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Abstract

We obtain a broadly applicable decomposition of group ring elements into a

“subfield part” and a “kernel part”. Applications include the verification of Lander’s

conjecture for all difference sets whose order is a power of a prime > 3 and for

all McFarland, Spence and Chen/Davis/Jedwab difference sets. We obtain a new

general exponent bound for difference sets. We show that there is no circulant

Hadamard matrix of order v with 4 < v < 548, 964, 900 and no Barker sequence of

length l with 13 < l ≤ 1022.
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1 Introduction

The character method for studying combinatorial objects with a suitable group G of sym-

metries consists of the investigation of certain modulus equations in cyclotomic integers.

These equations arise from applying complex representations to group ring equations char-

acterizing the objects in question. The three almost exclusively used methods to obtain

information on solutions of the modulus equations are multiplier theorems [4, 5, 9, 20],

the self-conjugacy approach [26] and the field descent method [22, 23]. See [21] and [6,

Chapter VI] for a comprehensive treatment of these topics. Although these methods yield

impressive results for certain explicit parameter families, they still are not strong enough

for a uniform treatment of larger classes of objects. This is the reason why, for instance,

the investigation of difference sets belonging to different kinds of parameter families has

split into almost independent branches of research.

The purpose of the present paper is to enhance the field descent method introduced

in [22] with new algebraic-combinatorial ideas so that a uniform treatment of a broader

spectrum of parameters becomes possible. A crucial step towards our main results will

be to show that the field descent implies a decomposition of a difference set into two

parts: One part corresponding to the subfield given by the field descent and a second

part corresponding to the kernel of a map from the integral group ring to a group ring

with cyclotomic integers as coefficients. The exact formulation of this decomposition can

be found in Theorems A and B.

In Section 4, we also utilize the decomposition of difference sets to obtain a new

general exponent bound which strengthens the results from [22] and [23] considerably.

This yields progress towards the longstanding Circulant Hadamard Matrix and Barker

Sequence Conjectures. In particular, we are able to extend the range of lengths for which

the Barker Sequence Conjecture is verified by a factor of 2.5 · 109.

We believe that the decomposition of difference sets into a “small field part” and a

“kernel part” discovered here is a general pattern that still has to be exploited, even

beyond the results presented here. In fact, it can be used to obtain significant progress

towards the following classical difference set problem.
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Conjecture 1.1 (Lander’s Conjecture [16]) Let G be an abelian group of order v

with a cyclic Sylow p-subgroup. If G contains a (v, k, λ)-difference set then p does not

divide k − λ.

In [17], the difference set decomposition is used to verify Lander’s conjecture for

k − λ = pr where p is a prime larger than 3.

2 Preliminaries

In this section, we list the definitions and basic facts we need in the rest of paper. We first

fix some notation. Let R be a ring and let G be a finite group. We will always identify a

subset A of G with the element
∑

g∈A g of the group ring R[G]. For B =
∑

g∈G bgg ∈ R[G]

we write B(−1) :=
∑

g∈G bgg
−1 and |B| :=

∑
g∈G bg. We call {g ∈ G : bg 6= 0} the

support of B. A group homomorphism G → H is always assumed to be extended to a

homomorphism Z[G] → Z[H] by linearity. We will write o(g) for the order of g ∈ G in

G. The exponent of G, i.e. the order of the largest cyclic subgroup of G, will be denoted

by expG.

For an abelian group H we denote the group of complex characters of H by H∗. The

character sending all h ∈ H to 1 is called trivial. For a subgroup W of H, we write W⊥

for the subgroup of H∗ consisting of all characters which are trivial on W .

The following is a standard result [6, Chapter VI, Lemma 3.5].

Result 2.1 Let G be a finite abelian group and D =
∑

g∈G dgg ∈ C[G]. Then

dg =
1

|G|
∑
χ∈G⊥

χ(Dg−1)

for all g ∈ G. In particular, two elements of C[G] are equal if and only if all their

character values are equal.

If H is a subgroup of G and A,B ∈ Z[G] with χ(A) = χ(B) for all χ ∈ G∗ \H⊥, then

A = B +XH for some X ∈ Z[G].
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We need some notation for cyclotomic fields. We write ξm = e2πi/m. For the basic

properties of the ring Z[ξm], see [10, Chapter 12], for instance. For relatively prime

integers t and s, we denote the multiplicative order of t modulo s by ords(t). Finally,

ϕ denotes the Euler totient function. For a simple proof of the following result, see [6,

Chapter VI, Theorem. 15.2].

Result 2.2 Let p be a rational prime, let P be a prime ideal above p in Z[ξm], and

write m = pam′ with (m′, p) = 1. The decomposition group of P consists of all σ ∈
Gal(Q(ξm)/Q) for which there is an integer j such that

ξσm′ = ξp
j

m′ . (1)

We will need the following basic property of Gauss sums. For a proof, see [18, Theo-

rem. 5.11].

Lemma 2.3 Let p be an odd prime and let S be a Gauss sum over Zp, i.e. S =
∑p−1

i=1 η
iξt

i

where η 6= 1 is a (p−1)th root of unity, ξ is a primitive pth root of unity and t is a primitive

root modulo p. Then |S|2 = p.

Next, we restate a version of a well known result, see [15, Theorem 2.2], that will be

used very often.

Lemma 2.4 Let G = 〈a〉 × H be an abelian group where o(a) = u and let ρ : Z[G] →
Z[ξu][H] be the homomorphism defined by ρ(a) = ξu and ρ|H = id. Then

ker ρ = {
r∑
i=1

〈au/pi〉xi : xi ∈ Z[G]}

where p1, ..., pr are the prime divisors of u.

The following “multiplier lemma” is from [1, Lemma 1].
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Result 2.5 Let G = 〈a〉 ×H be an abelian group where o(a) = u. Write v = expG. Let

D ∈ Z[G] and n, t ∈ N such that

(i) (|H|, n) = 1,

(ii) |χ(D)|2 = n for all characters χ of G with χ(a) = ξu,

(iii) the Galois automorphism σ of Q(ξv) defined by ξσv = ξtv fixes all prime ideal

divisors of n. Then

D(t) = (−1)`bD +
r∑
i=1

〈au/pi〉xi

where ` ∈ {0, 1}, b ∈ G, x1, ..., xr ∈ Z[G] and p1, ..., pr are all the prime divisors of u.

Furthermore, if u is even, ` can be set as 0.

The following definition will be needed for our field descent arguments.

Definition 2.6 Let m, n be positive integers, and let m =
∏t

i=1 pi
ci be the prime power

decomposition of m. For each prime divisor q of n let

mq :=

{ ∏
pi 6=q pi if m is odd or q = 2,

4
∏

pi 6=2,q pi otherwise.

Let D(n) be the set of prime divisors of n. We define F (m,n) =
∏t

i=1 pi
bi to be the

minimum multiple of
∏t

i=1 pi such that for every pair (i, q), i ∈ {1, ..., t}, q ∈ D(n), at

least one of the following conditions is satisfied.

(a) q = pi and (pi, bi) 6= (2, 1),

(b) bi = ci,

(c) q 6= pi and qordmq (q) 6≡ 1 (mod pbi+1
i ).

Note that every prime divisor of m also divides F (m,n). Furthermore, F (m,n) is a

divisor of m because of condition (b).

Example 2.7 We calculate F (1652, 165) which will be needed later. Here m =
∏3

i=1 p
2
i

with p1 = 3, p2 = 5, p3 = 11. Hence F (1652, 165) =
∏3

i=1 p
bi
i with bi ∈ {1, 2}. We need

to determine the values bi.

a) b1 = 1: For (i, q) = (1, 3), condition (a) holds. For (i, q) = (1, 5), we have mq = 33 and
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qordmq (q) ≡ 4 (mod 32). For (i, q) = (1, 11), we have mq = 15 and qordmq (q) ≡ 4 (mod 32).

Hence, in the latter two cases, condition (c) holds. This shows b1 = 1.

b) b2 = 2: Assume b2 = 1. Then neither of the conditions (a)-(c) is satisfied for (i, q) =

(2, 3) since mq = 55 and qordmq (q) ≡ 1 (mod 52), a contradiction.

c) b3 = 2: Assume b3 = 3. Then neither of the conditions (a)-(c) is satisfied for (i, q) =

(3, 3) since mq = 55 and qordmq (q) ≡ 1 (mod 112), a contradiction.

In summary, we have shown F (1652, 165) = 3 · 52 · 112.

The next results are well known and they can be proved by using standard arguments

concerning the structure of the multiplicative groups modulo pa, see [11, pp. 274-276], for

instance.

Lemma 2.8 Let p be a prime, and let b be a positive integer.

(a) Assume (p, b) 6= (2, 1). If s is an integer satisfying s ≡ 1 (mod pb) and s 6≡
1 (mod pb+1) then ordpc(s) = pc−b for all c ≥ b.

(b) Let s and t be integers such that ordpb(s) = ordpb(t) is a power of p. Furthermore,

assume s ≡ t ≡ 1 (mod 4) if p = 2. Then s and t generate the same subgroup of

the multiplicative group Z∗
pb

.

Now we come to the definitions and basic properties of the combinatorial structures

we will study. A (v,k, λ,n)-difference set in a finite group G of order v is a k-subset

D of G such that every element g 6= 1 of G has exactly λ representations g = d1d
−1
2 with

d1, d2 ∈ D. The positive integer n := k − λ is called the order of the difference set.

A difference set in a group G is equivalent to a symmetric design D admitting G as

a regular automorphism group [6, Chapter VI, Theorem. 1.6]. Sometimes G is called a

Singer group of D. For detailed treatments of difference sets, see [5, 13, 14, 16, 21]. In

the group ring language, difference sets can be characterized as follows [6, Chapter VI,

Lemma 3.2].
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Lemma 2.9 Let D be a k-subset of a group G of order v. Then D is a (v, k, λ, n)

difference set in G if and only if

DD(−1) = n+ λG

in Z[G].

We will need the following consequence of a well-known result on symmetric designs

[6, Chapter II, Cor. 3.9].

Result 2.10 If a (v, k, λ, n)-difference set exists and v is even, then n is a square.

The following lemma, the use of which has turned out to be a conditio sine qua non

for the study of difference sets in abelian groups, is essentially contained in [26]. See [6,

Chapter VI, Lemma 3.12] for a proof.

Lemma 2.11 Let D be a k-subset of an abelian group G. Then D is a (v, k, λ, n)-

difference set in G if and only if |χ(D)|2 = n for every nontrivial character χ of G.

A circulant Hadamard matrix of order v is a matrix of the form

H =


a1 a2 · · · av

av a1 · · · av−1

· · · · · · · · · · · ·
a2 a3 · · · a1


with ai = ±1 and HH t = vI where I is the identity matrix. It is conjectured that no

circulant Hadamard matrix of order v > 4 exists. A sequence (ai)
v
i=1, ai = ±1, is called

a Barker sequence of length v if |
∑v−j

i=1 aiai+j| ≤ 1 for j = 1, ..., v − 1. The Barker

Sequence Conjecture asserts that there are no Barker sequences of length v > 13. Storer

and Turyn [25] proved the Barker Sequence Conjecture for all odd v. The following is

well known, see [6, Chapter VI, §14] and [7, 8, 26].

Result 2.12 (a) If a Barker sequence of length l > 13 exists, then l has no prime

divisor ≡ 3 (mod 4) and there is a circulant Hadamard matrix of order l.

(b) If a circulant Hadamard matrix of order v exists, then v = 4u2, u odd, and there is

a (4u2, 2u2 − u, u2 − u, u2) difference set in the cyclic group of order v.
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3 Decomposition of group ring elements

In this section, we show that group ring elements whose character values have a pre-

scribed absolute value can be decomposed into a “subfield part” and a “kernel part”.

The applications of this method will be given in the remaining sections. The following

theorem together with Theorem B are the central results of this paper.

Theorem A Let G = 〈a〉 ×H be an abelian group where w := expH and u := o(a)

are coprime. Let n be a positive integer coprime to w. Let D be an element of Z[G] such

that |χ(D)|2 = n for all characters χ of G with χ(a) = ξu. Let Fu := gcd(u, F (uw, n))

and let A be the subgroup of order Fu in 〈a〉. Then there is DA ∈ Z[A×H] such that

D = gDA +
r∑
i=1

〈au/pi〉xi (2)

for some g ∈ G and x1, ..., xr ∈ Z[G] where p1, ..., pr are the prime divisors of u.

Example 3.1 Let D be a putative (4t2, 2t2 − t, t2 − t, t2) difference set in G = Z4t2 for

t = 165. Let H be the subgroup of G of order 4. Then w = 4 and G = 〈a〉 × H with

u = o(a) = 1652. A calculation similar to Example 2.7 shows F (4·1652, 1652) = 4·1652/3.

Hence Fu = gcd(1652, F (4 · 1652, 1652)) = 1653/3. Now Theorem A implies

D = gDA + Px1 +Qx2 +Rx3 (3)

where g ∈ G, DA ∈ Z[〈a3〉 ×H] and P , Q, R are the subgroups of 〈a〉 of order 3, 5, 11

respectively. Using (3) it can be shown that D cannot exist, see Corollary 4.5.

Remark 3.2 The decomposition (2) is useful becauseDA lies in Z[A×H] and A×H often

is much smaller than the whole group G. The size of the subgroup A is determined by

the parameter F (uw, n) which comes from a field descent. This is why we call term gDA

the “subfield part”. The second term in (2) stems from the kernel of a homomorphism

from Z[G] to a group ring with cyclotomic integers as coefficients and is thus called the

“kernel part” of D. Also, we want to note that similar decompositions in some particular

situations, e.g. n is a prime power, have also been studied before, see [1, 2, 19].
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Proof of Theorem A Write u =
∏r

i=1 p
ci
i and Fu =

∏r
i=1 p

bi
i . Choose an integer t

with ordpcii (t) = pci−bii for i = 1, ..., r and t ≡ 1 mod w. By Lemma 2.8 we may choose

t such that pbii is the exact power of pi dividing t − 1 for all i. Let σ be the Galois

automorphism of Q(ξuw) defined by ξσuw = ξtuw.

Claim: σ fixes all prime ideal divisors of n in Q(ξuw).

Proof of the claim: Write uw =
∏s

i=1 p
ci
i where s ≥ r and the pi are the distinct prime

divisors of uw. Let q be an arbitrary prime divisor of n. Let

uq :=
s∏

i=1,pi 6=q

pcii , mq :=

{ ∏
pi 6=q pi if uw is odd or q = 2,

4
∏

pi 6=2,q pi otherwise,
, Q := qordmq (q).

Recall that (n,w) = 1 and thus (q, w) = 1 by assumption. We will show that there

is an integer j with qj ≡ t mod uq (together with Result 2.2 this implies the claim since

q is arbitrary). Note that Q ≡ 1 (mod pi) for all i with pi 6= q by definition of mq and

Q. Furthermore, we have Q ≡ 1 (mod 4) if q 6= 2 and uw is even. By conditions (b) and

(c) of Definition 2.6 and Lemma 2.8(a), we know that ordpcii (Q) is a power of pi which

is at least ordpcii (t) = pci−bii for every i ≤ r with pi 6= q. Thus, by Lemma 2.8(b), for

every i ≤ s with pi 6= q, there is an integer s(i) with Qs(i) ≡ t mod pcii . By the Chinese

remainder theorem there is an integer h such that h ≡ s(i) mod pcii for all i with pi 6= q.

It follows that Qh ≡ t mod pcii for all i with pi 6= q. This implies Qh ≡ t mod uq and

completes the proof of the claim since Q is a power of q.

Note that (|H|, n) = 1 since w = expH and (w, n) = 1 by assumption. Hence

condition (i) of Result 2.5 is satisfied. Condition (ii) holds by assumption. Finally, the

claim ensures condition (iii). Hence we can apply Result 2.5 and get

D(t) = (−1)`bD +
r∑
i=1

〈au/pi〉xi (4)

where ` ∈ {0, 1}, b ∈ G, x1, ..., xr ∈ Z[G] and ` can be set to be 0 if u is even. Let

ρ : Z[G]→ Z[ξu][H] be the homomorphism defined by ρ(a) = ξu and ρ|H = id. Note that

ρ(〈au/pi〉) = 0 for all i. Let σ be the automorphism defined before the claim. We now
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interpret σ as an automorphism of Z[ξu][H] by setting (
∑

h∈H ahh)σ =
∑

h∈H a
σ
hh for all

ah ∈ Z[ξu]. Let E := ρ(D). Since ξσu = ξtu and ht = h for all h ∈ H, we have Eσ = E(t).

Thus (4) implies

Eσ = (−1)`cξjuE (5)

for some integer j and c ∈ H. Let y := orduw(t). By the definition of t, we have

y =
∏r

i=1 p
ci−bi
i . Thus (y, w) = 1 since (u,w) = 1. Using (5) repeatedly, we get

E = E(σy) = (−1)`ycyξj(t
y−1)/(t−1)

u E

and thus E(1− (−1)`ycyξ
j((ty−1)/(t−1)
u ) = 0 in Z[ξu][H]. Since |τ(E)| = n for all characters

τ of H by assumption, we have τ(1− (−1)`ycyξ
j((ty−1)/(t−1)
u ) = 0 for all characters τ of H.

Thus

(−1)`ycyξj((t
y−1)/(t−1)

u = 1 (6)

in Z[ξu][H] by Result 2.1. Since cw = 1 and (y, w) = 1, we get c = 1 from (6). Next, we

claim that ` = 0. In that respect, we only need to consider the case u is odd. But then y

is odd and the order of ξu is odd. Hence, it follows easily from (6) that ` = 0. Thus, we

obtain

Eσ = ξjuE (7)

and ξ
j((ty−1)/(t−1)
u = 1 and thus

j
ty − 1

t− 1
≡ 0 mod u. (8)

Recall that the exact power of pi dividing t− 1 is pbii for i = 1, ..., r. Note that bi ≥ 1

for all i by Definition 2.6. Hence, by Lemma 2.8 a, the exact power of pi dividing ty − 1

is pbi+ci−bii = pcii . Thus, the exact power of pi dividing (ty − 1)/(t − 1) is pci−bii . By (8)

we have j(ty − 1)/(t− 1) ≡ 0 mod pcii . This implies

j ≡ 0 mod pbii . (9)

Since pbi+1
i does not divide t − 1 for all i, there is a solution d of the simultaneous

congruences

(t− 1)d+ j ≡ 0 mod pcii , i = 1, ..., r,
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by the Chinese remainder theorem. Thus (t − 1)d + j ≡ 0 mod u. Hence, using (7), we

get

(Eξdu)
σ = Eξj+dtu = Eξdu. (10)

Now write Eξdu =
∑

h∈H Ehh with Eh ∈ Z[ξu]. Then (10) implies Eσ
h = Eh for all

h ∈ H and thus Eh ∈ Z[ξFu ] since Q(ξFu) is the fixed field of 〈σ|Q(ξu)〉. Recall that A is

the subgroup of 〈a〉 of order Fu. Since Eh ∈ Z[ξFu ] for all h, there is DA ∈ Z[A×H] with

ρ(DA) = Eξdu. Hence ρ(D) = E = ρ(a−dDA). Now Result 2.4 implies

D = a−dDA +
r∑
i=1

〈au/pi〉xi (11)

for some x1, ..., xr ∈ Z[G]. 2

Remark 3.3 It is possible to require the supports of
∑r

i=1〈au/pi〉xi to be in g(G\A×H).

As such, the supports of gDA and
∑r

i=1〈au/pi〉xi will be disjoint. To do so, we note that

p1p2 · · · pr is a divisor of Fu. Therefore, 〈au/pi〉 ⊂ A×H. Clearly, xi can be rewritten as

x′i+x′′i such that the support of x′i is in g(A×H) and the support of x′′i is in G\g(A×H).

Replacing gDA by gDA +
∑r

i=1〈au/pi〉x′i and xi by x′′i if necessary, it is clear then the

support of
∑r

i=1〈au/pi〉xi is in G\g(A×H).

In the next result we obtain a more precise description of DA in Theorem 3.1 under

some additional assumptions. Loosely speaking, the underlying method is to factor out

a group ring element looking like a Gauss sum from DA so that we go down to an even

smaller subfield than that in Theorem A.

Theorem B Let G = 〈a〉 ×H be an abelian group where w := expH and u := o(a)

are coprime. Let n be a positive integer coprime to w. Let D be an element of Z[G] such

that |χ(D)|2 = n for all characters χ of G with χ(a) = ξu. Let p be an odd prime divisor

of u. For each prime divisor q of n let m(q) be the largest divisor of uw coprime to pq.

Assume that

(i) p2 does not divide F (uw, n),

(ii) ordp(q) = p− 1 for all prime divisors q 6= p of n,
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(iii) gcd(ordm(q)(q), p− 1) = 1 for all prime divisors q 6= p of n.

Let Fu := gcd(u, F (uw, n)) and let B be the subgroup of 〈a〉 of order Fu/p. Then there

are g, h ∈ G with o(g)|(p− 1), ` ∈ {0, 1}, x1, ..., xr ∈ Z[G] and DB ∈ Z[B ×H] such that

D = hDB

p−1∑
i=1

((−1)`g)iat
i

p +
r∑
i=1

〈au/pi〉xi. (12)

Here p1, ..., pr are all the prime divisors of u, t is a primitive root modulo p and ap is an

element of order p of G.

Proof Let A be the subgroup of 〈a〉 of order Fu. By Theorem A we have

D = fDA +
r∑
i=1

〈au/pi〉xi (13)

for some f ∈ G and DA ∈ Z[A×H]. Note that p2 does not divide |A×H| since it does

not divide Fu. Thus we can write A×H = 〈y〉 ×H ′ where y is an element of order p of

G and p does not divide v := |H ′|. Let t be a primitive root modulo p with t ≡ 1 mod v.

Let σ be the automorphism of Q(ξpv) defined by ξσpv = ξtpv.

Claim: σ fixes all prime ideal divisors of n.

Proof of the claim: Let q be an arbitrary prime divisor of n. By Result 2.2 we have

to show that there is j ∈ Z with

t ≡ qj mod v(q)

where v(q) is the largest divisor of pv coprime to q. If q = p then v(q) = v and we can

take j = 0 since t ≡ 1 mod v. Thus assume q 6= p. Recall that m(q) is the largest divisor

of uw coprime to pq. Thus we can write v(q) = pz where z is a divisor of m(q). By

assumption (iii) there is an l such that (l, p − 1) = 1 and ql ≡ 1 mod z. By assumption

(ii) the order of q and thus of ql modulo p is p−1. Thus there is k ∈ Z with qlk ≡ t mod p.

Since we also have qlk ≡ 1 ≡ t mod z it follows that t ≡ qlk mod v(q) and this concludes

the proof of the claim.

Recall that DA ∈ Z[A×H], |A| is a divisor of u = o(a) and |H| is coprime to n and u.

Note that au/|A| is a generator of A and that |χ(DA)|2 = n for all characters χ of A×H

12



that sends au/|A| to be primitive |A|-th root of unity. Let ρ : Z[A × H] → Z[ξ|A|][H] be

the homomorphism defined by ρ(α) = ξ|A| and ρ|H = id. Write E := ρ(DA). Result 2.5

implies

E(t) = ±ηhE (14)

with h ∈ H and η an |A|-th root of unity. Write η = ηpγ where the order of γ is coprime

to p and ηp is a p-th root of unity. Let x be an integer satisfying x(t − 1) ≡ −1 mod p.

Then 1 + tx ≡ x mod p and thus (Eηxp )(t) = ±ηxpγhE by (14). Replacing the original D

by a translate if necessary we thus may assume

E(t) = ±γhE. (15)

Using (15) repeatedly gives

E = E(tp−1) = γp−1rp−1E. (16)

Applying the characters of H to (16) and using Result 2.1 we see that (γh)p−1 = 1

in Z[ξ|A|][H]. This implies that the order of h is a divisor of p − 1 and γgcd(p−1,|A|) = 1.

Write µ := ±γh. Then

E(t) = µE (17)

by (15). Write

E =

p−1∑
i=1

ξipEi (18)

with Ei ∈ Z[ξ|A|/p][H]. Since t ≡ 1 (mod v), we have E
(t)
i = Ei for all i. Using (17) we

get

E(t) =

p−1∑
i=1

ξtip Ei = µE =

p−1∑
i=1

ξip(µEi) =

p−1∑
i=1

ξtip (µEti).
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Since µEi ∈ Z[ξ|B|][H] (note that |B| = |A|/p) for all i and ξp, ..., ξ
p−1
p are independent

over Z[ξ|B|][H], this implies Ei = µEti for i = 1, ..., p − 1 and thus Etj = µ−jE1 for

j = 1, ..., p− 1. Using (18) we get

E =

p−1∑
j=1

ξt
j

p Etj = E1

p−1∑
j=1

µ−jξt
j

p . (19)

where E1 ∈ Z[ξ|B|][H]. Now choose DB ∈ Z[B × H], g′ ∈ B such that ρ(DB) = E1,

ρ(g′) = γ−1. (Note that g′ exists as γgcd(p−1,|B|) = 1.) Hence, there exists ` ∈ {0, 1} such

that ρ((−1)`g′h−1) = µ−1. (Here, we take ` = 1 only when µ = −γh and |B| is odd.)

Let g = g′h and ap ∈ G with o(ap) = p and ρ(ap) = ξp. Then

ρ(DB

p−1∑
i=1

((−1)`g)iat
i

p ) = E1

p−1∑
i=1

µ−iξt
i

p = E = ρ(DA).

Thus Lemma 2.4 and (13) imply

D = fDB

p−1∑
i=1

((−1)`g)iat
i

p +
r∑
i=1

〈au/pi〉yi (20)

for some y1, ..., yr ∈ Z[G] and thus the validity of (12). 2

Remark 3.4

1. Even though the conditions in Theorem B seem to be quite restrictive, one easily

checks that it is applicable in case n is a p-power. In that case, we obtain a result

by Jia [12, Lemma 3.1 (i)]. In fact, this result is also implicitly contained in [3].

2. If gcd(p− 1, |G|) = 1, then the g found in Theorem B is actually the identity of G.

If we further assume n is a p-power, we obtain [19, Theorem 2.7] and [1, Lemma 2].

The next result is proved in [17, Lemma 3.2]. For completeness, we include a proof

here.

Lemma 3.5 Let DB be the one found in Theorem B. Suppose r = 1 and all coefficients

in D lie in the interval [0, C]. Then all coefficients in DB lie in the interval [−C,C].

In particular, if D is a subset of G, then all nonzero coefficients of DB are ±1 and all

nonzero coefficient of x1 in 1.

14



Proof Note that r = 1 implies p = p1. Thus, we may assume ap = au/p1 . Write

Γ := DB

∑p−1
i=1 ((−1)`g)iat

i

p and Ω := h−1〈au/p1〉x1.
First, we show all nonzero coefficients in Ω are between 0 and C. For any f in the

support of Ω, we let αf be its coefficient in Ω. Note that the coefficient remains unchanged

if f is replaced by any element in f〈au/p〉. Therefore, to find αf , we may assume ◦(f) is

not divisible by p. On the other hand, the order of every element in the support of Γ is

divisible by p. Hence, f is not in the support of Γ. Therefore, αf is the coefficinet of f

in D as well. Thus, αf lies in the interval [0, C].

Next, we consider those f in the support of DB ∈ Z[B×H] and let α be the coefficient

of f in Γ. We claim that the coefficient of fgatp in Γ is (−1)`α. It suffice to show that

if f ′ is also in the support of DB with f 6= f ′, then the supports of f
∑p−1

i=1 ((−1)`g)iat
i

p

and f ′
∑p−1

i=1 ((−1)`g)iat
i

p are disjoint. Observe that if they are not disjoint, then we have

fgiat
i

p = f ′gjat
j

p for some 1 ≤ i, j ≤ p−1. Since p does not divide the |B| · |H|, we deduce

that at
i

p = at
j

p . As t is primitive root moduluo p, we conclude i = j. Therefore, f = f ′.

If f does not lie in the support of Ω, then clearly (−1)`α ∈ [0, C]. Thus, α ∈ [−C,C].

Suppose now f lies in the support of Ω. Then as we have seen from the above argument

that αf , the coefficient of f in Ω, lies in [0, C]. Since α + αf ∈ [0, C], we conclude that

α ∈ [−C,C].

Finally, if every nonzero coefficient of D is 1, then C = 1. Since all coefficients lie in

Z, we conclude that every nonzero coefficient of x and D′ is ±1. 2

4 Applications

In this section, we give some applications of our main results. We shall continue with the

notations and assumptions used in Theorem B.

Theorem 4.1 Let D be a (v, k, λ, n) difference set in an abelian group G = P×H where

P = 〈a〉 is a cyclic p-subgroup with p odd and gcd(p, |H|) = 1. Write w = expH. For

each prime divisor q of n let m(q) be the largest divisor of |P|w coprime to pq. Assume

that

(i) p2 does not divide F (|P|w, n),

15



(ii) ordp(q) = p− 1 for all prime divisors q 6= p of n,

(iii) gcd(ordm(q)(q), p− 1) = 1 for all prime divisors q 6= p of n.

Then there are g, h ∈ G, Y ⊂ G and A,B ⊂ H such that A,B are disjoint, o(g)|(p− 1)

and

D = h(A−B)

p−1∑
i=1

giat
i

p + PY (21)

where P is the subgroup of G of order p and ap is a generator of P .

Furthermore, if either gcd(p− 1, |H|) = 1 or p does not divide n, then g in (21) is 1

and D can be written as

D = h(B − A) + PY. (22)

Proof By Lemma 2.11 and Theorem B we have

D = hDB

p−1∑
i=1

((−1)`g)iat
i

p + PY (23)

with g, h ∈ G, Y ∈ Z[G], DB ∈ Z[H], and o(g)|(p−1). Observe that DB 6= 0. Otherwise,

χ(D) = 0 for every character χ nonprincipal on P and thus D is not a difference set. As

shown in Lemma 3.5, every nonzero coefficient of DB is ±1 and every nonzero coefficient

of Y is 1. In particular, DB can be written as A − B where A,B are disjoint subsets

in H. Since DB 6= 0, at least one of the A,B is nonempty. Moreover, as we have seen

before, the supports of hA
∑p−1

i=1 (−g)iat
i

p and hB
∑p−1

i=1 (−g)iat
i

p are disjoint.

We claim that ` = 0. Otherwise, we then have

D = h(A−B)

p−1∑
i=1

(−g)iat
i

p + PY. (24)

Take an element f ∈ A.(The case when f ∈ B can be treated similarly). Write

X := h(A − B)
∑p−1

i=1 (−g)iat
i

p . Observe that the coefficient of hfat
p−1

p in X is also 1.

If o(g) is odd, then the coefficient of hfgαat
o(y)

p = hfat
α

p in X is −1. Since all nonzero

coefficients in D = X + PY is 1, it follows that the coefficient of hfat
o(y)

p in PY must be

16



1. Thus, the coefficient of hf in PY must also be 1. As a result, the coefficient of hf in

D = X + PY is then 2. But this is impossible. Thus the order of o(g) must be even.

But then v is even and n is a square by Result 2.10. Let χ be a character of G which

is trivial on H and nontrivial on P . Applying χ to (24) and Lemma 2.11, we obtain

|χ(A − B)|2 = n/p since |
∑p−1

i=1 (−1)iξt
i

p |2 = p. But χ(A − B) = |A| − |B| as A,B are

subsets of H and χ is trivial on H. Thus n/p is also a square. This is impossible and our

claim is proved.

Next, we assume further either gcd(p − 1, |H|) = 1 or p does not divide n. Suppose

gcd(p − 1, |H|) = 1. This forces g = 1 and thus D = h(A − B)
∑p−1

i=1 g
iat

i

p + PY =

h(A−B)(P − 1) + PY = −h(A−B) + P (h(A−B) + Y ).

Suppose p does not divide n and o(g) ≥ 2. Let χ be a character of G which is nontrivial

on 〈g〉 and P . By the previous result and Lemma 2.11, we obtain n = |χ(D)|2 =

|χ(A − B)|2p. But this is impossible since p does not divide n. Thus g = 1 and the

assertion follows in same way as in Case 1. 2

Theorem 4.1 is the key to the proof of [17, Corollary 3.3], which is crucial in the proof

of Lander’s conjecture in case n is a p-power with p > 3.

The decomposition theorem obtained in the last section leads to the following general

bound on the modulus of character values of group ring elements.

Theorem 4.2 Let G = 〈a〉 × H be an abelian group where w := expH and u := o(a)

are coprime. Let n be a positive integer coprime to w, and let D be an element of Z[G]

with coefficients in [0, C] such that |χ(D)|2 = n for all characters χ of G whose order is

divisible by u. Let Fu := gcd(u, F (uw, n)) and h := |H|. Then

4n ≤ hF 2
uC

2

ϕ(Fu)
.

Proof Let A be the subgroup of 〈a〉 of order Fu. By Theorem A there is DA ∈
Z[A×H] with coefficients in [0, C] such that

D = gDA +
r∑
i=1

〈au/pi〉xi

17



for some g ∈ G, x1, ..., xr ∈ Z[G] where p1, ..., pr are the prime divisors of u. Furthermore,

DA can be chosen such that gDA and
∑r

i=1〈au/pi〉xi have disjoint supports. Replacing

D by a translate if necessary, we can assume g = 1. Note that χ(〈au/pi〉) = 0 for

every character χ of G whose order is divisible by u. Thus |χ(DA)|2 = |χ(D)|2 = n

for all these characters. Write DA =
∑

u∈U auu where U = A × H and au ∈ Z. Since

DA and
∑r

i=1〈au/pi〉xi have disjoint supports, we have 0 ≤ au ≤ C. Note |U | = Fuh.

Let l :=
∑

u∈U au. The coefficient of 1 in DAD
(−1)
A is

∑
u∈U a

2
u. Thus Fuh

∑
u∈U a

2
u =∑

χ∈U∗ |χ(DA)|2 by Result 2.1. Since there are exactly ϕ(Fu)h characters χ of U whose

order is divisible by u and since |χ(DA)|2 = n for these characters, we get

Fuh
∑
u∈U

a2u ≥ l2 + ϕ(Fu)hn. (25)

since χ0(DA) = l. On the other hand,
∑

u∈U a
2
u ≤ Cl since 0 ≤ au ≤ C. Thus

Fuh
∑

u∈U a
2
u−l2 ≤ FuhCl−l2 ≤ F 2

uC
2h2/4. Combining this with (25), we get F 2

uC
2h2/4 ≥

ϕ(Fu)hn and thus the assertion. 2

Theorem 4.2 implies the following general exponent bound for difference sets. It

improves upon [22, Theorem. 5.3] and [23, Theorem. 5.1].

Theorem 4.3 Let G = A×H be an abelian group where (|A|, |H|) = 1. If G contains a

(v, k, λ, n) difference set with (n, |H|) = 1, then

expA ≤ |A|

√
|H|F 2

4nϕ(F )
(26)

where F := gcd(expA,F (expG, n)). In particular, if A is cyclic, then

n ≤ |H|F
2

4ϕ(F )
.

Proof Let t := expA, a := |A| and let U be a subgroup of A of order a/t such that

A/U is cyclic. Let ρ : G→ G/U be the canonical epimorphism and E := ρ(D). Then E

has coefficients in [0, a/t] and |χ(E)|2 = n for all nontrivial characters χ of G/U . Thus

Theorem 4.2 implies

4n ≤ |H|F
2(a/t)2

ϕ(F )

18



yielding the assertion. 2

Remark 4.4 If we choose H = {1} in Theorem 4.3, we recover [23, Theorem. 5.1].

However, usually a better choice of H yields considerable improvements on [23, Theorem.

5.1]. In many applications, the best choice of H is a complement of the Sylow p-subgroup

of G where p is a suitable prime divisor of n.

Hadamard difference sets are known to exist for every u of the form u = 2a3br2 where

a, b ≥ 0 and r is any positive integer, see [6, Chapter 6]. Here we will consider arbitrary

positive integers u.

Corollary 4.5 If there is a Hadamard difference set in a cyclic group of order 4u2, then

uϕ(u) ≤ F (u2, u). Moroever, there is no circulant Hadamard matrix of order of order v

with 4 < v < 548, 964, 900.

Proof

Assume the existence of a Hadamard difference set in Z4u2 . Then u is odd by 2.12.

Applying Corollary 4.3 with |A| = u2 and |H| = 4, we get u2 ≤ F 2/ϕ(F ) where F =

gcd(u2, F (4u2, u)). Note that the change from m = u2 to m = 4u2 in Definition 2.6

can increase any ordmq(q) only by a factor of 2. Since u is odd, this shows F (4u2, u) =

4F (u2, u) and thus F = F (u2, u). Now part a follows since F (u2, u)/ϕ(F (u2, u)) =

u/ϕ(u).

Assume the contrary. By [23, Cor. 6.4] we have v = 4u2 and u = 165. By result

2.12 there is a Hadamard difference set in the cyclic group of order v. Hence Corollary

4.5 a implies uϕ(u) ≤ F (u2, u). But for u = 165 we have F (u2, u) = u2/3 and uϕ(u) =

u2(2 · 4 · 10)/(3 · 5 · 11) = (16/33)u2. Thus 16/3 ≤ 31/3, a contradiction 2.

Finally, we apply Corollary 4.5 to the Barker Sequence Conjecture. In [22, Theorem.

6.4] it has been shown that there is no Barker sequence of length l with 13 < l ≤ 4 · 1012.

The following result extends this bound considerably.

Corollary 4.6 There is no Barker sequence of length l with

13 < l ≤ 1022.
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Proof Assume the existence of a Barker sequence of length l > 13. By the results of

[7, 8, 25, 26] we know that l = 4u2 for some odd u which has no prime divisor ≡ 3 (mod 4)

and that there is a Hadamard difference set in the cyclic group of order l. Corollary 4.5

a gives

uϕ(u) ≤ F (u2, u). (27)

Now a computer search over all u ≤ 5·1010 all of whose prime divisors are ≡ 1 (mod 4)

shows that there is no such u satisfying (27). This search was done with the help of a

C++ program using the C++ class library NTL [24]. 2
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