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Abstract

Generalizing an idea in [13], we exhibit some, in general nonhomomor-
phic, bijections between finite groups which preserve the absolute value
of character sums. As a consequence, the existence of a single difference
set, relative difference set, building set etc. in certain groups implies the
existence such objects in many other groups.

1 Introduction

The main aim of this paper is the study of the problem of switching groups for
various types of difference sets and related structures. That is, for groups G, H
of the same order, we ask whether we can find bijections v : G — H preserving
certain combinatorial properties of group ring elements like being a difference set.
More precisely, considering the example of difference sets, we require that a(D)
is a difference set in H for every difference set D in G. We do not require the
converse, i.e., we do not require o' (E) do be a difference set in G for difference
sets F in H.

The main motivation for the study of switching groups is to gain more insight into
the existence of the combinatorial objects in question. One of the most striking



phenomena in the theory of difference sets is that (v, k, \)-difference sets with
ged(v, k — X) > 1 “prefer to live” in groups of low exponent and high rank. For
instance, Turyn, Davis and Kraemer [26, 9, 18] proved that an abelian 2-group
G of order 2%¢ has a difference set if and only if exp G < 241, As a consequence
of our main theorem, we can show, for example, that the existence of a difference
set in Zga+1 X ngl implies the existence of a difference set in P X ngl for any
abelian 2-group P of order 2¢*1. Though, in view of the Turyn/Davis/Kraemer
result, our result does not yield new groups containing difference sets, it sheds
some light on the low exponent — high rank phenomenon.

Under which conditions can a switching of groups possibly work? First of all,
there are already some bijections between nonisomorphic groups preserving dif-
ference sets known in the literature. For example, Dillon (cf. [4], [19]) found
such bijections between generalized dihedral groups and corresponding abelian
groups. Moreover, Bruck [5] constructed nonabelian projective planes by finding
bijections between cyclic groups and certain nonabelian groups preserving the
difference set property. These two constructions only work for very special types
of groups. The aim of this paper is to find bijections preserving difference sets in a
more general setting. Though we will succeed under some conditions, our results
do not imply the existence of difference sets in any groups which previously had
not been known to contain difference sets. However, our result can be applied to
several families of difference sets, only the groups with difference sets we obtain
are already covered by previously known constructions. Nevertheless, we believe
that our result is still helpful for the understanding of difference sets.

When we try to find general difference set preserving bijections, we have to be
aware of the following facts.

1. Difference sets with Singer parameters (see [4, 19, 25], cf. Section 6) exist
in cyclic groups, but in many cases it can be shown that they do not exist
in any other abelian groups of the same order. In fact, it is conjectured
that no noncyclic abelian difference sets with Singer parameters exist, cf.
[4, VI.§17]. So, bijections G — H where H has lower exponent (and higher
rank) than G cannot work in general.

2. As mentioned above, Turyn, Davis and Kraemer [26, 9, 18] proved that an
abelian 2-group G of order 22¢ has a difference set if and only if exp G <
29+1 This shows that bijections G — H where G and H are abelian groups
with exp H > exp GG cannot be difference set preserving in general.

3. Arasu, Davis, Jedwab, and Sehgal [1, 2] proved that a Hadamard difference
set in Zgy X Zg X Zza x K with K abelian, |K| = 3%, exists if and only if K
is ¢yclic. Thus bijections G — H with exp H = exp G, rank H > rank G
also cannot work in general.

However, we still will be able to exhibit quite general difference set preserving



bijections by using appropriate lexicographic orderings together with some non-
homomorphic permutations. The facts 1.-3. above show that some assumptions
will be necessary to make bijections difference set preserving. This will reflect
in two assumptions of our main Theorem 4.6. The first assumption puts some
restrictions on the group structure; the second assumption is a subfield condi-
tion which requires that all character values of a group ring element essentially
(i.e., up to multiplication with roots of unity) lie in a certain cyclotomic field.
The subfield condition is closely related to recent results of Schmidt [22, 23, 24|,
in particular, to the so-called “field descent”, see Result 3.3. It is interesting
to note that the subfield condition is satisfied for all known difference sets with
ged(v, k—A) > 1 since all their character values essentially lie in Q, see [4, VI.§9].
The bad news is that we do not know of any difference sets in cyclic groups for
which the subfield condition is satisfied.

2 Background

In this section, we recall some well known facts on the combinatorial objects we
will study. Let G be a finite group of order mn, and let NV be a subgroup of G of
order n. A subset R of G is called an (m, n, k, \) difference set in G relative
to N if every g € G\ N has exactly ) representations g = 75, ' with r1, 7, € R,
and no nonidentity element of N has such a representation. The subgroup N is
called the forbidden subgroup.

In the case n = 1, i.e., when the forbidden subgroup is trivial, we write v instead
of m and speak of a (v,k,\) difference set in G. The nonnegative integer
n = k — A, which should not be confused with the n of a relative difference set,
is called the order of the difference set. If n € {0, 1}, the difference set is called
trivial. By a “difference set” we will always mean a nontrivial difference set.
Sometimes it is useful to attach n to the parameters of a difference set. Thus we
also speak of (v, k, A\, n) difference sets.

A weighing matrix W (m,n) is an m X m matrix H with entries —1,0, 1 such
that HH' = nI where I is the identity matrix. The integer n is called the weight
of H. Weighing matrices have been studied intensively, see [11] for a survey and
[6, 7, 12, 20| for some more recent results. Let G be a group of order m. We
say that a matrix H = (hyy)f4ec is G-invariant if hyy g = by, for all k € G.
We \[Nil]l identify a G-invariant weighing matrix H with the element ) e M99
of Z|G|.

A standard method for the study of difference sets and similar objects is the use
of complex characters. We summarize the necessary facts here, see [4, Chapter
XI] for proofs. Let G be a finite abelian group. A complex character of G is
a homomorphism x : G — C*. The character xo defined by xo(g) = 1 for all
g € (G is called the trivial character. For a subgroup N of GG, we denote the



group of all characters of G which are trivial on N by N+. The set of characters
of G forms a group G* isomorphic to G where the group operation is defined by
X1x2(9) = x1(9)x2(g)- If x is a character of G of order e, then x(g) is a complex
eth root of unity for all g € G. Any character of G can be extended to the group
ring Z[G| by linearity. A subset D of G will be identified with ., d € Z|G].
For X = Y ;a9 € Z[G] we write XV := 37 - a,g™". Throughout this
paper, use the notation & = €27/t

The following well known characterizations of (relative) difference sets and group
invariant weighing matrices in terms of characters is basic. See [4, Chapter VI|
and [22], for proofs.

Lemma 2.1 A k-subset R of an abelian group G of order mn is an (m,n, k, \)-
difference set in G relative to a subgroup N of order n if and only if

x<R>W={’,j_M fegay W

for every nontrivial character x of G.

Lemma 2.2 A k-subset D of an abelian group of order v is a (v, k, A\, n) differ-
ence set in G if and only if

X(D)x(D) =n

for every nontrivial character x of G.

Lemma 2.3 Let G be an abelian group of order m, and let H be a G-invariant
m X m matriz with entries —1,0,1. Then H is a weighing matriz W(m,n) if and
only if -

X(H)x(H) =n

for all characters x of G where H is viewed as an element of Z|G].

By the results above, (relative) difference sets and group invariant weighing matri-
ces can be viewed as group ring elements whose character sums have a prescribed
absolute value. This shows that it is interesting to look for bijections between
group rings which preserve the absolute value of character values of group ring
elements. This is the theme of the present paper.

3 Number theoretic tools

Our results will rely on a certain “subfield condition” involving cyclotomic fields
over Q. We recall the necessary number theoretic facts here. As before, we use
the notation & := €®™/!. We say that X € Q(&) essentially lies in Q(&y) for
some t'|t if X& € Q(&) for some j.



Result 3.1 Let m = p*m' where p is a prime, a > 2 and ged(m',p) = 1. Then
a—1
1, &pa, ...,§£a ~! are independent over Q(Epm )-

Proof This follows from the well known fact [Q(&,,) : Q(€pmy )] = @(m)/p(pm') =

p* 1 see (8] or [14], for instance. O
Definition 3.2 Let m, n be positive integers, and let m = H:zlpﬁ be the prime
power decomposition of m. For each prime divisor q of n let

I pi if m is odd or ¢ = 2,
M = 4Hp#2’q p; otherwise.

Let D(n) be the set of prime divisors of n. We define F(m,n) = [['_, pi to
be the minimum multiple of szl p; such that for every pair (i,q), i € {1,...,t},
q € D(n), at least one of the following conditions is satisfied.

(0,) q = pi and (piabi) # (2’ 1)7

(b) bz = Gy,

(¢) ¢ # p; and ¢°4maD £ 1 (mod pith).

Result 3.3 (Field descent [22]) Assume XX = n for X € Z[¢,] where n and
m are positive integers. Then X essentially lies in Q({pimp))-

4 The folding theorem

In this section, we prove our main result. We need some preparations. We denote
the cyclic group of order t by Z; and often identify Z; with [t] := {0, ...,t—1}. So,
if z is a fixed generator of Z,, we identify z* with i. We use z* in the multiplicative
and ¢ in the additive notation. Let P = Zp X --+ X Zyts be an abelian p-group.
We define a lexicographic order on P by

(a1, ...;as) > (b, ..., bs) < a; > b; for i = min{j : a; # b,}.

Let m := ) t;. The folding f : Z,m — P is defined by f(i) being the ith element
of P in the lexicographic order. Note

F 1,y 0) = p T gt g ®

Let G = Zpm x T, m > 2, be an abelian group where p* does not divide exp 7,
and let P be an abelian group of order p™. The p-folding f : G — P x T is
defined by f(a,w) = f(a)w for a € P and w € T. We extend p-foldings to group
rings by linearity. If G has not the form Z,» x T, m > 2, p* JexpT, we say that
no p-folding of G exists. Note that a p-folding of an abelian group G exists if
and only if G? has a nontrivial cyclic Sylow p-subgroup.



Let «; be a generator of Z;,,t = 1, ..., 5. We call asubgroup U of P = Z, X+ - X Z,
left full if it has the form

U= {ai,..,ar_1,0)

for some [ and some r € {1, ..., s}.

Being bijections between nonisomorphic groups, foldings are non-homomorphic,
of course. However, one of the main facts which makes foldings work is that they
are partially homomorphic. The following lemma makes this precise.

Lemma 4.1 Let p be a prime, and let z be a generator of Zym. Let f : Zpm — P
be a folding. Let U be a left full subgroup of P, and let W be the subgroup of Zym
of order |U|. Then

fZw) = f(2') f(w)
for 0 <i<p™/|U| and all w € W.

Proof Write U = (ay,...,,_1,a? ) with 0 < v < t,. Note |U|] = |W| =
phit-tr=v Tet w € W. Write w = a p?T "t 4 gppat-tt 4 ... 4 g, with

0 < ax < p*. Since w = 0 (mod p™/|W|), we have a,41 = ... = a; = 0 and
a, = jp¥ for some j < ptr=v. Write ¢ = bypl2 T Tt 4 hyplsTTs 1 ... 4 b, with
0 < by < p'. Then by = ... = b,_; = 0 and b, < p" since i < p™/|U|. Note

a, + b, < p'. Using (2), we get

fE'w) = flap?T T + agp®t e 4o g gpir ot
by + ap)ptrt e b plrrett b
= (a1, ey Qr_1,0p + by, bpy1, .oy bs)
= (0,..,0,b,, 6,41, ..., 05) + (a1, ..., ar_1,0,,0, ..., 0)
= f(z")f(w)

concluding the proof. O

For X =37 ;7,9 € Z[G]and S C G, we write XNS 1=}
we write X C S if the support of X is contained in S.

scs TsS. Furthermore,

Lemma 4.2 Let G = Zym X T be an abelian group where expT is not divisible
by p*. Let T be a character of G whose order is p', 1 <1 < m, when restricted to
Zym. Let W be the subgroup of Zym of order p™ **1, and write W = Uf;ol WPyt
where w € W\WP. Let D =3 _.dyg € Z|G]. If x(D) € Q(&, &expr), then

x(DNW) = x(D)

and
x(DNWh)=0

for Wh#W.
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Proof Let z be a generator of Z,m. Write D = >_0_ " D;2* with D; € Z[W xT.
Note x(D;) € Q(&,&expr) for all i. By Result 3.1, x(1), x(z), o x(2771) are
independent over Q(&,&expr)- Thus x(D;) = 0 for i > 0 and x(D) = x(Dy)
implying the assertion. O

Lemma 4.3 Let f : Zym x T — P x T be a p-folding. Let x be a character of
Zym x T which is nontrivial on P, and let U be the mazimal left full subgroup of
P contained in kery. Let W be the subgroup of Zym of order p|U|. Then there is
a character T of Zym x T such that

for allx € W x T and 7 has order p™/|U| when restricted to Zym.

Proof Since f|r is the identity, it suffices to consider the case T' = {1}. Write
U= {a,..,0_1,0F") with 0 < v < t,. Note |U| = p"*T T, By the definition
of U, we have x(a1) = --- = x(ay—1) = 1 and x(e,) = &, for some i relatively
prime to p. Define a character of 7 of Z,m = [p™] by 7(z) = ;;%”/IUI for all x € [p™].
Now, fix any z € W. Note z = 0 (mod p™~'/|U|) and p™!/|U| = pv= ! Ttr1ttts,
Write
£ = ayp s 4o gopltt 4o 4og,

with 0 < a; < p'*. Then a,41 = --- = a;, = 0 and a, = 0 (mod p*~!) since
r = 0 (mod pv~!Ttr+1t-+t)  Write a, = jp*~'. By (2), we have f(z) =

ar ., 01 q0pY !
(o o, 7 al? . We get

i(arpt2t - tts fogq,._ptrtotts jpv—1ttrp1tetis
r(x) = &ty o >
= &
P
= &r
P
= x(of' oy af? )
= x(f(=))

concluding the proof. O

v—1

Definition 4.4

Let G be an abelian group. We say that D € Z|G| is p-foldable if, for every
p-folding f : G — H and every nontrivial character x of H, there is a root of
unity n and a nontrivial character 7 of G such that

x(f(D)) = n(D). (3)

The motivation for the definition of foldable group ring elements is given by the
following.



Theorem 4.5 Let G be an abelian group and let f : G — H be a p-folding. Let
D € Z[G] be p-foldable.

a) If D is a difference set in G, then f(D) is a difference set in H.

b) If D is a difference set in G relative to a subgroup N, then f(D) is a relative
difference set in H relative to f(N).

¢) If D is a G-invariant weighing matriz, then f(D) is a H-invariant weighing
matriz.

Proof This is straightforward checking using Lemmas 2.1, 2.2 and 2.3. O

We remark that results similar to Theorem 4.5 can also be proved for divisible
difference sets (cf. [21]) and building sets (cf. [9]). Now we prove our main result.

Theorem 4.6 (Folding theorem) Let G = Zym x T be an abelian group where
p? does not divide expT. If the character values of D € Z|G| essentially lie in

Q& Eexpr), then D is p-foldable.

Proof Let f: G — H be a p-folding where H = P x T, |P| = p™. Let x be a
nontrivial character of H. We have to find a nontrivial character 7 of GG satisfying
(3). If x is trivial on P, then the character 7 of G which is trivial on Z,m and
satisfies 7|7 = x|r does it since f|r is the identity. If x is nontrivial on P, we
choose U, W and 7 as in Lemma 4.3. Let z be a generator of Z,~ and write

/W1

D= Z 2'W;

1=0

with W; € Z[W x T]. By Lemma 4.3, we have 7(W;) =
Lemma 4.2, we have 7(2/W;) = 7(D) for one j and 7(W;
Lemma 4.1, we get

x(f(W;)) for all . By
) = 0 for j # 4. Using

x(f(D)) = x

concluding the proof. O



5 Permutations Preserving Character Sums

In this section, we exhibit some nonhomomorphic permutations of the elements
of abelian groups which once again preserve the character values of certain group
ring elements. As a consequence, the existence of a single difference set in such an
abelian group implies the existence of a large number of inequivalent difference
sets in the same group under some conditions. Let us begin with the definition
of the permutations we want to consider.

Definition 5.1 Let G = Z,» x T be an abelian group where p is a prime and
m > 2. Let U be a subgroup of Z,~ of order > p?. Let D € Z|G], and write

pm/IUI=1

D= Z 9:U; (4)

where U; € Z|U x T| and {g;} is a complete set of coset representatives of U x T’
in G. For each i, let 0; be an automorphism of U x T such that o;|r is the identity
and o;|y has order p. Then

pm/|UI=1

PD)= Y gUf Q

is called a U-permutation of D.

Theorem 5.2 (Permutation theorem) Let G = Z,m x T be an abelian group
where p is a prime, m > 2. Assume p™ [expT, say p"||expT with h < m. Let
U be the subgroup of Zym of order max(p?, p"*1). Let D € Z|G] and assume that
all character values of D essentially lie in K = Q(&§u|, expr). Let P(D) be a
U-permutation of D. Then, for every character x of G, there is a character T of
G and a root of unity n with

x(P(D)) = n7(D). (6)

Proof
Case 1: x has a nontrivial kernel on U. Let o be an automorphism of U of order
p. Note that (u/u’)? =1 for all w € U. Thus x(u”) = x(u) for all u € U since
X|v has a nontrivial kernel. Thus (6) holds with 7 = x.
Case 2: y has a trivial kernel on U. Then, using Result 3.1, we see that x(g;),
i=0,..,p™/|U| — 1, are independent over K. W.l.o.g, assume x(go) € K. From
(4), we get

p™/|U[—1

x(D) = Z x(9:)x(Us).



Note that x(U;) € K for all i. Since, by assumption, x(D) essentially lies in K,
we may assume x(D) € K. Using the independence of the x(g;) over K, we get

x(U;) =0 for i > 0. (7)

Let o; be an automorphism of U x T as in Definition 5.1. Then 7; := xoo0; is a
character of U x T'. Using the facts that o; has order p and that |U]| is larger than
the p-part of exp T, it is straightforward to check that there is ¢; € Gal(K/Q)
with 7, = (x|uxr)¥. Thus, for every X € Z[U x T], we have 75(X) = 0 &
X(X) = 0. Extend 7; to G by 7; = (x)¥. By what we have seen, (7) implies
7;(U;) = 0 for ¢ > 0 for all j. Hence

x(P(D)) = ZX(gi)Ti(Ui)

= X(90)70(Ub)
= X(90)70(90) ™" > _ 70(9:)70(Us)
= x(90)70(90) "' 70(D)

concluding the proof. O

6 Applications

In this final section, we present some application of the folding and permutation
theorems to difference sets. Similar applications can be given to relative difference
sets, divisible difference sets, group invariant weighing matrices, and building sets.
The results also can be generalized to groups Z,» x T" where T' is nonabelian.
All these applications of the folding idea are quite straightforward and will be
omitted.

Corollary 6.1 Let D be a difference set of order n in an abelian group G = Zym X
T where m > 2. Let P be any abelian group of order p™, and let f : G — P x T
be a p-folding.

a) If p* JexpT and the character values of D essentially lie in Q(&,, éexpr), then
f(D) is a difference sets in P x T.

b) Assume ph||expT with h < m and that the character values of D essentially
lie in Q(€u|,&expr)- Let U be the subgroup of Zym of order max(p?,p"*™1). Then
every U-permutation of D is also a difference set in G.

Proof Part a follows from Theorems 4.5 and 4.6. Part b follows from Lemma
2.2 and Theorem 5.2. O

Corollary 6.2 Let G = Zym x T, and let t be the p-free part of expT. Let F
be the function defined in 3.2. The assertions of Theorem 6.1 still hold if the
assumptions on the character values are replaced by

F(|G|,n) divides pt

10



for part a respectively
F(|G|,n) divides |U|t

for part b.

Proof This follows from Result 3.3 and Corollary 6.1. O

In the situation of the following result, the subfield condition is always satisfied.

Corollary 6.3 Let G = Zym x T, m > 2, be an abelian group, and let D be a

difference set in G of order n = p°.

a) Let f: G — H be a p-folding. Then f(D) is a difference set in H.
b) Let U be the subgroup of Zym of order max(p?, p"*') where p"||expT, h < m.
Then every U-permutation of D is also a difference set in G.

Proof This follows from Corollary 6.2 since the p-part of F(|G|,n) is just p in
this situation. O

There are four known families of (v, k, A, n) difference sets with ged(v,n) > 1:
Hadamard, McFarland, Davis/Jedwab, and Chen difference sets, see [4]. It is
interesting to note that all these difference sets satisfy the subfield condition in
the folding theorem. In fact, all their character values essentially lie in Q, see [4,
Chapter XI]. Thus we have the following.

Corollary 6.4 Let D be any of the presently known (v,k, A\, n) difference sets
with ged(v,n) > 1 in an abelian group. Then D is p-foldable for every prime
divisor p of v.

Unfortunately, we cannot derive any new groups containing difference sets by
Corollary 6.4. The existence results we get are already covered by known con-
structions. However, we think that our results are still of interest since they shed
some light on the phenomenon that (v, k, A, n) difference sets with ged(v,n) > 1
“prefer to live” in groups of low exponent and high rank. We illustrate this by
an example. From the constructions of Davis [9] and Kraemer [18], it is known
that every abelian group of order 22¢*? and exponent at most 2¢*2 contains a
difference set. In particular, Zga+2 x Z4 has a difference set.

Example 6.5 Let D be a difference set in G = Zqat> x Z4. Let P be any abelian
group of order 2%2 and let f : G — P x Z% be a folding. Then f(D) is a
difference set in P x Z4.

Similar examples can be given for the other families of difference sets with

ged(v,m) > 1 and for many known families of relative difference sets, group
invariant weighing matrices, and building sets.

11



We conclude this paper with some interesting negative remarks. If a difference
set in a cyclic group satisfied the subfield condition for all prime divisors of the
group order, then the folding theorem would show that there are difference sets
in all abelian groups of the same order. Thus it is interesting to check if any
of the known difference sets in cyclic groups is foldable. The only candidates
are difference sets with Singer parameters; for all other difference sets in cyclic
groups, the group order is squarefree and thus foldings are impossible. So let us
consider Singer parameters. Let ¢ be a prime power, and let d > 2 be an integer.
There is a difference set D with parameters

qd—|—1 -1 qd -1 qdfl -1 qd1>

(U,k,)\,ﬂ)-( q—l :q_17 q—l (8)
in Z, found by Singer [25] which is called a Singer difference set, see [4, Chapter
XI]. It is conjectured that there are no difference sets with parameters (8) in any
noncyclic abelian groups. If any Singer difference set was foldable, then, by
Theorem 4.5, we would obtain a counterexample to this conjecture. However,
it seems that no difference set with Singer parameters is foldable. For small
examples, this can be checked using tables of difference sets, cf. [4]. Another fact
which indicates that Singer difference sets probably are not foldable is that it can
be seen that F'(v,n) = v for all Singer parameters (8). Thus Corollary 6.3 does
not apply.
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