Nonexistence of a (783, 69, 6)-difference set

Bernhard Schmidt
Mathematisches Institut
Universität Augsburg
Universitätsstraße 15
86135 Augsburg
Germany

April 27, 2001

Abstract

It is shown that no (783, 69, 6)-difference set exists in $\mathbb{Z}_3^3 \times \mathbb{Z}_{29}$. This excludes one of the last four open cases of abelian (v, k, λ) -difference sets with $k \leq 100$.

1 Introduction

A (v, k, λ) -difference set in a group G of order v is a k-subset D of G, such that every nonidentity element g of G has exactly λ representations $g = d_1 d_2^{-1}$ with $d_1, d_2 \in D$. We say that D is abelian if G has this property. The existence theory of abelian difference sets is highly developed, in particular, there are only four open cases of abelian (v, k, λ) -difference sets with $k \leq 100$, see Jungnickel, Pott (1996) and Jungnickel, Schmidt (preprint).

These cases are (the entries in the following table are (v, k, λ) , group).

 $(783, 69, 6), \mathbf{Z}_{3}^{3} \times \mathbf{Z}_{29};$ $(640, 72, 8), \mathbf{Z}_{2} \times \mathbf{Z}_{4}^{3} \times \mathbf{Z}_{5};$ $(640, 72, 8), \mathbf{Z}_{2}^{3} \times \mathbf{Z}_{4}^{2} \times \mathbf{Z}_{5};$ $(320, 88, 24), \mathbf{Z}_{4}^{3} \times \mathbf{Z}_{5}.$

In this note, we will show that in the first case no difference set can exist. Throughout, we use the following notation. We identify a subset A of G with the element $\sum_{g\in A} g$ of the group ring $\mathbf{Z}G$. For $B = \sum_{g\in G} b_g g \in \mathbf{Z}G$ we write $|B| := \sum_{g\in G} b_g$ and $B^{(t)} := \sum_{g\in G} b_g g^t$ for $t\in \mathbf{Z}$. By ξ_m we denote a primitive complex mth root of unity. The following is a standard result on character sums of difference sets, see Turyn (1965).

Lemma 1.1 Let D be a (v, k, λ) -difference set in an abelian group G, and let U be a subgroup of G. Let $\rho: G \to G/U$ denote the canonical epimorphism. Then

$$\rho(D)\rho(D)^{(-1)} = n + |U|\lambda G/U,$$

and hence

$$\chi(\rho(D))\overline{\chi(\rho(D))} = n$$

for every nontrivial character χ of G/U.

2 The Result

Theorem 2.1 There is no (783, 69, 6)-difference set in $G = \mathbb{Z}_3^3 \times \mathbb{Z}_{29}$.

Proof

Assume the existence of a (783, 69, 6)-difference set D in G. We will write G multiplicatively. By the multiplier theorem (see Jungnickel (1992), Theorem 2.1) and the result of McFarland and Mann (1965), we can assume $D^{(7)} = \{d^7: d \in D\} = D$. Let U be the subgroup of G isomorphic to \mathbb{Z}_3^3 . By Lemma 1.1, we have $\chi(\rho(D))\overline{\chi(\rho(D))} = 63$ for every nontrivial character χ of G/U, where $\rho: G \to G/U$ is the canonical epimorphism. Since $3^{14} \equiv -1 \mod 29$, we have $\chi(\rho(D)) \equiv 0 \mod 3$ for every character χ of G/U, see Turyn (1965). Since (|G/U|, 3) = 1, we conclude $\rho(D) = 3u$ for some $u \in \mathbb{Z}[G/U]$. Write $u = \sum_{g \in G/U} u_g g$ with $u_g \in \mathbb{Z}$. Then $\sum_{g \in G/U} u_g = 23$ and, since $uu^{(-1)} = 7 + 18G/U$ by Lemma 1.1, $\sum_{g \in G/U} u_g^2 = 25$. Hence, as a multiset,

$$\{u_g:g\in G/U\}=\{1\cdot 2,21\cdot 1,7\cdot 0\},$$

where $x \cdot y$ denotes x copies of y. Hence we have

$$D = \sum_{i=1}^{22} X_i h_i,$$

where $h_1, ..., h_{22}$ are distinct elements of the subgroup H of G of order 29 and $X_i \in \mathbf{Z}U$ with $|X_1| = 6$ and $|X_i| = 3$ for i > 1. The automorphism group of H generated by $h \to h^7$ has exactly four orbits O_1, O_2, O_3, O_4 of length 7 and one orbit $O_0 = \{1\}$ of length 1 on H. Since $D^{(7)} = D$, it follows that (w.l.o.g.)

$$D = X_1 + \sum_{i=2}^{4} X_i O_i.$$

We claim that each X_i , i=2,3,4, is a coset of a subgroup of order 3 of U. Assume the contrary, say $X_2=a+ab+ac$, where $b\neq 1$ and $c\notin \langle b\rangle$. Let τ be a character of U, which is trivial on $\langle b\rangle$, but not on $\langle c\rangle$. Then $\tau(X_2)=\tau(a)(2+\tau(c))\not\equiv 0 \mod 3$. Let ψ be a character of G of order 29. Then $\tau\otimes\psi(D)=\tau(X_1)+\sum_{i=2}^4\tau(X_i)\psi(O_i)$ is not divisible by 3, since $\tau(X_2)\not\equiv 0 \mod 3$ and $\{1\}\cup\psi(O_2)\cup\psi(O_3)\cup\psi(O_4)$ is linearly independent over $\mathbf{Q}(\xi_3)$. But this contradicts the fact that $\chi(D)\equiv 0 \mod 3$ for all nontrivial characters of χ of G, which follows from $3^{14}\equiv -1 \mod 29$, see Turyn (1965). Hence the X_i , i=2,3,4, are indeed cosets of subgroups of U of order 3. Thus it is easy to see that we always can find a character χ' of G with $\chi'(X_i)=0$ for i=2,3,4. But this implies $|\chi'(D)|=|\chi'(X_1)|\leq 6$ contradicting $|\chi'(D)|=3\sqrt{7}$. \square

3 References

D. Jungnickel: Difference Sets. In: J.H. Dinitz and D.R. Stinson, eds., Contemporary Design Theory: A Collection of Surveys. Wiley, New York (1992), 241-324.

D. Jungnickel, A. Pott: Difference sets: abelian. In: The CRC handbook of combinatorial designs. Eds. C.J. Colbourn, J. Dinitz. CRC Press, Boca Raton (1996), 297-307.

D. Jungnickel, B. Schmidt: Difference Sets: An Update. Preprint.

R.L. McFarland, H.B. Mann: On multipliers of difference sets. Canad. J. Math. 17 (1965), 542-542.

R.J. Turyn (1965): Character sums and difference sets. Pacific J. Math. 15 (1965): 319-346.