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Abstract

We propose the use of finite Fourier series as an alternative means of representing
ovals in projective planes of even order. As an example to illustrate the method’s
potential, we show that the set {wj +w3j +w−3j : 0 ≤ j ≤ 2h} ⊂ GF(22h) forms an oval
if w is a primitive (2h +1)st root of unity in GF(22h) and GF(22h) is viewed as an affine
plane over GF(2h). For the verification, we only need some elementary “trigonometric
identities” and a basic irreducibility lemma that is of independent interest. Finally, we
show that our example is the Payne oval when h is odd, and the Adelaide oval when h
is even.

AMS Classification: 51E20 , 05B25

1 Introduction

In any finite projective plane of order q, an oval is a set of q + 1 points, no three of which
are collinear. In the classical plane PG(2, q) over GF(q), a nondegenerate conic is the
prototypical oval. If the order of a plane is even, then the tangents to an oval all pass
through a point that is called the nucleus of the oval. We call an oval together with its
nucleus a hyperoval. During the 1950s Beniamino Segre proved that in PG(2, q),

1. when q is odd then there exist no ovals other than the conics, and
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2. when q = 2h coordinates may be chosen so that the points of a hyperoval are the
elements of the set

{(x, f(x), 1)|x ∈ GF(q)} ∪ {(0, 1, 0), (1, 0, 0)}

where f is a permutation polynomial of degree at most q − 2 for which f(0) = 0,
f(1) = 1, and with the additional property that for all s in GF(q), the function fs
defined by fs(0) := 0 and fs(x) := [f(x + s) + f(s)]/x for x 6= 0 is a permutation
polynomial.

The first result is a deep and surprising theorem, while the second is merely a simple
observation that reduces the problem of finding examples of hyperovals to the problem of
finding appropriate permutation polynomials. The first result in one stroke completely clas-
sified the ovals in planes coordinatized by a finite field of odd characteristic, while the second
began a search for examples, a search whose ultimate goal is the classification of the ovals of
projective planes over GF(2h). For the past 50 years the classification problem has inspired
a lively research, with connections to number theory, group theory, and combinatorics as
well as to geometry. Progress toward a classification has been surveyed in expository articles
[1], [7] and [9]; recent progress has been so rapid that a web page [2] is maintained to report
the latest discoveries.

From the start, the study of ovals has grown in step with progress in computational
techniques – inspired ideas in combination with ever-faster computers. Perhaps such growth
is reaching its limit. The latest examples of hyperovals have permutation polynomials whose
presentation requires several lines of typescript. For example, a permutation polynomial for
the Payne hyperovals, featured in our main theorem, is

f(x) = x
5·2h−4

6 + x2
h−1

+ x
2h+4

6 .

The permutation polynomial for the Adelaide hyperovals, which also come out of our the-
orem, is considerably more elaborate (see [2] or [3]). With perhaps further infinite families
waiting to be discovered whose permutation polynomials are yet more formidable, the time
is certainly ripe for an alternative approach. We propose here the use of finite Fourier series.

In the next two sections we introduce some background and provide a discussion of
finite Fourier series to motivate our method of representing ovals. The theory remains in
the background in this paper; our goal here is simply to introduce the technique. Only the
notation and the lemma from section 2 are required for the main theorem in section 5, which
provides an example of the method’s effectiveness. Section 4 provides the main tools used
in proving the theorem. In section 6 we identify our oval with two known families, and we
use our representation to study the oval’s automorphism group. The final section proposes
some first steps of a possibly broader use of finite Fourier series in the study of hyperovals.

2 Representation of AG(2, 2h)

In this section, we specify how we identify AG(2, 2h) with the field GF(22h) and state a
criterion for collinearity using this representation.
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Let h be a positive integer and write q = 2h. Since GF(q) → GF(q), z 7→ z2 + z is a
two-to-one mapping there is δ ∈ GF(q) with z2 + z 6= δ ∀z ∈ GF(q). Hence the polynomial
z2 + z + δ is irreducible over GF(q).

We associate the point (x, y) of the affine plane AG(2, q) with the element z = x+ iy of
GF(q2), where we have fixed i to be a root of a quadratic equation

z2 + z + δ = 0.

We call y the imaginary part or y-coordinate of z and denote it by =(z). Since i + 1 is the
second root of z2 + z + δ, the conjugate of i must be iq = i + 1. Thus the conjugate of
z = x+ iy is

zq = (x+ y) + iy. (1)

For the verification of our main theorem, the following well known result is useful.

Lemma 1 Considered as points of AG(2, q), elements T,U, V of GF(q2) are collinear if and
only if

=(TUq + UV q + V T q) = 0.

Proof Write T = a + ib, U = c + id, V = e + if . Then =(TUq + UV q + V T q) =
bc+ ad+ de+ cf + fa+ eb. Furthermore, T,U, V are collinear if and only if∣∣∣∣c+ a e+ a

d+ b f + b

∣∣∣∣ = 0.

But this determinant equals bc+ ad+ de+ cf + fa+ eb. 2

3 Finite Fourier Series

It will be convenient to consider an oval of AG(2, q) to be a particular type of (q + 1)-gon:
an ordered set of q + 1 points,

P = (p0, p1, . . ., pq)

with pi ∈ GF(q2). In this way the oval P is a vector in a (q + 1)-dimensional vector space
over GF(q2). More correctly, an oval is represented by (q + 1)! vectors, one for each way
of ordering its points. The advantage of using ordered point sets is that we may identify a
linear combination of point sets with the linear combination of the corresponding vectors.
Taking our cue from Fourier analysis, we see that a natural basis for this vector space will
be the “regular (q+ 1)-gons”; the oval will be written as a linear combination of these basis
elements, with the scalars being the associated finite Fourier coefficients. To define the
regular (q + 1)-gons, we fix w to be a primitive (q + 1)st root of unity in the field GF(q2).
The powers of w will be points on a unit circle (c(t), s(t)), where we use the notation c(t)
and s(t) to suggest their relationship to the cosine and sine functions; more precisely, we
define c(t) and s(t) by

wt = c(t) + is(t), 0 ≤ t ≤ q.
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Thus, using (1), we have

1 = wtwqt = [c(t) + is(t)][c(t) + s(t) + is(t)] = c2(t) + c(t)s(t) + δs2(t) (2)

for every t. This means that the unit circle of AG(2, q) consists of the points (c(t), s(t)) of
the ellipse x2 + xy + δy2 + 1 = 0.

Definition 2 The k-regular (q + 1)-gon in AG(2, q) is the ordered set

(1, wk, w2k, ..., wqk).

Thus, the k-regular (q + 1)-gon is the analogue of the regular polygon of the Euclidean
plane whose vertices are points evenly spaced around the unit circle, with adjacent vertices
subtending the angle 2kπ/(q + 1) at the center. Note that its vertices can be repeated; for
example, the 0-regular 9-gon consists of the point 1 repeated nine times, while the 3-regular
9-gon is a 3-fold repeated triangle. What is relevant here is that the k-regular (q + 1)-gons
form a basis for complex (q+1)-space. This claim is actually a restatement of a standard and
easily verified fact about finite Fourier series (see [11] or [12], for example). More precisely,
for a (q + 1)-gon P = (p0, p1, . . ., pq) there exists a unique set α0,...,αq of q + 1 elements of
GF(q2), the finite Fourier coefficients of P , so that

pj =

q∑
k=0

αkw
jk (3)

for j = 0, ..., q. This is immediately clear since the coefficient matrix of (3), when considered
as a system of linear equations in the unknowns α0,...,αq, is a nonsingular Vandermonde
matrix. Furthermore, since

q∑
j=0

wjt =

{
1, if t ≡ 0 mod q + 1,
0 otherwise,

we have

αk =

q∑
r=0

αr

q∑
j=0

wj(r−k)

=

q∑
j=0

(
q∑
r=0

αrw
jr

)
w−jk

=

q∑
j=0

pjw
−jk.

(4)

The first hint that finite Fourier series might be applicable to the study of ovals was the
observation that any ellipse of AG(2, q), q even or odd, can be represented by the series
whose jth point is

pj = awj + bw−j + c

where a, b, c ∈ GF(q2), aq+1 6= bq+1. This means that an ellipse has only three nonzero
Fourier coefficients: α0 = c, α1 = a, αq = b. The element c is the center of gravity of the
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q + 1 points of the ellipse. The condition aq+1 6= bq+1 avoids the situation where the q + 1
points are collinear. It is a straightforward exercise to confirm directly that these points
satisfy the equation of an ellipse, although a deeper explanation is provided by the theory
of affinely regular polygons (see [4], Theorem 2). The natural question is: Do other ovals
have particularly nice Fourier representations?

We turned to the computer to find all ovals whose Fourier series have only three or four
nonzero coefficients. It turned out that, up to affine transformations, all such ovals have the
form P = (p0, p1, . . . , pq) with

pj = wj + awjk + bw−jk, a, b ∈ GF(q2), k = 2, 3, . . ., q/2.

Only certain choices of a and b yield ovals. We found that for the planes AG(2, q), q =
8, 16, 32, 64, 128, aside from conics, the only ovals we get in this way are

Or = {wj + w3j+2r + w−3j−4r, j = 0, ..., q}, r = 0, 1, . . . , q. (5)

Note that, for fixed q, the ovals Or, r = 0, 1, . . . , q, are all equivalent:

Or = {wj + w3j+2r + w−3j−4r, j = 0, ..., q}
= {wj−r + w3(j−r)+2r + w−3(j−r)−4r, j = 0, ..., q}
= {w−r(wj + w3j + w−3j), j = 0, ..., q}
= w−rO0.

In fact, O0 is an oval in AG(2, 2h) for all h. To prove this we use a finite analogue of
trigonometry.

4 Trigonometric Identities for GF(22h)

We collect here the tools used in our proof of the main theorem. All one needs here from
section 2 are the identities

i2 = i+ δ, (6)

wt = c(t) + is(t), (7)

δs2(t) = 1 + c2(t) + c(t)s(t) (8)

From these we will derive a list of “trigonometric identities” followed by a brief verification.
Our treatment follows [10], section 2, where further details can be found. An alternative
approach to trigonometry by way of vectors is the subject of [6]. With a third approach,
S.E. Payne and J.A. Thas [8] recently used such identities to help find the automorphism
group of the Adelaide ovals.

Recall from section 2 that the domain of the functions c(t) and s(t) consists of the integers
modulo 2h+1; addition and multiplication of “angles” are reduced modulo 2h+1, so that
t/2 always has a well-defined value.
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Double and half angle formulas

c(2t) = 1 + c(t)s(t) (9)

c2(t/2) =
1 + c2(t)

s(t)
(10)

s(2t) = s2(t) (11)

s2(t/2) = s(t) (12)

Triple angle formulas

c(3t) = c(t) + s(t) + c(t)s2(t) (13)

s(3t) = s(t) + s3(t) (14)

Formulas involving angle sums and differences

c(t+ u) = c(t)c(u) + s(t)s(u)δ (15)

s(t+ u) = c(t)s(u) + c(u)s(t) + s(t)s(u) (16)

c(t− u) = c(t)c(u) + c(t)s(u) + s(t)s(u)δ (17)

s(t− u) = s(t)c(u) + c(t)s(u) = s(u− t) = c(t− u) + c(u− t) (18)

c(t)s(u) = c(t+ u) + c(t− u) (19)

c(t) + c(u) = c

(
t+ u

2

)
s

(
t− u

2

)
(20)

s(t)s(u) = s(t+ u) + s(t− u) (21)

s(t) + s(u) = s

(
t+ u

2

)
s

(
t− u

2

)
(22)

s(t)s(u)s(v) = s(t+ u+ v) + s(−t+ u+ v) + s(t− u+ v) + s(t+ u− v) (23)

s(t) + s(u) + s(v) = s

(
t+ u

2

)
s

(
u+ v

2

)
s

(
v + t

2

)
+ s(t+ u+ v) (24)

Proof of (9) through (12)

w2t (6)
= (c2(t) + s2(t)δ) + s2(t)i

(8)
= (1 + c(t)s(t)) + (s2(t))i

This shows (9), (11) and (12). To get (10), we compute

c(t/2)2
(9)
=

(
c(t) + 1

s(t/2)

)2

=
c(t)2 + 1

s(t/2)2

(12)
=

c(t)2 + 1

s(t)
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Proof of (13) and (14)

w3t (6)
= (c(t) + c2(t)s(t) + s3(t)δ) + (s(t) + s3(t))i

(8)
= (c(t) + s(t) + c(t)s2(t)) + (s(t) + s3(t))i

Proof of (15) through (24)

wtwu = (c(t) + s(t)i)(c(u) + s(u)i)

= (c(t)c(u) + s(t)s(u)δ + (c(t)s(u) + c(u)s(t) + s(t)s(u))i

wtw−u = wt(wu)q

= (c(t) + s(t)i)(c(u) + s(u) + s(u)i)

= (c(t)c(u) + c(t)s(u) + s(t)s(u)δ) + (s(t)c(u) + c(t)s(u))i

This proves (15) through (18). The remaining identities follow from (15-18) and the obser-
vation s(−t) = s(t) for all t. 2

We use the following notation:

fα := x2 + x+ α ∈ GF(2h)[x] for α ∈ GF(2h).

Note that fα is a two-to-one mapping on GF(2h) and thus |fα(GF(2h))| = 2h−1. The
following is well known, see [5] section 1.4, (iiie). For the convenience of the reader, we
include a proof.

Lemma 3 The polynomial fα+β is irreducible over GF(2h) if and only if exactly one of fα,
fβ is irreducible over GF(2h).

Proof The sufficiency of the conditions is obvious. Necessity: If both fα and fβ have roots
in GF(2h) then so has fα+β and thus is reducible. If fα and fβ are both irreducible then their
images on GF(2h) both do not contain 0 and hence intersect. Thus there are a, b ∈ GF(2h)
with a2 + a + α = b2 + b + β, i.e. (a + b)2 + (a + b) + α + β = 0. This shows that fα+β is
reducible. 2

To prove our main theorem, we need one basic lemma, a result that seems to be of interest
in its own right. In fact, it was observed also in [8] (cf. section 5), where the authors need
it for computations similar to ours.

Lemma 4 For any nonzero element s of GF(2h), the quadratic polynomial z2 + sz + 1 is
irreducible over GF(2h), if and only if s is the nonzero y-coordinate of a point of the unit
circle wwq = 1 in AG(2, 2h).

Proof Note that z2 + sz + 1 is irreducible over GF(2h) if and only if f1/s2 is irreducible

over GF(2h) (put z = sx). By Lemma 3, f1/s2 is irreducible if and only if fδ+1/s2 is
reducible since fδ is irreducible by the choice of δ. But fδ+1/s2 is reducible if and only if

z2+sz+δs2+1 is reducible (put x = z/s). This is the case if and only if there is c ∈ GF(2h)
with c2 + sc + δc2 + 1. By (2) this holds if and only if s is the nonzero y-coordinate of a
point of the unit circle in AG(2, 2h). 2
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5 The Main Theorem

Theorem 5 The point set O0 = {wj + w3j + w−3j : 0 ≤ j ≤ 2h} is an oval of AG(2, 2h)
whose nucleus is the origin.

Proof Write pj = wj + w3j + w−3j . Since w3j + w−3j = (c(3j) + c(3j) + s(3j)) + (s(3j) +
s(3j))i = s(3j), we have

pj = c(j) + s(3j) + s(j)i. (25)

Let 0 ≤ t < u < v ≤ 2h be arbitrary. We have to show that pt, pu and pv are not collinear.
By Lemma 1 this is equivalent to

=(ptp
q
u + pup

q
v + pvp

q
t ) 6= 0. (26)

Note that, using (25),

=(pjp
q
k) = =[(c(j) + s(3j) + s(j)i)(c(k) + s(k) + s(3k) + s(k)i)]

= c(j)s(k) + s(3j)s(k) + s(j)c(k) + s(j)s(3k).

Hence the the collinearity of pt, pu, pv is equivalent to

s(3t)[s(u) + s(v)] + s(3u)[s(t) + s(v)] + s(3v)[s(u) + s(t)]

= c(t)[s(u) + s(v)] + c(u)[s(t) + s(v)] + c(v)[s(u) + s(t)]
(27)

We must therefore show that (27) never holds. We first compute the left hand side of (27):

s(3t)[s(u) + s(v)] + s(3u)[s(t) + s(v)] + s(3v)[s(u) + s(t)]

(14)
= s3(t)[s(u) + s(v)] + s3(u)[s(t) + s(v)] + s3(v)[s(u) + s(t)]

= (s(t) + s(u)) (s(t) + s(v)) (s(u) + s(v)) (s(t) + s(u) + s(v))

(22),(24)
= s( t+u

2 )s( t−u
2 )s( t+v

2 )s( t−v
2 )s(u+v

2 )s(u−v
2 )[s( t+u

2 )s(u+v
2 )s( v+t

2 ) + s(t+ u+ v)]

Note s(x) = 0 if and only if x ≡ 0 mod (2h + 1). For the right hand side of (27) we get

c(t)[s(u) + s(v)] + c(u)[s(t) + s(v)] + c(v)[s(u) + s(t)]

= (c(t)s(u) + c(u)s(t)) + (c(u)s(v) + c(v)s(u)) + (c(v)s(t) + c(t)s(v))

(18)
= s(t− u) + s(u− v) + s(v − t)
(24)
= s( t−u

2 )s(u−v
2 )s( v−t

2 ) + s(0)

= s( t−u
2 )s(u−v

2 )s( v−t
2 ).

Since t < u < v, the last product cannot equal zero, so (27) is equivalent to

s( t+u
2 )s( t+v

2 )s(u+v
2 )[s( t+u

2 )s(u+v
2 )s( v+t

2 ) + s(t+ u+ v)] = 1 (28)

Write w = t+ u+ v and z = s( t+u
2 )s( t+v

2 )s(u+v
2 ). Then (28) reads

z2 + s(w)z + 1 = 0. (29)
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If w 6≡ 0 mod (2h + 1), then (29) has no solution z by Lemma 4 since s(w) is a nonzero
y-coordinate of a point on the unit circle. Now assume w ≡ 0 mod (2h+1). Then s(u+v) =
s(−t) = s(t), s(v + t) = s(−u) = s(u) and thus

z2 = [s( t+u
2 )s( t+v

2 )s(u+v
2 ]

2

(11)
= s(t+ u)s(u+ v)s(v + t)

= s(t+ u)s(t)s(u)

(21)
= s(t+ u)[s(t+ u) + s(t− u)]

= s2(t+ u) + s(t− u)s(t+ u).

Since s(t−u) is a nonzero y-coordinate of a point of the unit circle, Lemma 4 implies z2 6= 1.
Since s(w) = s(0) = 0 this shows that (29) has no solution.

In summary, we have shown that (28) and hence (27) never holds. This completes the
proof that O0 is an oval.

It remains to prove that 0 is the nucleus of O0. Assume to the contrary that two points
of the oval, pt and pu, are collinear with 0. Then (27) with c(v) = s(v) = 0 implies

0 = c(t)s(u) + c(u)s(t) + s(3t)s(u) + s(3u)s(t)

(18),(14)
= s(t− u) + (s3(t) + s(t))s(u) + s(t)(s3(u) + s(u))

= s(t− u) + s(t)s(u)(s2(t) + s2(u))

= s(t− u) + s(t)s(u)(s(t) + s(u))2

(21),(22)
= s(t− u) + (s(t+ u) + s(t− u))s2( t+u

2 )s2( t−u
2 )

(11)
= s(t− u) + (s(t+ u) + s(t− u))s(t+ u)s(t− u)

= s(t− u)(1 + s2(t+ u) + s(t− u)s(t+ u)).

As we saw earlier in the proof, 1 + s2(t+u) + s(t−u)s(t+u) cannot be zero and, of course,
neither can s(t− u). We therefore conclude that no two points of the oval can be collinear
with 0, and the theorem is proved. 2

6 Payne and Adelaide ovals and their automorphism
group

The ovals described in the previous section are not new. When h is odd they belong to the
family discovered by Stanley Payne in 1985; when h is even they belong to the Adelaide
family. This development comes as a double surprise: first it is somewhat surprising that
what was believed to be two families turns out to be just one; second, it is very surprising
that there should be such an easy description of these families. The Adelaide hyperovals in
particular caused enormous difficulties, with nearly nine years separating their discovery by
computer search in 1995 from the proof that they constitute an infinite family [3]. One can
easily identify our ovals after having determined the equation their points must satisfy.
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Lemma 6 The points of the oval O0 satisfy the sixth degree equation

y6 + y4 + xy + x2 + δy2 + 1 = 0

where δ is chosen as described in section 2.

Proof We saw in the proof of Theorem 5 that points of the oval are in the form (x, y) =
(c+ s3 + s, s) where c and s satisfy (8). Plugging s = y and c = x+ y3 + y into (8) produces
the desired sixth degree equation. 2

If we replace x respectively y by x/z respectively y/z and multiply by z6 we get our
equation in projective coordinates:

y6 + y4z2 + z4(xy + x2 + δy2) + z6 = 0.

We prove that our oval belongs to the Payne and Adelaide families by showing that the sixth
degree equation satisfied by the points of our oval is projectively equivalent to equations that
had previously been obtained for the known families.

Theorem 7 The hyperoval Oo∪{0} is the Payne hyperoval when h is odd, and the Adelaide
hyperoval when h is even.

Proof When h is odd, we can take δ = 1. The equation used by Thas, Payne and Gevaert
in [13] to represent the Payne ovals is v6 = tu(t+u+v)4. Set t = x+y, u = x, and v = y+z
into their equation to reduce it to ours (with δ = 1).

When h is even, to represent the Adelaide oval, Payne and Thas ([8], Lemma 5.1) used
the equation s2v6 = (t + v)4(t2 + stu + u2), where s = w + w−1 and w is defined in our
section 2. Set t = y, u = sx, and v = y + z to reduce their equation to ours with δ = 1 +
1/s2.

It remains to show that x2 +x+ 1 + s−2 is irreducible over GF(2h). We use the notation
from Lemma 3. Note that s = (c(1) + s(1)i) + (c(1) + s(1) + s(1)i) = s(1) is a nonzero y-
coordinate of a point of the unit circle of AG(2, 2h). Thus, f1/s2 is irreducible over GF(2h)

by the proof of Lemma 4. Since h is even, f1 is reducible over GF(2h). Now Lemma 3
implies that x2 + x+ 1 + s−2 = f1+1/s2 is indeed irreducible over GF(2h). 2

Our representation simplifies somewhat the task of determining the automorphism group
of these hyperovals. It is clear that the automorphism z 7→ z2 of GF(22h) determines a
collineation of the affine plane that permutes the points of the oval O0. This field auto-
morphism induces a cyclic collineation group of order 2h that preserves the oval. Note that

z 7→ z2
h

can be viewed as complex conjugation in GF(22h); it represents an affine trans-
formation in AG(2, 2h), namely the shear (x, y) 7→ (x + y, y). This shear and the identity
are the only collineations in the stabilizer of the oval that belong to PGL(3, 2h); the other
2h−1 elements of the stabilizer belong to PΓL(3, 2h)\PGL(3, 2h). To show that when h ≥ 5
the ovals have no further automorphisms, the authors in [8] and [13] analyzed properties of
the oval’s sixth degree equation. The hard work lies in showing that the curve is absolutely
irreducible. To achieve this goal a key observation, easily verified here, was that the nucleus
(x, y) = (0, 0) belongs to the hyperoval but does not satisfy the equation of the oval, while
the point at infinity of the line y = 0 satisfies the projective equation (and therefore lies on
the algebraic curve determined by the oval) but does not belong to the hyperoval.
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7 Applications of Fourier series to the study of ovals

One can program a computer to find further examples of ovals with Fourier expansions that
have most coefficients equal to zero or, perhaps, that are nice in some other way. Although
it might be possible to provide a proof that the computer is finding further infinite families
of ovals, this should not be the ultimate goal. More important would be finding a necessary
and sufficient condition on the Fourier coefficients for a set of q + 1 points to form an oval.
Here is a promising approach to that goal.

The first step might be to label the points of a given oval from 0 to q in a “canonical”
way. Of the (q + 1)! possible orders, it seems natural to place the nucleus at the origin and
use the order inherited from the unit circle: define Pj to be the point of the oval on the line
joining the origin to wj .

Theorem 8 Let q be a power of 2 and let w be a primitive (q+1)st root of unity in GF(q2).
A set {p0, p1, ..., pq} of q+1 points in GF(q2)\{0} is labeled so that pj is on the line joining
the origin to wj if and only if the Fourier coefficients of the point set satisfy αk = αq2−k
where the subscripts are taken modulo q + 1.

Proof Let λ denote the generator of the multiplicative group of the small field GF(q). Each
nonzero element of GF(q2) can be uniquely written as λbwc for a pair of integers b, c satisfying
0 ≤ b < q − 1 and 0 ≤ c < q + 1. Note that the conjugate of λbwc is (λbwc)q = λbw−c. A
point pj is on the line joining 0 to wj if and only if

pj = λbjwj (30)

for some bj , 0 ≤ bj < q − 1. If (30) holds then (3) yields

αk =
∑
j

(
λbjwj

)
w−jk =

∑
j

λbjw−j(k−1) and

α2−k =
∑
j

(
λbjwj

)
w−j(2−k) =

∑
j

λbjwj(k−1).

Thus αk = αq2−k as claimed.

Conversely, assume αk = αq2−k for all k. Write αk = λdkwck . Note that 2 − k runs
through 0,−1, ..., (2 − q)/2 mod (q + 1) when k runs through 2, 3, ..., (q + 2)/2. Also note
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that α1 ∈ GF(q) since α1 = αq2−1 = αq1. This implies

pj = α1w
j +

q∑
k=0

αkw
jk

= α1w
j +

(q+2)/2∑
k=2

αk(wjk + wj(2−k))

= α1w
j +

(q+2)/2∑
k=2

λdk
(
wck+jk + w−ck+j(2−k)

)

= wj

α1 +

(q+2)/2∑
k=2

λdk
(
wck+j(k−1) + w−ck−j(k−1)

) .

Since λ, α1 ∈ GF(q) and wt + w−t = wt + wtq ∈ GF(q) for all t, this implies pj = xwj with
x ∈ GF(q). Hence (30) holds. 2

Observe that if 0 is the centroid of the points pj (that is, 0 =
∑
pj), then α0 = α2 = 0.

Moreover, as we saw in the above proof, α1 is in GF(q): α1 =
∑
λdj . Note further that the

theorem provides a necessary and sufficient condition for an arbitrary set of q + 2 points to
form a hyperoval: for each of the q + 2 translations that take one of the given points to the
origin, the Fourier series of the set formed by the remaining q + 1 points has its coefficients
paired (with αk = αq2−k) if and only if the given pj form a hyperoval. Unfortunately, to
apply the theorem one must, for each choice of nucleus, label the remaining q + 1 points in
the appropriate order. There seems to be no obvious relationship among the q+ 2 resulting
orderings. We do not yet know if there is a simple underlying pattern; nor do we know
if there is some other condition that would enable Fourier series to provide a meaningful
classification of ovals. Until such a condition is discovered, the use of Fourier series will be
limited to searching for new families of ovals and, perhaps, shedding light on the known
ovals.

Acknowledgment This paper was written while the first author was a guest at the
University of Augsburg. He is grateful for the kind hospitality of Dieter Jungnickel and his
colleagues. We thank Stan Payne and Gordon Royle for their help in identifying our oval.

References

[1] W. Cherowitzo, Hyperovals in Desarguesian planes : an update, Discrete Math. 155 (1996),
31-38.

[2] W. Cherowitzo, Hyperoval Web Page.
http://www-math.cudenver.edu/∼wcherowi/research/hyperoval/hypero.html

[3] W. E. Cherowitzo, C. M. O’Keefe, T. Penttila, A unified construction of finite geometries
associated with q-clans in characteristic two. Adv. Geom. 3:1 (2003), 1-21.

12



[4] J.C. Fisher and R.E. Jamison, Properties of affinely regular polygons, Geom. Dedicata 69:3
(1998) 241-259.

[5] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, Ox-
ford, 1979.

[6] S. Ilkka, A trigonometric analysis of angles in finite Desarguesian planes. Report-HTKK-
Mat-A44 (Helsinki Univ. of Tech., Institute of Math., SF-02150 Otaniemi, Finland), 1974.
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