairwise disjoint since D has coefficients 0 and 1 only.

Let p : CG — CH be the homomorphism defined by p(a) = €*/%" and
p(h) =h for h € H. Then p(D) = A— B by (4). Note that p(G) = 0. Using
(2), we get

(A= B)(A—B)) = p(D)p(D)D = n. (©)
This implies |A| — |B| = +y/n. Comparing the coefficient of the identity
element on both sides of (6) gives |A| + |B| = n. We conclude {|A|, |B|} =
{(n —/n)/2,(n + /n)/2}. Replacing D by a® ' D, if necessary, we have
|A| = (n++/n)/2 and |B| = (n—+/n)/2. Since k = |D| = |A| + |B| +2|C| =
n+2|C| =k —X+2|C|, we get |C| = A/2 and thus (5) holds. Q.E.D.

We get a similar result in the case p = 3:
Lemma 3.2 Let p = 3. Replacing D by a translate, if necessary, we have
D=A+(P—-1)B+ PC (7)

with A,B C H, C' C G, such that A, B, and C are pairwise disjoint. Fur-

thermore, n 1s a square and

n+o n—24a 1 n—=a
A="00 m="0 wa =5 - (U0)] ®

where 6 = ++/n.




Proof By Corollary 3.4, Lemma 3.6 and Theorem 4.2 of [6], we have
D=(X—-Y)P-1)+PZ

for some XY C H and Z C G such that the supports of X(P — 1) and
Y (P —1) are disjoint. Since D has only nonnegative coefficients, this implies
Y(P —1) C PZ. Recall P = (o*"). Thus, by replacing suitable elements

s—1 .9s—1 . .
2z of Z by o® "z or a®% 2z, if necessary, we can assume Y C Z. Write

Z =Y +T with T C G. Then
D=X-Y)P-1)+PZ=Y+X(P-1)+PT.

Taking A = Y, B = X, and C = T shows that (7) holds. Since D has

coefficients 0 and 1 only, A, B, and C' must be pairwise disjoint.

Let p : CG — CH be the homomorphism defined by p(a) = */3" and
p(h) = hfor h € H. Then p(D) = A— B by (7). Note that p(G) = 0. Using
(2), we get

(A~ B)(A—B)™) = p(D)p(D)) = )

This implies that n is a square and |A| — |B] = +y/n. Comparing the
coefficient of the identity element on both sides of (9) gives |A| + |B| = n.
We conclude |A| = (n+0)/2 and |B| = (n — §)/2 with § = ++/n. Since
k=|D|=|A|+2|B|+3|C| =n+(n—0)/24+3|C| =k—X+(n—0)/2+3|C],
we get |C] = (A — (n—9)/2)/3 and thus (8) holds. Q.E.D.

Lemma 3.3 Let p =2. We have v =2 (mod 4), i.e., s = 1.

Proof Recall that n = 2% and ¢ > 3. Assume v = 0 (mod 4), i.e., s > 2.
Let C* denote the multiplicative group of nonzero complex numbers, and let
X @ Z|G] — C* be the homomorphism defined by x(a) = —1 and x(h) =1
for all h € H. Note that y(a? ') = 1 and thus x(P) = 2 since s > 2. Let
U be the subgroup of G of index 2, and write ¢; = |C NU|, co = |C N Uq.
Note that

a1t =|Cl=A/2 (10)

by (5) and x(C') = ¢; — ¢3. Furthermore, by (4) and (5), we have
X(D) =|A| +|B| +2x(C) =n+2x(C) =n+ 2(c; — c2). (11)
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From (10) and (11) we infer 4¢; = x(D) —n+ X and 4co = —x(D) +n+ A
Since ¢; and ¢, are nonnegative, we conclude A > |n — x(D)|. Since x(D) is

an integer, (2) implies x(D) = £+/n, and thus we have

A>n—+/n. (12)

Note that v = (n* —n)/A + 2n + X since (v — 1)\ = k(k — 1). Moreover,
n—+/n <X <nby (12). Since f(A) = (n? —n)/\ + 2n + X is a convex
function of A, its maximum in the interval [n — /n, n] is attained at one of

the endpoints. This implies

2°|H| = v < max{f(n —v/n), f(n)} = 4n. (13)

On the other hand, for n > 2, we have (n? —n)/x + 2n + x > 4n — 2 for all
r € RT. Hence v = (n? —n)/\+2n+ X\ > 4n — 2. Together with (13), this
implies v € {4n — 1,4n}. But v = 4n — 1 is impossible since v is even, and
v = 4n implies |H| = 1 and contradicts (3). Q.E.D.

Again, we will get a similar result for p = 3. We have seen before that
n is a square in the case p = 2. By Lemma 3.2 this is also true for p = 3.
Thus, from now on, we write r = 2t, i.e., n = 3% if p = 3. Since t = 1 is

impossible [2], we will assume ¢ > 2 if p = 3.

Lemma 3.4 Let p=3. We have v =3 (mod 9), i.e., s = 1. Furthermore,

n—2a 9n + 30

A > 5 and v <

where § is defined in Lemma 3.2.

Proof Since |C| > 0, we have A > (n—9)/2 by Lemma 3.2. Thus (n—0)/2 <
A < n. Note that v = (n? —n)/A+ X+ 2n and that, as in the proof of Lemma
3.3, f(\) attains its maximum on the interval [(n — §)/2,n] at one of the

endpoints. Hence

9n + 39

3|H| =v < max{f((n - 0)/2), f(n)} = ——

On the other hand, we have n < 9|H|/8 by (3) and thus s = 1. Q.E.D.




Lemma 3.5 FEither p||\ or p?* Y|\
Proof Let p =2. Since n = 2% and 2|H| = v = (n* —n)/A+2n + A, we
have 24 + 2%+1\ + \? = 2% 4 2)\|H|. This implies the assertion since ¢ > 3.

Now let p = 3. The assertion follows from A < n, n = 3%, A2 4+ 2\n +
n?> —n = v, and v = 3 (mod 9). Q.E.D.

Lemma 3.6 If p =2 and 227 ||\, then
(v,k, A\, n) = (9-2%"1 -2 3.2%"1 g%~1 92

If p=3 and 3*7Y|\, then
25 3%-1 — 3
(v,k, A\, n) = (# 5.3%71 2.3%1 3%).

Proof Let p = 2. Since A < n = 2%, we have A\ = 2271 k =n+ )\ =3.2%"!
and v = (k* —n)/A=9.22"1 -2,

Now let p = 3. Since A < n, we have A = 3% 1 or 2. 3%71 If A\ =
3271 then 3% = X\ > (n —4)/2 = (3% £ 3')/2. But this implies ¢t = 1,
contradicting our assumption ¢ > 2. Thus we have A = 2 - 3%~!. Now the
assertion follows from £ =n+ A and A(v — 1) = k(k — 1). Q.E.D.

Lemma 3.7 If p =3 and 3||\, then either

49 . 321571 -3 7. 32t -3 32t+1 -3
l{? )\ — 2t
(U7 ) 7n) ( 4 Y 4 ) 4 Y 3 >

or

64_32t—1_3 8'32t—3 32t+1_3
k,A,n) = 32 .
(/07 ) 7”) ( 5 Y 5 Y 5 Y )

Proof Asv = (n?—n)/A+ A+ 2n, we have n — 1 = 0 (mod \/3). Write
y =3(n—1)/A. Since A < n, we infer y > 3 — 3/n. As y is not divisible by
3, we have y > 4.

On the other hand, A > (n — §)/2 implies y < 6(n — 1)/(n — 0) =
6+6(0—1)/(n—0))=6+6/J. Since we assume ¢t > 2, we have § > 9, and
thus we get y < 7. Since y # 6, we conclude y < 5.
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In summary, we have y = {4,5} and hence A\ = (3**! —3)/4 or \ =
(321 —-3) /5. Now the assertion follows from k = n+\ and A\(v—1) = k(k—1).
Q.E.D.

Proof of Theorem 1.3 This immediately follows from Lemmas 3.5, 3.6,
and 3.7. Q.E.D.

Remark 3.8 For many values of ¢, standard results [2] can be used to show
that difference sets with the parameters as stated in Theorem 1.3 cannot

exist. However, it seems difficult to prove this for all ¢.

References

[1] L.D. Baumert: Cyclic Difference Sets. Springer Lecture Notes 182,
Springer 1971.

[2] T. Beth, D. Jungnickel, H. Lenz: Design Theory (2nd edition). Cam-
bridge University Press 1999.

[3] D. Jungnickel: Difference Sets. Contemporary Design Theory: A Col-
lection of Surveys, eds. J.H. Dinitz, D.R. Stinson. Wiley 1992, 241-324.

[4] D. Jungnickel, B. Schmidt: Difference Sets: An Update. Geometry,
Combinatorial Designs and Related Structures. Proc. First Pythagorean
Conference, eds. J.W.P. Hirschfeld et al. Cambridge University Press
1997, 89-112.

[5] E.S. Lander: Symmetric Designs: An Algebraic Approach. London
Math. Soc. Lect. Notes 75, Cambridge University Press 1983.

(6] K.H. Leung, S.L.. Ma and B. Schmidt, Nonexistence of abelian difference
sets: Lander’s conjecture for prime power orders, Trans. Amer. Math.
Soc., 356 (2004), pp. 4343-4358.

[7] K.H. Leung and B. Schmidt, The Field Descent Method, Des. Codes
Cryptogr., 36 (2005), pp. 171-188.



[8] A. Pott: Finite geometry and character theory. Springer Lecture Notes
1601, Springer 1995.

[9] M.P. Schiitzenberger: A nonexistence theorem for an infinite family of
symmetrical block designs. Ann. Eugen. 14 (1949) 286-287.

10



