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NONEXISTENCE OF ABELIAN DIFFERENCE SETS:
LANDER’S CONJECTURE FOR PRIME POWER ORDERS

KA HIN LEUNG, SIU LUN MA, AND BERNHARD SCHMIDT

ABSTRACT. In 1963 Ryser conjectured that there are no circulant Hadamard
matrices of order > 4 and no cyclic difference sets whose order is not coprime
to the group order. These conjectures are special cases of Lander’s conjecture
which asserts that there is no abelian group with a cyclic Sylow p-subgroup
containing a difference set of order divisible by p. We verify Lander’s conjecture
for all difference sets whose order is a power of a prime greater than 3.

1. INTRODUCTION

A (v,k, A\, n)-difference set in a finite group G of order v is a k-subset D of G
such that every element g # 1 of G has exactly A representations g = dids 1 with
di,ds € D. The positive integer n := k — X is called the order of the difference set.
A difference set is called cyclic respectively abelian if the underlying group is cyclic
respectively abelian. For detailed treatments of difference sets, see [5, 10, 11, 13, 17].
The most obvious application of difference sets is to design theory: a (v,k, A, n)-
difference set in G is equivalent to a design admitting G as a point and block regular
automorphism group [7, Thm. VI.1.6].

The theory of difference sets probably started in 1938 with Singer’s discovery
[21] of the difference sets

D := {Z‘Fqk NS ]F;d+1,TI'(.CL') = 0}

inG := ]F:;a“rl /I, . Here g is a prime power, d > 2 is an integer, IF;; is the multiplica-
tive group of the finite field F,. and Tr denotes the trace function of Fya+: relative
to Iy.

Until the 1970s, research focussed on cyclic difference sets. Note that a cyclic
difference set has a constant intersection with all its cyclic shifts. This property is
extremely useful for detecting asynchronous shifts in information transmission and
is the basis for applications of difference sets in sequence design and synchronization
problems. A variety of such real word applications can be found in [7, Chapter XII].
An excellent overview of the results on difference sets obtained in the “cyclic period”
was given by Baumert [5]. Later the interest shifted to difference sets in general
abelian groups and even nonabelian groups (see [7, 13, 15]) mainly because of the
connection to design theory.

Though not at all restricted to the cyclic case, the main interest of the present
paper is the nonexistence of cyclic difference sets, i.e., we return to the study of the
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classical difference set problems. One of the longstanding conjectures on difference
sets is the following given in Ryser’s influential book [18].

Conjecture 1.1 (Ryser 1963). If there is a (v, k,\,n) difference set in a cyclic
group, then v and n are coprime.

It is known [7] that a verification of Ryser’s conjecture would yield the solution
of two further classical combinatorial problems, namely, the nonexistence of Barker
sequences of length > 13 and of circulant Hadamard matrices of order > 4.

Turyn [22] was able to prove Ryser’s conjecture in special cases where the so-
called “self-conjugacy assumption” holds. Baumert [4] later verified Ryser’s conjec-
ture for all ¥ < 100. The following description of the status of Ryser’s conjecture
from Lander’s book [13, p. 224] from 1983 was very much to the point:

“Despite this evidence, no real progress has been made in settling the conjec-
ture, or even in pinpointing just what property of cyclic groups ‘obstructs’ such a
difference set.”

To gain more insight in the phenomenon described by Lander was the main
motivation for our work [19, 20] and the present paper. It seems we are now finally
able to name an obstruction for difference sets in cyclic groups with (v,n) > 1: Such
difference sets would decompose into two parts with strong algebraic properties;
these properties imply that the two parts are too big to be incorporated in a group
of order v.

Lander [13, p. 224] proposed the following strengthening of Ryser’s conjecture.

Conjecture 1.2 (Lander 1983). Let G be an abelian group of order v containing a
difference set of order n. If p is a prime dividing v and n, then the Sylow p-subgroup
of G cannot be cyclic.

After a period of near-stagnation for more than three decades, progress on
Ryser’s conjecture has recently been achieved in [20]. The results of [20] also ap-
ply to Lander’s conjecture, but in this case they are less conclusive. In summary,
Lander’s conjecture has been proven for special parameters of difference sets, but
no conclusive general result has been known yet. In Section 7 we will prove the
following.

Theorem 1.3. Lander’s conjecture and thus Ryser’s conjecture is true in the case
where n is a power of a prime > 3.

Our result still is restricted to prime power orders. However, this is probably the
most important case, since most known difference sets have prime power order or are
obtained from such difference sets by product constructions: The parameter series of
known difference sets with ged(v,n) > 1 are the Hadamard, McFarland, Spence and
Chen/Davis/Jedwab parameter families, see [19]. With the exception of Hadamard
parameters ((v,k,\,n) = (4u?,2u? — u,u? — u,u?), u > 0), n is a prime power
in all known constructions for these families. Furthermore, all known Hadamard
difference sets have prime power order or are obtained from such difference sets by
product constructions [7, Chapter VI].

2. PRELIMINARIES

In this section, we list the definitions and basic facts we need in the rest of
paper. We first fix some notation. Let G be a finite group. We will always identify
a subset A of G with the element 3, g of the integral group ring Z[G]. For

B =Y ,cqbeg € Z[G] we write BTV := 37 byg™" and |B| := 3 by We
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call {g € G : by # 0} the support of B. A group homomorphism G — H is always
assumed to be extended to a homomorphism Z[G] — Z[H] by linearity. We will
write o(g) for the order of g € G in G. The exponent of G, i.e., the order of the
largest cyclic subgroup of G, will be denoted by exp G. For convenience, we write
&m = €2™/™ for any integer m.

For an abelian group H we denote the group of complex characters of H by
H*. The character sending all h € H to 1 is called trivial. For a subgroup W
of H, we write W+ for the subgroup of H* consisting of all characters which are
trivial on W. We repeatedly will make use of the following elementary properties
of characters of finite abelian groups. For a proof, see [7, Section VIL.3].

Result 2.1. Let G be a finite abelian group.
a) Let D =3} . dgg € C[G]. Then

1 -1
e > x(Dg™)

xXE€EG*

for all g € G (Fourier Inversion Formula). In particular, two elements of C[G] are
equal if and only if all their character values are equal.

b) If x € G* is nontrivial on a subgroup U of G, then x(U) = 0.

c) If H is a subgroup of G and A, B € Z[G] with x(A) = x(B) for all x € G*\H*,
then A= B+ XH for some X € Z[G].

Since D is a difference set in G if and only if G \ D is a difference set in G,
we can restrict our attention to (v, k, A, n)-difference sets with k£ < v/2. Counting
the number of quotients dyd; ' dy,dy € D, dy # do, gives the trivial parameter
condition k(k — 1) = A(v — 1). This implies that ¥ = v/2 is impossible. Thus
we can assume k < v/2. Note that in this case A < k/2 and n > k/2 since
A=k(k—1)/(v—1) < k?/v < k/2. Hence, throughout this paper, we will only
consider difference sets with

v k
(1) k<2and /\<2<n.

In the group ring language, difference sets can be characterized as follows [7, Lemma
V1.3.2).

Result 2.2. Let D be a k-subset of a group G of order v. Then D is a (v,k,A,n)
difference set in G if and only if in Z[G] the following holds.

(2) DDY =n 4 )G

The by far most powerful known method for the study of the group ring equation
(2) is the use of complex characters: Applying a nontrivial complex character x of
G to (2) yields the equation |x(D)|* = n where x(D) is an element of Z [€expi], the
ring of algebraic integers of Q(£exp ¢)- This observation together with the Fourier
inversion formula leads to the following fundamental result.

Result 2.3. Let D be a k-subset of an abelian group G. Then D is a (v,k,A,n)-
difference set in G if and only if |x(D)|? = n for every nontrivial character x of
G.

Result 2.3 essentially is contained in [22] and has turned out to be a conditio sine
qua non for the study of difference sets in abelian groups. See [7, Lemma VI.3.12]
for a proof.
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The significance of the equation |x(D)|?> = n lies in its implications on the behav-
ior of x(D) under the Galois automorphisms of Q(éexp ¢)- Any such automorphism
which fixes all prime ideals dividing (n) must fix the ideal (x(D)) of Z[€expc]- This
usually gives strong conditions on the structure of D.

3. THE DECOMPOSITION

A crucial step towards our main result is to show that the character theoretic
method implies a decomposition of a difference set into two parts: One part consist-
ing of an element of a group ring of a “small” subgroup and a second part consisting
just of a multiple of a certain subgroup.

An important feature of our decomposition of difference sets is the use of Gauss
sums. We recall that a Gauss sum over F, is usually defined as ), cF, X($)§Z where
X is a multiplicative character of F,,. By convention, x(0) = 0. Using a primitive

root t mod p we can rewrite the Gauss sum as Y 7_ x(t)€Y . Note that x(t) is a
complex (p — 1)st root of unity. In the study of the difference set equation (2) by
the character method, Gauss sums arise naturally because of their behavior under
Galois automorphisms. The details of this connection can be found in the proof
of [14, Thm. 3.4]. The “Gauss sums” we will use are actually group ring elements
whose character values are Gauss sums:

Definition 3.1. Let G be a finite group, let p be a prime dividing |G| and let t be
a primitive root mod p. A Gauss sum over G is an element of Z[G] of the form

p—1 )
G(g,6) ==Y (69)°n"
i=1
where g,h € G with o(g)|(p — 1), o(h) =p and § = £1.

Notation 3.2. The following notation will be used throughout the rest of the
paper.

G is an abelian group with cyclic Sylow p-subgroup where p is an odd prime.
H is a complement of the Sylow p-subgroup of G.

P is the unique subgroup of G of order p.

D is a (v, k, A\, n) difference set in G where n = p” for some positive integer
r.

The following decomposition result is a direct consequence of [14, Thm. 4.1] and
is crucial for the present paper. By “up to a translation” we mean that we have to
replace D by Df, f € G, if necessary.

Result 3.3. There areY € Z[G], D' € Z[H] and o Gauss sum G(g,0) over G such
that up to a translation D = D'G(g,d) + PY.

We remark that results similar to Result 3.3 can be found in various places in
the literature, for instance, [1, Lemma 2], [3], [9, Lemma 3.1 (i)], [16, Theorem 2.7].
The most general version of the decomposition can be found in [14, Thm. 3.1] and
has some nice applications such as proving the nonexistence of Barker sequences of
length [ with 13 < I < 10?2 and the nonexistence of circulant Hadamard matrices
of order v with 4 < v < 548,964, 900, see [14].

In order to make full use of Result 3.3 it is crucial to find further restrictions on
D', g and 4.
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Corollary 3.4. There are a set Y of representatives of distinct cosets of P in G,
disjoint subsets of A,B of H and a Gauss sum G(g,1) over G such that up to a
translation

(3) D = (A - B)G(g,1) + PY.

Proof By Result 3.3 we have D = D'G(g,d) + PY with Y € Z[G], D' € Z[H].

Claim 1: Y can be chosen as a set of representatives of distinct cosets of P in
G.

Proof: In any case, we can choose Y such that no two elements of the support
of Y are in the same coset of P. Since D is a subset of G, it has coefficients 0 and
1 as an element of Z[G]. Note that by Definition 3.1 all elements of the support of
D'G(g,6) have order exactly divisible by p since D' € Z[H]. However, each coset
Pa of P contains an element, say a’, of order not exactly divisible by p. This implies
that the coefficient of a’ in PY coincides with the coefficient of @’ in D and thus
must be 0 or 1. Since we assumed that no two elements of the support of Y are in
the same coset of P, this shows that Y has coefficients 0 and 1 only. This proves
Claim 1.

Claim 2: D' has coefficients —1,0,1 only, i.e., D' = A — B for disjoint subsets
A, Bof H.

Proof: By Result 3.3 we have

p—1 )
(4) D =Y (3g)'D'n* + PY.
i=1
where g, h € G with o(g)|(p — 1), o(h) = p and § = £1. Note that the supports of
(6g)'D'Rt", i = 1,...,p — 1, are pairwise disjoint since the supports of (dg)*D’ are
contained in H, (h) N H = 1 and ¢ is a primitive root mod p. Hence, if D' has a
coefficient & {—1,0, 1}, then the same is true for Zf:_ll (6g)*D'h?". But then D must
have a coefficient ¢ {0, 1} by (4) since PY has coefficients 0, 1 only, a contradiction.
This shows Claim 2.
Claim 3: If § = —1 and D' # 0, then y := o(g) is even.
Proof: If § = —1, then

p—1 .
D =Y (-g)'D'n" + PY.
i=1

Recall p > 3 and that y = o(g) divides p — 1. Now assume that y is odd. Since
D' # 0, there is a € H such that ah has coefficient ¢ # 0 in (—g)?~'D'h*"~" = D'h.
Then ah!’ has coefficient —c in (—g)VD'h*’ = —D'h?". Recall that the supports
of (8g)'D'A*, i = 1,...,p — 1, are pairwise disjoint. Hence one of the elements
ah, ah? has a negative coefficient in Y"?_'(—g)?D'h* and the other one has a
positive coefficient. Since both ah and ah?’ are contained in Pa and since D has
nonnegative coefficients only, it follows that every element of Pa has coefficient > 0
in PY. However, this implies that either the coefficient of ah or aht’ in D is greater
than 1, a contradiction. This shows Claim 3.

Claim 4: § =1

Proof: Note that § is irrelevant if D' = 0. Thus we can assume D’ # 0. Now
suppose § = —1. Then by Claim 3 the order of g is even. In particular, v = |G|
is even. Hence by Schiitzenberger’s theorem [7, Cor. I1.3.9] the order n of D is
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a square. Now let x be a character of G which is trivial on H and nontrivial
on P. Then x(P) = 0 [7, Lemma VI.3.4] and X( ") = |D'| since the support of
D' is contained in H. Hence x(D) = |D’| S (- 1) x(h)t'. Note that x(h) is a

primitive pth root of unity. Thus Ei:l( )’x(h)“ is a quadratic Gauss sum of
absolute value ,/p [23, Lemma 6.1]. By Result 2.3 we have |x(D)|*> = n and thus
|D'|? = n/p which is impossible since n is a square. This shows Claim 4.
Corollary 3.4 follows from Claims 1, 2 and 4. O
The following is an improved version of [9, Lemma 3.2 (i)].

Lemma 3.5. Let A, B be the sets from Corollary 3.4. Then

_ _py-n_n ne-1

Proof Write X := "o(g’g);) (9). By Result 2.1 it suffices to show x((A—B)(A—

B)(=1Y) = x(X) for every character y of H. Let x be an arbitrary character of H.
Let 7 be a character of G with 7|g = x and 7 ¢ P1. By Result 2.3 and (3) we
have

p—1

(5) n=|r(D)]* = |x(4 - B) Zx(g)’T h)!

Note that x(g) is a (p — 1)th root of unity and 7(h) is a primitive pth root of unity.

Case 1: x € (9)*. Then 07/ x(9)'r()" = L0 7()" = ¥h_ 7(h) = —1
and thus (5) implies x((A— B)(A— B)(=1) = |x(4— B)|> = n. On the other hand,
we have x(X) =n/p+n(p — 1)/p = n since X € (g)*.

Case 2: x ¢ (g)*. Then | > 27) ! x(g)iT(h)* |2 = p by [23, Lemma 6.1] and thus
(5) implies x((A— B)(A— B)(=1) = n/p. On the other hand, we have x(X) = n/p
since x & (g)*.

Hence x((A — B)(A — B)(-Y) = x(X) for all x € H* concluding the proof. O
Lemma 3.6. Let A, B, Y be the sets from Corollary 3.4. The supports of the
following group ring elements are disjoint.

(a) AG(g,1) and BG(g,1),
(b) A{g) and PY,
(c) A(g) and B(g).

Proof If the supports of AG(g,1) and BG(g,1) have a common element, then
there area € A, b € B and i, j € Z with ag'h? = bgih¥ . As (p,|H|) =1, ht' = ht’.
Since ¢ is a primitive element mod p and 1 < i,j < p— 1, we conclude that i = j
and thus a = b contradicting A N B = (). This proves (a).

For (b), we assume that the supports of A(g) and PY have a common element.
Then the supports of AG(g,1) and PY also have a common element since h € P.
Since all nonzero coefficients of AG(g,1) and PY are 1, we conclude from (a) that
the coefficient of those common elements in D must be 2. This is impossible and
we have thus proved (b).

Finally, if (¢) is not true, then there is b € BN A(g). By (a), the coefficient of
bgP~'ht" ™" = bhin (A—B)G(g,1) is —1. Because of (a) and since D has nonnegative
coefficients only, this implies Pb C PY. But then b € A{(g) N PY contradicting (b).
O
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4. THE ORDER OF g AND AN UPPER BOUND FOR v

Now that we have obtained the crucial equation D = (A — B)G(g,1) + PY and
derived some basic properties of the sets A, B and Y, we need to determine the
order of the element g. We will also show that n is a square and derive an upper
bound for v in terms of n.

Lemma 3.6 (a) implies that the set BG(g, 1) is contained in PY since D has only
nonnegative coefficients. Since h € P, we deduce that the support of B(g)P is also
contained in PY. Let

C:= (U P(g)b) — BG(g,1).

beB

Then C is a subset of G and since the support of B{g)P is contained in PY, we
can write

(6) D = AG(g,1) + C + PZ

for some subset Z of Y. Note that we can choose Z to consist of representatives of
distinct cosets of P in G since the same is true for Y.

The significance of (6) lies in the fact that all terms on the right hand side have
coefficients 0 and 1 only. In particular, since D has coefficients 0 and 1 only, the
supports of the three terms on the right hand side of (6) are pairwise disjoint. Hence
we can get useful lower bounds on k = |D| from (6). It turns out that lower bounds
on |Z| are especially desirable. We now list some basic properties of the sets A, B,
C, and Z.

Let p : G — G/P be the canonical epimorphism. Write p(Z) = > Z;w; where
Z; C p({9)) and the w; are representatives of distinct cosets of p((g)) in G/P.
Lemma 4.1.

(a) The supports of A{g), B{g) and PZ{g) are pairwise disjoint.
(b) [C] = |B].
(c)

(7) S ziz Y = 1% +cp((g))

in Z[G | P] where c is a nonnegative integer. In particular, |Z| > n/p?.

Proof a) By Lemma 3.6 (c), the supports of A(g) and B{g) are disjoint. Fur-
thermore, B(g) and PZ{g) have disjoint supports by the definition of C. Since
Z C Y, the supports of A(g) and PZ(g) are disjoint by Lemma 3.6 (b).

b) Observe that B C H. Therefore no two elements in B are in the same cosets
of P. So, the number of P(g)-cosets in |J,.z P(g)b is at least |B|/o(g). Hence,
[Usen P(9)b| > p|B|. Recall that C = (Uycp P(9)b) — BG(g,1) and |G(g,1)| =
p — 1. Thus, we have |C| > p|B| — (p— 1)B = |B|.

c) We claim that

(8) p(Z)p(2)V = ]% + Ep((g))

for some E € Z[G/P]. Note that the characters of G/P can be identified with the
characters of G which are trivial on P. Let x be any character of G which is nontriv-
ial on (g) and trivial on P. Then x(p(Z)p(Z)" V) = x(Z2Z=V) = x(DD=Y)/p* =
n?/p® by (6) and Result 2.3 since x(G(g,1)) = 327~} x(¢9)* = 0. Now Result 2.1
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implies (8). Equation (7) follows from (8) by restricting it to Z[p({(g))]. Since each
nonzero coefficient of Z; is 1, ¢ is a nonnegative integer. O
Theorem 4.2. n is a square and o(g) = (p — 1)/2. Moreover, if r > 4, then the
following hold.

(a) v <9n/2,

(b) pllv,

() plIA or p"H|A.

Proof Let s:= (p—1)/o(g). Lemma 3.5 gives

©) (A-B)A-B) ) =7+ 7).

p p
Applying the trivial character to (9) gives |A| — |B| = £+/n. In particular, n is a
square. On the other hand, comparing the coefficient of 1 in (9) yields |A| + |B| =
(14 s)n/p. Hence

ns

(1+s)(n/p) +vn (1+5)(n/p) ¥ V1

2 2 '
Since n is odd and |A| is an integer, s is even. Recall that any nonzero coefficient
of A,C,Z is 1 in (6). Hence (6), Lemma 4.1 and (10) imply

k=|D|>(p - 1|A| + |B| +p|Z]

(10) 4| =

and |B| =

(11) 2%[@@%}4&[@;@]4&
_(1+3)"i(1’—2)\/7_l n

Asn > p?, (p—2)y/n/2 <n/2. Hence k > sn/2. Recall that k < 2n by (1). Thus
s < 4. Since s is even, we conclude s = 2 and thus o(g) = (p — 1)/2.

From now on, we assume r > 4. In that case, (p — 2)y/n/2 < n/p. Hence
k>3n/2—n/p+n/p=3n/2. Thus A =k —n > n/2. Since A < n by (1), we have
A/n € (1/2,1). Moreover, k¥ = n + Av and thus (n + \)? = k2 > \v. Hence

AN A on
12 <n(l+ )=+ =n2+—-—+ -).
(12 o <n(l+2)(F + ) =n@+ > +3)
For n/\ € (1/2,1) we have (A/n +n/)) < 5/2 and thus we get v < 9n/2.

Suppose p? divides v. Then by [2, Cor. 4], we get 4(p — 1)n < v. Hence
4(p — 1)n < v < 9n/2. This is impossible when p > 3. This proves (b).

Recall that n = p”. We have (n + A\)?2 = n + Av and hence
(13) A2 4 20p" 4+ p*" —p” = v
We define 3 by pP||\. Since A < n, we have 8 < r. Observe that

PPN, PP, BTl — p), and PP .
Hence either 8 =1orr =3+ 1by (13). O

5. A LOWER BOUND FOR A/n

For the rest of this article, we assume p > 5. Note that by Lemma 4.2 we can
also assume o(g) = (p —1)/2.

Consider the decompositions D = (A — B)G(g,1) + PY = AG(g,1) + C + PZ.
The key idea of our proof of Theorem 1.3 is that the algebraic property of the sets
A, B obtained in Lemma, 3.5 forces the the sets A, B and Z to touch too many
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cosets of P{g) in G. On one hand, we obtain lower bounds on |4]|, |C| and |Z|
from Lemma 3.5. It turns out that this corresponds to a lower bound on \/n.
On the other hand, the number of cosets of P(g) touched by A, B and Z trivially
cannot exceed the total number of cosets of P(g) in G. Together with lower bounds
obtained from Lemma 3.5 this gives an upper bound on A/n irreconcilable with its
lower bound thus showing that no such difference set can exist.

Our strategy to get the lower bound for A/n is as follows. In order to make use
of the key equation D = AG(g,1) + C + PZ we first derive a lower bound on |Z|
from Lemma 3.5. Along the way we derive lower bounds on the number of cosets
of (g) touched by A and B respectively Z which will be useful for obtaining an
upper bound on A/n. The lower bound on |Z| together with the key equation gives
a lower bound on k = |D| since we know |A| and |B| from (10). Since k —n = A
the lower bound on k gives also a lower bound on A and hence on A/n.

Recall that

(14) D =(A-B)G(g,1)+ PY = AG(g9,1) + C + PZ.
by (3) and (6). Furthermore, (11) becomes

_ _p-n_n,
(15) (A-B)(A-B) PR (9)-

since o(g) = (p — 1)/2.
Notation 5.1. By [ we denote the number of cosets of {(g) in H which have
nonempty intersection with A or B. In view of Lemma 3.6 (c), we can write

l
A—-B= Z ﬂ:eiUi
i=1

where ey, ..., e; are representatives of distinct cosets of {g) in H and Uy, ...,U; are
subsets of (g).

Lemma 5.2.

9n<l< 2v

P T pp-1)
Proof Since |H| < v/p there are at most 2v/[p(p—1)] cosets of (g) in H. Hence
I < 2v/[p(p — 1)]. Comparing the coefficient of 1 in (15) gives 22:1 |U;| = 3n/p.
On the other hand, comparing the sum of the coefficients of all elements of (g) in
(15) gives Zizl |U;|? = n. Cauchy’s inequality yields

l !
Dl > O o)
=1 =1

and thus [ > 9n/p?. Note that equality occurs if and only if all |U;|s are equal. In
this case, I = 9n/p? divides 3n/p = Zizl |U;|. But this is impossible as p > 3. O

Lemma, 5.2 together with Lemma 4.2(a) shows that AU B has common elements
with “almost all” cosets of (g) in H. Our goal now is to show that there is not
enough space left for the set Z from (14).

Notation 5.3. By m we denote the number of cosets of (g) in G which have a
common element with Z.
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Lemma 5.4.
(a) m>4n/[p*(p—1)].

(b) Ifr >4, then |Z| > (9n/4p?) (1 _ %\/@) _

Proof Asin Lemma 4.1, write p(Z) = 2211 Z;w; where the w; are representa-
tives of distinct cosets of p({(g)) in G/P. Recall that

m _ n
S zz2{V = =5 +ep((g))
i=1 p

where ¢ is a nonnegative integer by Lemma 4.1. Let T; := Z; if |Z;] < (p—1)/4
and T; := p({g9)) — Z; if |Z;| > (p — 1)/4. Then

(16) DT = 5+ dpl(g))

for some nonnegative integer d. Comparing the coefficient of 1 in (16) gives
>, |ITi| > n/p®. On the other hand, since |T;| < (p — 1)/4 by definition, we
have Y 0", |T;| < m(p —1)/4. Hence m > 4n/[p*(p — 1)].

By the definition of I, exactly [ cosets of P{g) have a common element with A
or B. Since the group ring elements A(g), B(g) and PZ(g) have pairwise disjoint
supports by Lemma 4.1, this implies m < 2v/[p(p—1)]—I. By Lemmas 4.2 and 5.2,
we have v < 9n/2 and | > 9n/p?. Thus m < 9n/[p(p—1)] —9n/p? = 9n/[p*(p—1)].

Comparing the sum of all coefficients of nonidentity elements in (16), we get
ST T — 1) = d(p — 3) /2. Comparing the coefficient of 1 in (16) gives

m m
n n 230 |Ti|(T5 - 1
Simi= L va= 2y LMY
i=1 p p—3
Rearranging this equation yields
n(p _ 3) m m .
(17) —5—=@-DQ_IT) -2 1T
p i=1 i=1
By Cauchy’s inequality, we havem > ;| |T;|* > (3512, |T3])?. Since m < 9n/[p?(p—
1)], we get

Sz > o= DL T
i=1 b In ‘

Thus (17) implies

p i=1

Substituting v := p*(} -, |T3])/n we get
2(p—1)
9

It is straightforward to show that this implies v > 2 (1 —5/1+ 1%) completing
the proof. O

p=3<(p—-1)y—
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Corollary 5.5. Recall that n = p". Assumer > 4. Then % > f(p,n) where

1 p-2 9 1 16
f(p,n)—i— +4—p(1—— 1+—).

In particular,

\ %-i—g:f if r>4andp>11,
- > %+% if r>4andp> 17,
n
%-l—% if r>6andp>11.
Proof By (6), Lemma 4.1 b and (10) we have
3 -2
kzg_w"_ﬂm‘

Subtracting n and using Lemma 5.4, we get

n (p—2)v/n 9n 1 16
>2 _WZOVE L TS 1 — ).
Az 2 2 + 4p 3 +p—1
Dividing by n gives % > f(p,n). Note that
9 1 16 1 for p > 11,
_<1_§ 1+p—l)>{19/16 for p > 17.

Hence
p—2 1 1

2 2p? -’_;1)_24_2;1)2
for r > 4 and p > 11 and
1 p—2 19 1 11
f(p,n)>§—2—pQ+—>§+
for r > 4 and p > 17.
Now let 7 > 6. Note that f(p,n) >

But g is an monotonically increasing function on [11, 00) and thus g(p) > ¢(11) > 1
for p > 11. Hence 2 > f(p,n) > 1 + % for p>11. O

6. AN UPPER BOUND FOR A/n

Recall that [ is the number of cosets of (g) in H which have nonempty intersection
with A or B and that m is the number of cosets of (g) in G which have a common
element with Z. In the last section, we obtained lower bounds on [ and m. It turns
out that these lower bounds imply an upper bound on A/n because high values of
A/n imply that there is not enough space in G for A, B and Z. In this way, we get
the following result.

Lemma 6.1.

(p+2)/(2p) if p> 17,
(6 —V11)/5 if p=35,
An<q (17-493)/14  ifp=T,
(79 — /1885)/66 if p = 11,
(31 — 1/285)/26  if p=13.
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Proof By Lemma 5.4(a), we have m > 4n/[p?(p — 1)]. Since Z consists of
representatives of distinct cosets of P in G, m is also the number of cosets of P{g)
in G which have a common element with Z. Recall that [ > 9n/p? by Lemma 5.2.
Since H N P = {1}, the number of cosets of P(g) in G with nonempty intersection
with A or B is also . As the group ring elements A(g), B(g) and PZ{(g) have
pairwise disjoint supports by Lemma 4.1(a), none of the 2v/[p(p — 1)] cosets of
P(g) in G can contribute to both m and [. This implies m + [ < 2v/[p(p — 1)].
Using vA < (n + A)? and writing 7 := A\/n , we conclude

-1 l )2 1
(18) pp=Dlm+l) (A7 _ 5,1
2n An T
Using the lower bounds for I and m we get %+% <7+2+ L and thus
1 _
T+2+—>9p 5.
T 2p

Note that the function h(s) := s + 2+ 1 is monotonically decreasing on (0, 1] and

h((p+2)/(2p)) —[(9p - 5)/(2p)] = —(p — 14)/12p(p + 2)] < O
for p > 14. Thus 7 < (p+2)/(2p) for p > 17.

For p = 5, we need to improve our lower bound for /. Recall that A — B =
Zizl +e;U; where ey, ..., e; are representatives of distinct cosets of (g) in H and
Ui, ...,U; are subsets of (g). Since p = 5, we have o(g) = 2 and thus |U;| € {1,2}
for all i. Let a and b be the number of i’s with |U;| = 1 and |U;| = 2 respectively.
By restricting (9) to Z[(g)] we get °'_, U;U{ ™" = (n/5) + (2n/5)(g). This implies
a=0b=n/5. Thusl = a+ b= 2n/5. Using (18) and m > 4n/[p*(p — 1)] we get
7424 1/7 > 22/5. This implies 7 < (6 — v/11) /5.

Now let p € {7,13}. For this case, we get a better lower bound for m than in
Lemma 5.4 as follows. As before, let p : G — G/P be the canonical epimorphism.
Note that o(g) = (p — 1)/2 is divisible by 3. Let W be the subgroup of order 3 in
(9). Write p(Z) = > W,;v; where the W; are nonempty subsets of p(W) and the
v; are representatives of distinct cosets of p(W) in G/P. It is straightforward to
check that

1 if Wi =1,
(19) WY = 1+ W i (W] =2,
3w if |W;| =3.

Exactly in the same way as we proved (7), we obtain ZWiWi(fl) =5+ ep(W)
for some nonnegative integer e. Together with (19) this implies that the number of
i’s with [W;| = 1 or |W;| = 2 is n/p?. Thus m > n/p? if p = 7 and m > n/(2p?) if
p = 13. Hence, in both cases, m > 6n/[p?(p — 1)]. Using (18) and I > 9n/p? we get
1 _ 9-3
T+24+-> 4 .
T 2p
For p = 13 this implies 7 < (31 — v/285)/26 as desired.
For p =7, we also need to refine our estimate for . Writing A—B = 22:1 +e;U;
as above, we have |U;| € {1,2,3} for all ¢ and

1 if |U;] =1,
(20) vutY = 14 (g) if U =2,
3g) i U] = 3.
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Restricting (9) to Z[(g)] we get

l
(21) DU = (n/7) + (20/7)g).

For j = 1,2,3 let C; be the number of i’s with |U;| = j respectively. Comparing
the coefficient of 1 in (21) gives Cy +2C3 + 3C3 = 3n/7. Comparing the coefficient
of a nonidentity element in (21) and using (20) gives C; + 3C3 = 2n/7. Thus
Ci+Cy = n/7 and C3 = (—CQ+2TL/7)/3 > TL/2]. Hencel = C1+Cs+C3 > 4n/21
Combining this with (18) and m > 6n/[p?(p — 1)] gives 7 + 2+ £ > 31/7. This
implies 7 < (17 — 1/93)/14 as desired.
Finally, we consider the case p = 11. Asin Lemma 4.1, write p(Z) = 1", ZZ-Zg_l).

Recall that

(22) > 2z = pﬁ +cp((9))

by Lemma 4.1 where c is a nonnegative integer. For j = 1,...,5 let a; be the number
of Z;’s with j elements respectively. Comparing the coefficient of 1 in (22) gives
ai + 2as + 3az + 4ay4 + 5as = (n/p?) + c. Comparing the sum of all coefficients of
nonidentity elements in (22) yields ¢ = (2a2 + 6as + 12a4 + 20as5)/4. Combining
the last two equations, we get

+ (a2 +a3) +as = —
a az+a .
1+ 5laz +a3 4 5

This implies

2 3 2n
m=a1+az+as+as+as > 5 ai +§(a2+a3)+a4 = 3—1)2
Combining this with (18) and I > 9n/p* we get 7+ 2+ L > 145/33. This implies
< (79 — 1/1885) /66 as desired. O

7. PROOF OF THEOREM 1.3

Recall n = p" and that we assume p > 5.
Lemma 7.1. We have r = 2.

Proof Recall that by Lemma 4.2, n is a square. Suppose r > 4. By Corollary 5.5
we have % > f(p,n). Note that f(p,n) > f(p,p*) since r > 4. Thus A\/n > f(p,p?).
For p = 5,7,11, 13 this contradicts Lemma 6.1 which can checked by straightforward
computation. Hence p > 17. If r > 6, then % > % + % by Corollary 5.5. This
contradicts Lemma, 6.1. Hence r = 4.

It remains to show that the case p > 17 and r = 4 cannot occur. In this case,
we have p||\ or p?||\ by Lemma 4.2 (c).

If p?||A, then A = p®\; where 1 < \; < p since A < n = pt. By Corollary 5.5
we have \/n > (1/2) + (p + 2)/(2p?) and thus A\; > (p+1)/2+ (1/p). Since A; is
an integer, we get Ay > (p + 3)/2 and hence A/n > (p + 3)/(2p). This contradicts
Lemma 6.1. Thus p?||\ is impossible.

If p||A, write A = pA; with (p, A1) = 1. It follows from (13) that A; is a divisor
of p* — 1. Thus p* — 1 = B\, for some B € N. Note that (p — 1)/2 divides v since
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o(g) = (p—1)/2. Hence v = (p — 1)v1 /2 for some vy € N. Dividing (13) by A we
get
p—1

2

Observe that 8 = p(p* — 1)/A = p(1 — 1/p*)(n/N). Therefore, Corollary 5.5 and
Lemma 6.1 imply

1\ 2p 1\ 16p
24 1—— | — 1-—— .
24 p( p4)p+2<ﬂ<p< p4>8p+11
It is straightforward to check that the left hand side of (24) is larger than 2p — 4
while the right hand side is smaller than 2p — 2. This implies § = 2p — 3. As
BA = p* —1and (2p—3,p—1) = 1, it follows that p — 1 divides A\. Hence (23)
implies

(23) A+ 2pt + 6p? = 1.

-1
A2t 48P =24+ (2p-3)=0 (mod %),

a contradiction. O

Proof of Theorem 1.3

In view of Lemma 4.2 and Lemma 7.1, we may assume o(g) = (p — 1)/2 and
r = 2. In this case, we have |A| = (3p £ p)/2 and |B| = (3p ¥ p)/2 by (10).

Using Result 2.3 and applying a character of G which is nontrivial on (g) and
trivial on P to (6), we see that |Z| > 0. Thus (11) implies k£ > (p—1)|4| + |B| + p.
If |A| = 2p, then k > 2p? = 2n contradicting (1). Thus |A] = p and |B| = 2p. Let
N be the number of cosets of P(g) in G which have a common element with B.
Since B C H we get N > 2p/[(p—1)/2] > 4. Hence N > 5. Recall that

C= (U P(g)b) — BG(g,1).

beB

Since N > 5, we get

dp(p—1 pip—1
01> ZE=D gy 1) = EO=D,
Hence (6) implies
-1 3p? —
E=1D|> (o= DAL+ 101+ > (- p+ PO 4 p o P

Thus X > (p? — p)/2 and A\/n = A\/p? > (p — 1)/(2p). Using (12) and the fact that
the function f(z) = = + 1/z is monotonically decreasing on (0, 1] we get

A A on p—1 2 (p—1)p 2p
<P+ S+ )<+ —+ ) =P+ —T 4 op+
v_p(+n+/\)_p(+ o +p_1) Pt +p+p_1

Hence
(25) Ucapror Pl g (P21 L6
p =P 2 2 '

Recall that [ is the number of cosets of P{g) which have a common element with
A or B and that the group ring elements A, B and P{g)Z have pairwise disjoint
supports by Lemma 4.1. Since |Z]| > 1, the element P{g)Z covers at least one coset
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of P(g). Hence Il < (2v/(p(p—1))) —1. On the other hand, Lemma 5.2 gives | > 10.
This implies

v p—1
2 - 2>11({——).
26) P ( 2 )
From (25) and (26) we conclude p < 7, i.e., n = 25 or n = 49. But these are cases
which are well known to be impossible, see [4], [8] and [12]. O

8. FURTHER RESULTS AND SOME OPEN CASES

Recall that we need the assumption p > 3 in Theorem 1.3. Nevertheless, for
p = 2,3 we also get strong results by our methods. For p = 3, only three cases
remain which need further investigation. We mention this result without proof, but
omit the result for p = 2 since we find it too tedious to state it here.

Result 8.1. Let G be an abelian group containing a (v, k, A,n) difference set with
n = 3", 3|v and assume that the Sylow 3-subgroup of G is cyclic. Then n is a square
and one of the following holds.

(i) v =(25n — 9)/6 and 3"71||\.

(i) v = (49n — 9) /12 and 3||\.

(i) v = (64n — 9) /15 and 3||A.

We remark that Result 8.1 in particular excludes (v, k, A,n) = (2691, 270,27, 243)
which is a case listed as open in [6]. To our knowledge, (v, k, A\, n) = (465, 145,45,100)
is the smallest open case of Lander’s conjecture. We conclude this paper by listing
a few further open cases of Lander’s conjecture taken from [6].

v | k | A | n
945 | 177 | 33 | 144
5859 | 203 | 7 | 196
2233 | 217 | 21 | 196
1785 | 224 | 28 | 196
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cerning the exposition of the paper.
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