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Abstract

We obtain a new method for the study of class groups of cyclo-
tomic fields by investigating cyclotomic integers of prescribed absolute
value. Explicit subgroups of the classgroup C' modulo the class group
CT of the maximal real subfield are exhibited and lower bounds on
their orders are derived. For the mth cyclotomic field K,,, where
m = pm/, (p,m') = 1 and p is a prime, we determine the structure
of CTCp/C*Cgq up to a binary parameter; here Cp, Cg are the sub-
groups of C generated by the classes [P;] respectively [@Q;], where p

factors in K, as [[Q;, Qi = P;p(p a), and the P; are prime ideals.
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1 Introduction

A basic theorem of algebraic number theory asserts that all elements of a
prescribed norm in an order O of an algebraic number field have the form ex
for a unit € € O and = € X, where X is a fixed finite subset of O. Further-
more, X can be determined in a finite number of steps. The corresponding
section of [2], for instance, ends with the sentence “This gives a final solution
to the problem...” [2, p. 123]. Statements like this are very frustrating for
anyone who really wants to work with numbers of prescribed norm — because
the actual computation of X is usually impossible within one’s lifetime and
theoretically almost nothing is known about X.

The first part of this paper is devoted to an instance of the norm problem
of particular interest, namely cyclotomic integers with prescribed absolute
value. That is we investigate the problem of prescribed relative norm for
cyclotomic fields K with respect to the maximal real subfields K. In the
second part we will show that the absolute value problem is intimately con-
nected with the structure of the class group of K modulo the class group
of KT, thereby demonstrating the significance of our approach. Our main
result will concern the class group C of the mth cyclotomic field K,, where
m = p*m’ and p is a prime. Let Cp, Cg be the subgroups of C' generated by
the classes [P;] respectively [Q;], where p factors in K, as [T Q;, Q; = P;p(p a),
and the P, are prime ideals. We will determine the structure of the group
CTCp/C*Cq almost completely. A further result of a different type will
provide explicit bounds on the size of subgroups of C'/C*. Of course, the
knowledge of C*Cp/C*Cy also yields information on class number factors, a
problem which has been studied intensively in the literature. Work related to
our results in one way or another can be found in [4, 5, 6, 7, 8, 12, 13, 15, 16].
The underlying methods mainly rely on the class number formula or on class
field theory and are completely different from our approach. I am not aware
of any previous work utilizing the connection to the absolute value problem
for the study of class groups.

Last but not least, cyclotomic integers of prescribed absolute value play an
important role in combinatorics, see [1, 10, 11, 14, 17, 19]. For example, one
of the most popular combinatorial problems related to the absolute value
problem is circulant Hadamard matrices. A circulant Hadamard matrix




is a v X v-matrix H with entries =1 of the form

a1 ao e Uy
Ay Q1 -0 Gyq
a9 as e aj

such that any two rows of H are orthogonal. The Circulant Hadamard
Matrix Conjecture asserts that there is no circulant Hadamard matrix
besides the trivial examples for v = 1, 4. The connection to cyclotomic inte-
gers of prescribed absolute value is the following. Set b; := (a; + 1)/2. One
can show that Y-%_, b;£" has absolute value u := /v/2 for any v-th root of
unity £ # 1 and that u must be a rational integer. Thus the investigation
of elements of Z[£] of absolute value u is essential for the study of circu-
lant Hadamard matrices. Using this method, dramatic progress towards the
Circulant Hadamard Matrix Conjecture was recently achieved in [18].

2 Cyclotomic integers of prescribed absolute
value

We will prove several restrictions on the structure of cyclotomic integers
satisfying the equation xZ = n for an integer n > 1. Exploiting the decom-
position groups of the prime ideals involved in the right way will be the key
to these results.

Throughout the rest of the paper, we use the following notation. By K, =
Q(&n), &m = €¥™/™  we denote the m-th cyclotomic field and by @, its ring
of integers. For o € G, := Gal(K,,/Q) we write Fix(c) for the subfield
of K,, fixed by (o). For positive integers ¢ and s we denote the order of ¢
modulo s by os(?).

A prime p will be called self-conjugate modulo m if there is an integer j
such p = —1 (mod m'), where m = p*m’, (p,m') = 1. Note that p is self-
conjugate modulo m if and only if the primes above p in O,, are invariant
under complex conjugation. Moreover, if ¢ # p is an odd prime then p is
self-conjugate modulo p*¢®, a > 0, b > 1, if and only if o,(p) is even.
Following preliminary results will be basic for the whole paper.

We first note the following consequence of Kronecker’s result that an algebraic
integer all of whose conjugates have absolute value 1 is a root of unity.
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Lemma 2.1 Let x € O,, be a solution of xT = n, where n is a positive
integer. If o € G, fizes all primes above n then

[ 6(0)&3;1(0)33,
where €(o) and j(o) are integers with e(0) = £1 and €(o) = 1 if m is even.

Proof
Since (z) = (z7), we have 2° = ux for some unit u. As |2°|> = (zT)7 = n° =
n = |z|?, u has absolute value 1. By Kronecker’s result, u must be a root of
unity, i.e. u = +&J, for some j. If m is even then we can choose the positive
sign. O

The next lemma shows that ¢(o) and j(o) satisfy important restrictions.

Lemma 2.2 In the situation of Lemma 2.1, write m = ¢*m/, where q is a

prime and (¢, m') = 1. Let o be defined by &, — £, (t,m) =1, let y = 0, (t)
denote the order of o and write

gjl(ff) J2(o)
qa ml

z’ = €(o) x

(with €(c) = 1 if m is even). Then ¢°/(¢%, (¥ — 1)/(t — 1)) divides j;(0).
Furthermore, if both m and y are odd then e(c) = 1.

Proof _ _
Write 7 := 5(]131(0) and 7y := ffi,(a). We have
r=2" = (do)myz)””

(6(0‘)2771+t’)/1+t$)0y_2

[ S |

= E(O')ynt——l’)/ t—1 7.

y_
Thus e(a)yntt——l1 =1 (in any case!) implying the assertion. O

We need conditions guaranteeing that we can assume ji(o) = 0. This will
be achieved simply by replacing x by x times a suitable root of unity.



Lemma 2.3 Assume that g does not divide t —1 or that ¢*t' does not divide
tY — 1 in Lemma 2.2. Then there is an integer k such that

(2€R )7 = e(0) ) (agh,).

Proof '

We have to find a solution of fé’iﬂl(a) =&k, ie of k(t — 1)+ ji(o) =
0 (mod ¢*). This is possible if and only if (¢%,¢ — 1) divides j;(c). Thus
the assertion is clear if (¢%,t — 1) = 1. Assume that ¢*™' does not divide
t¥ — 1. Then (¢% (¥ —1)/(t — 1)) = ¢*/(¢%,t — 1) and Lemma 2.2 implies
that (¢%,t — 1) divides j;(o). O

Corollary 2.4 If m is even or both m and y are odd and the assumption of
Lemma 2.3 is satisfied for every prime divisor ¢ of m then there is an integer
r such that z§), € Fix(o).

Proof
Note €(0) = 1 and apply Lemma 2.3 repeatedly. O

Now we are ready to prove an important restriction on the structure of the
solutions of T = n in the case where n = p® for a rational prime p. In a sense
this result will tell us that any “ramified” solution of xZ = p® is necessarily
a Gauss sum times an “unramified” solution.

Let p =ef + 1 (e # 1) be an odd prime, let T" be the set of all primitive
e-th roots of unity and let & be a fixed primitive root modulo p. The set of
all Gauss sums Y27 v'&), v € T, will be denoted by G(p,e). For p =2 we
define G(2,2) = {1 + i}.

Theorem 2.5 Let m = p*m’, where p is a prime, (p,m') = 1 and m #
2 (mod 4). If x € O, is a solution of T = p°, b > 1, then there is an integer
J such that

28 € Op or z=¢&yz,
where 2 € Oy, 22 =p" ! and y € G(p, e) for some divisor e # 1 of wy with
wo=21ifp=2, wy = (p—1,m') if m' is even and wy = (p — 1,2m') if both
p and m' are odd.



Remark
The special case m' = 4, p = 1 (mod 4) and a = 1 of Theorem 2.5 b) was
obtained in [14], Lemma 5.

Proof
Let [I7_ ¢j* be the prime power decomposition of m/.

a) We first treat the case p = 2. Let ¢ be an integer satisfying ¢ = 5 (mod 2471)
and (for technical reasons only) ¢t = ¢ + 1 (mod ¢*™), i = 1,..., s, and let
o € G, be defined by &, — &,. Since t = 1 (mod m'), o fixes all primes
above 2 in O,,. We will show that the assumption of Lemma 2.3 is sat-
isfied for every prime divisor of m. We have y = 2%°2? and 2*"! does not
divide t¥ — 1 since 0ga+1(5) = 297!, Similarly, we conclude that ¥ — 1 is
not divisible by ¢/ for all .. Thus we can apply Corollary 2.4 to get
x1 =z € Fix(o) N O, = Oyyy for some 7. Let o1 be defined by i — —i,
&t — fm By Lemma 2.3 there are integers r1, 79 such that 3' = i" x5 where
T 1= x1&,%. Write 9 = y1+y9t with yl, Yo € Opy. If 1y = 0 then x5 € Fix(o7)
and we are ﬁnlshed If ry = 2 then 25" = y; — yQZ = —T9 = —Y; — Yot. Hence
Zg = Yot yielding the assertion. If r; = 1 then 25" = y1—y2i = 1Ty = —Yo+Yy14.
Thus y; = —yo, i.e. o = (1 —1)y; = —i(1+14)y; again yielding the assertion.
The case r; = 3 is similar. This completes the proof for p = 2.

b) Let p be odd. We first show z&Z, € O,y for some j. Let ¢ be an integer sat-
isfying t = p+1 (mod p®*!) and (for technical reasons) t = ¢%+1 (mod qa“Ll)
i=1,..,s. Then o € G, defined by &, — &' fixes all primes above p. It
is easy to see that Corollary 2.4 can be applied and yields z; := z&, €
Fix(o) N Op, = Oppy for some j.

Now let t; satisty the same conditions as ¢ with the ﬁrst one replaced by
t1 = h (mod p) and let 01 € Gy be defined by &y — pm, Note that o;
fixes all primes above p. However, also note that we cannot apply Corollary
2.4 — this is quite plausible since it would imply the nonexistence of Gauss
sums. By Lemma 2.1 we have 7' = e£° [1;_; &’s, 1 with € = &1 and for

some integers j;. Since (p,t; — 1) = 1, we can assume Jjo = 0 by Lemma 2.3.
Let g;* be the highest power of ¢; dividing p — 1. From Lemma 2.2 we infer
that ¢% /(¢, (="' — 1)/(t, — 1)) divides j; for all 4. Since 0,0 oi+1(t1) = ¢i, We
have Oq?i+bi+1(t1) = ¢7*" and hence ¢/ does not divide tp "1 As ¥

divides t; — 1, we get (¢, (" —1)/(t, —1))|¢¥ and thus ¢ %|j;. It follows
that x7* = nx; where 7 is a primitive e-th root of unity for some divisor e



of wy. If n = 1 then z; € Fix(o1) N Oy, = Opy yielding the assertion. Thus
assume 7 # 1. We write z; = Y2°2 Al with A; € Opy. Then

p—2 )
et = n) AL
i=0
p—2 -
= Y Ag"
i=0
0 h2 i
= Ap—Qfg +2Ai—1§1’;-
i=1

Hence Ayn = A, 5 and Ajp = A;; for i = 1,...,p — 2. Thus 4; = Ay,
—2

i=1,....p— 2. This gives z; = Ay 3", n_if,;}i completing the proof. O
The following theorem gives a restriction on the solutions of 27 = n of a
completely different type. A special case of this result was proved in [3].

Theorem 2.6 Let x € Oy, be a solution of xT = n, where (m,n) =1, m =
p* and p is an odd prime. Let n = [[;_, ri" be the prime power decomposition
of n. If a > 2, we assume rf_l # 1 (mod p?) for alli. Let f be any common
divisor of 0,(r;), i =1,..., s, and write p = ef + 1. Then the following hold.
a) If n is a square of a rational integer u and f > 2u(p—1)/p then (x) = (u).
b) If n is a nonsquare then f is odd and there is an integer y satisfying
y? = e?n (mod p) and 1 < y < ey/n. In particular, €*n > p.

Remarks

(i) Under additional assumptions, one can allow m to be the product of two
prime powers in Theorem 2.6.

(ii) For f = (p — 1)/2 the assumptions of Theorem 2.6 can slightly be weak-
ened.

Proof

If f is even, the assertion is obvious since then all primes above n in O,,
are invariant under complex conjugation, see the beginning of this section or
[19], for instance.

Thus assume that f is odd. Let ¢ be an integer such that op.(t) = fp* ! and
define o € G, by &, — & . Tt is easy to see that the assumptions of the
theorem imply that fp®~! divides 0pa (1) for all i. We conclude that for every
i there is an integer j; such that r* = ¢ (mod p?). Thus o fixes all primes



above n in Op,. As 0pe(t) = fp* ! is odd and since (p,t — 1) = 1, we can
apply Corollary 2.4 which shows that we can assume z € K, ., where K,
is the subfield of dimension e := (p — 1)/f of K,. Let g be a primitive root
modulo p. The Gaussian periods n; = E{:_Ol §I~‘)’et+i, 1=0,..,e—1, form an
integral basis of K, . over Q. Hence we can write z = Zf;(} bin; with b; € Z.
It is shown in [3], Lemma 2.3, that this implies

en = pY b — £ 0 1

and | Y b;| < ey/n. Considering (1) modulo p and multiplying by e we con-
clude y*> = e’n (mod p) where y = |3 b;|. This already proves part b).
Furthermore, if n = u? for a positive intgerer U then y = +eu (mod p).
Since y < eu and p > 2u(p — 1)/f = 2ue, we infer y = ue. Now (1) gives
> b2 = eu? and this together with |3 b;| = eu implies that b; = u or b; = —u

for all 4 completing the proof of a). O

Remark

Under appropriate assumptions one can combine Theorem 2.5 and Theorem
2.6 to show that under these assumptions (z) = (p?) if 2T = p**, z € Oppye,
where p and ¢ are primes and ¢ is odd. We omit the explicit statement and
proof which are tedious but straightforward.

3 Subgroups of the class groups of cyclotomic
fields

In this section, we use our results on cyclotomic integers of prescribed ab-
solute value to study subgroups of ideal class groups of cyclotomic fields
generated by prime ideals above fixed rational integers. The both most ob-
vious and most important connection between the class group and solutions
of T = n in cyclotomic integers is described in the following proposition.
For the sake of clarity, we state it in a way slightly differing from the version
needed in the proofs of Theorems 3.3 and 3.7.

Proposition 3.1 Let m and n be any positive integers and assume that there
is a principal ideal A = (y) of Op, solving the ideal equation AA = (n). Then
the following hold.



a) There is a solution x € Op, of T = n with (x) = A if and only if n/yy is
a square of a real unit € in Oy,.
b) There is always a solution z € Op, of 2z = n* with (z) = A2

Proof

a) If n/yy = €* then x := ey solves =T = n.

Conversely, if zZ = n and (z) = A then x = §y for some unit § and n/yy = 66
which is a square of a real unit since any unit in O, is a product of a real
unit and a root of unity.

b) This follows from a) since n?/y*y* surely is a square of a real unit. O

Our strategy will be the following. Theorems 2.5 and 2.6 provide necessary
conditions on the ideals (x) generated by solutions of 2T = n. Combined
with Proposition 3.1 this shows that usually a lot of solutions of the ideal
equation AA = (n) must be nonprincipal. Thus we get grip on the subgroup
of the classgroup generated by the classes of the prime ideals above n.

We are now going to utilize Theorem 2.5 for the study of class groups. We
will need some notation. We fix a positive integer m # 2 (mod 4) and work
in the m-th cyclotomic field K = K,,. Let K be the maximal real subfield
of K. By I, H, C, respectively I, HT, C*, we denote the group of all
(fractional) ideals, the group of all principal ideals and the class group of
K, respectively K*. We view IT, H", C* as imbedded in I, H, C in the
natural way. Note that the imbedding of C* in C makes sense, since the
natural homomorphism C+ — C' is an injection, see [20, Theorem 4.14].

Let m = p®m/, where p is a prime relatively prime to m’. Recall that p factors
in K as [[Q;, where Q); = Pz-(p “0r*7" and the P; are distinct prime ideals.
We write Ip, I for the subgroups of I generated by the P;, respectively the
Qi- The groups Hp, Hg, Cp, Cg are defined similarly. Thus, for instance,
CP = IPH/H and CQ = IQH/H

We define the “Gauss sum group” as the subgroup G(p) of H generated by
all J € H which are generated by an element of G(p,e) for some divisor
e # 1 of wy, where wg = 2if p = 2, wy = (p — 1,m') if m' is even and
wo = (p— 1,2m’) if both p and m' are odd.

Finally, ¢ denotes the Euler ¢ function.

Lemma 3.2 a) The ideal group
II; = {J € lp: J/j € G(p)IQ}
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contains Ip N ITIoH.
b) Assume that p is not self-conjugate modulo m = p*m'. Then

Ip/Ip = (Z/wZ) x (Z/uZ)** ",
where u = ¢(p*), e = p(m') /o (p), w = u/wy and wy is defined above.

Proof

a) Since I < I by definition, it suffices to show Ip NITH < I. Thus let
J € Ip N ITH be arbitrary and write J = J*(h) with J* € I and h € K.
Since J* is invariant under complex conjugation, we have J/J = (h/h).
As J/J € Ip, there is a positive integer b such that y = p°h/h € O,,.
Because of yy = p®® we conclude (y) € G(p)lg by Theorem 2.5. Hence
J/J = (y)/(p°) € G(p)Ig, too, since (p°) € Ig. This shows IpNITIgH < I5.

b) Let Py, Pi,...,P, /2, Pej2 denote the primes above p in O,, and define

e/2
T::{HPfi:OgclSw—l,()gcigu—lforz’:2,...,e/2}.

=1

We first show that the elements of T represent distinct cosets of I, in Ip.
Thus assume S := Hffl ch‘ telp with0<¢,df <w—-1and 0 < ¢, ¢ <
u—1fori=2,..,e/2. Then S/S € G(p)Ig by the definition of I,. Theorem
2.5 implies that every element of G(p)Ig can be written in the form G°J
with 6 € {0,1}, G € G(p,r) for some divisor r # 1 of wy and J € Ij.
Thus we can write S/S in this form, say S/S = G%Js. If g = 1 then
by Stickelberger’s relation (see [9, p.209, Theorem 2| or [20, p.98, 1.19]) P,
occurs in S/S = G Jg to a power xu/r + yu, where z,y are integers with
(z,7) = 1. This 1mp11es lei—c}| = |zu/r+yu| > u/r > w which is impossible.
Hence §5 = 0, i.e. S/S € Ig. We conclude ¢; = ¢, for all i showing that the
elements of 7" indeed represent distinct cosets of Ip.

Our next goal is to show I;T = Ip. For that let J € Ip be arbitrary, say
J = He/2 P‘“Pb". Because of P;P; € I, we may assume b; = 0 for all 5. Write
a1 = z1W + 29, where zq, 29 are integers with 0 < 2o < w. By Stickelberger’s
relation there is G € G(p) such that G = PYP" " 12 PZ-fiFiu_fi for some
integers f;. Then J; := P/ He/2 Pfl € Iy, since [lejl_l = IoG. Note that
PR Hff P 2fi can be written as LyL, with Ly € T and Ly € Ig. Thus
J = PrJa 2 peiafi = (JB L)Ly € I5T. This shows I5T = Ip.
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We conclude [Ip : Ip] = wu®/?>"!. Let U be the subgroup of Ip generated

by P, P,....Pj2, Pejo. Then IzU/I; = (Z/uZ)*/*7', since by what we
have shown I P, ..., Ip P,y is a basis of IpU/I,. Now assertion b) follows
from the theorem on subgroups of free abelian groups of finite rank since the
exponent of Ip/I, divides u. O

Theorem 3.3 Assume that p is not self-conjugate modulo m = p*m’. Then
CpCt/CoCt =2 (Z/2°wZ) x (Z/uZ)¥*,

where § € {0,1}, u = p(p?), e = p(m')/om (p), w = u/wy, wo =2 if p =2,
wo = (p—1,m) if m' is even, and wy = (p — 1,2m') if both p and m' are
odd.

In particular, the relative class number h,, of K, is divisible by wus/?.
Remarks

a) If p is self-conjugate modulo m = p®m/ then CpC*/CoCT = {1} trivially.
b) The reason for the binary uncertainty ¢ in the structure of CpC*/CoC™ is
the loss of information by squaring in Proposition 3.1 b). The determination
of 0 is an interesting problem; in particular, it would yield new information
on cyclotomic integers of prescribed absolute value.

Proof

We first note

IR

CtCp/CtTCy =~ (ITIpH/H)/(ITIoH/H)
I"IpH/ITIoH

Ip/Ip N ITILH.

1

|4

Write A = Ip/Ip N ITIgH. The exponent of A divides u and its rank is at
most e/2. We know from Lemma 3.2 a) that Ip/Ip is isomorphic to a factor
group of A. Putting these facts together and using Lemma 3.2 b) we see that
A = (Z/vZ) x (Z/uZ)*?>7" for some divisor v of u with v = 0 (mod w) by
the theorem on subgroups of free abelian groups of finite rank.

Our next claim is that B := I /IpNItIoH is either trivial or an elementary
abelian 2-group. For that let J € I be arbitrary. Then J/J € Ip N IgH
and hence J? = (J/J)(JJ) € IpNITIgH, as JJ € Ip N I*. This proves the
claim.
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Finally, since A/B = Ip/Ip = (Z/wZ) x (Z/uZ)%?*7, we must have v = w
orv=2w. O

It is interesting to compare Theorem 3.3 with previously known results which
were obtained by completely different methods. We first consider some results
of Metsénkyld [15, 16] who proved congruences for relative class numbers by
manipulations of the class number formula. In parts a) and b) of the following
corollary we essentially recover Satz 10 of [15] and in part ¢) we obtain new
congruences which are somewhat related to Satz 8 and Satz 9 of [15].

Corollary 3.4 Letp and q be odd primes and let h., denote the relative class
number of K,,. Then the following hold.
a) hape =0 (mod ¢(p®)/6) for p=1 (mod 3),
b) hype =0 (mod o(p?)/4) for p=1 (mod 4),
c)
(pa)(q*l)qc‘l/2
2¢°¢
if ¢¢, 1 < ¢ <b, is the highest power of q dividing p — 1.

Proof

a) We put m’ = 3 in Theorem 3.3. Then the assumptions are satisfied and
we have u = ¢(p%), e = 2, wo = 6, and w = ¢(p®)/6 implying the assertion.
b) We put m' = 4 in Theorem 3.3 and get the assertion.

c) Put m’ = ¢ in Theorem 3.3. Then u = ¢(p?), wy = 2¢¢ and e = (¢—1)g° !,
since op(p) = ¢*~¢. O

h. bEO(mod(’D

Peq

Example 3.5 We choose an example which can be compared with the ta-
ble of relative class numbers in [20]. By Corollary 3.4 c¢) we have hgys.,, =
0 (mod 2*-11%). The table shows that 24, 11* are actually the highest powers
of 2 respectively 11 dividing hys.45.

Another approach to class number factors can be found in [4, 6]; the method is
to use Abhyankar’s lemma to construct unramified abelian extensions which
yield class number factors by class field theory. For instance, it is shown in
[4] that the class group of Kj,, where p = 1 (mod 4) is a prime, contains
a cyclic group of order (p — 1)/4. Note that this result is contained in our
Theorem 3.3. A further result from [6] is that the class number of K, is
divisible by (p—1)/2 or (¢ —1)/2 if p and ¢ are distinct primes = 3 (mod 4).
This is a consequence of the following.
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Corollary 3.6 Let p and q be primes = 3 (mod 4). By quadratic reciprocity
we may w.l.o.g. assume that p is a square modulo q, i.e. that o,(p) is odd.
Then

h, =0 (mod (p— 1)(q71)/(20q(p))/2)

ho, =0 (mod (p — 1)4=9/2/(29))

pq
if q¢ divides p — 1.

Proof
Put m’ = ¢ in Theorem 3.3. O

We need some notation for the formulation of our next result. Let m and
t be positive, relatively prime integers, where m = p® for an odd prime p.
Furthermore, let t = []7_; rf" be the prime power decomposition of t. We are
only interested in the case where f; := 0,(r;) is odd for every i. Then the
prime ideals above r; in @, are not invariant under complex conjugation.
Hence each r; factors in O,, as

u; L

j=1
where u; = p(p®)/(205a(r;)) and the P;; are distinct prime ideals. We also
keep the notation introduced before Lemma 3.2.

Theorem 3.7 Assume that f is a common divisor of f1,...,fs and that rffl %
1 (mod p?) if m = p® > p. If the f; are odd and if

where the d; are any nonnegative integers, then the ideal classes

[f[ [P

i=1j=1

,OSCi_dei;

1=1,...,8, j=1,...,u;, represent distinct cosets of C* in C. Here we have

u; = (p—1)/2f;.
In particular, the order of the subgroup of C/C* generated by the cosets
CH[Pyl,i=1,...,s,j=1,..,u; is at least [[;_;(d; + 1)".
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Proof /

Assume CT [T, [TL, 7] = CHIII-, T, PZC]“] Then there are h € K and
J* € I such that J := [T;_, [Tj%, P;'r%j = (h)J*. Since (h/h) = J/J and
cij — ¢i;| < d; for all 4,5, we know that y := th/h lies in O,,. As yy = t?
and f > 2t(p — 1)/p by the assumption, we can apply Theorem 2.6 a) and
get (y) = (t). Thus (k) = (k) and J = J, i.e. ¢;; = ¢; for all i,5. O

Corollary 3.8 Let m = p® for an odd prime p. Assume that q is a prime
such that o,(q) is odd and that ¢* ' # 1 (mod p?) if a > 2.

Then the size of the subgroup of C/C™T generated by the classes of the primes
Q; above q in Oy, is al least

Q%/J)—

Furthermore, each @Q; has order at least [ln %/ In qJ +1inC.

Proof
We put s =1, 1 = ¢q, f = 0,(q), and d; = [111 ;(pzfﬁ)lp)/lnqj in Theorem
3.7. Then the assumptions are satisfied, for t = ¢®* < fp/(2(p — 1)). Thus

Theorem 3.7 gives the assertion. O

Example 3.9 We consider the classical example p = 23, ¢ = 2. Corollary
3.8 shows that the order of a prime above 2 in the class group of Ks3 is at
least [In £28 /In 2] + 1 = 3. Since the class number of Ky is 3, such a prime
generates the full class group.

It is straightforward to combine Corollary 3.8 with reciprocity laws to show
that certain prime ideals are always nonprincipal. We only mention the
following case containing the classical p = 23.

Corollary 3.10 Let p > 23 be a prime =7 (mod 8). Then the prime ideals
above 2 in O, are nonprincipal.

Proof

Since p > 23 and 093(2) = 11, we have 0,(2) > 5. By quadratic reciprocity
0,(2) is odd. Thus Corollary 3.8 shows that the order of a prime above 2 in
the class group of K, is at least |(In5/2)/In2| +1=2. O
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