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Abstract

We consider difference sets that have the parameters of the two
series contructed recently by Chen respectively Davis and Jedwab.
We show that the exponent bound following from the results of Turyn
cannot be attained for these parameter series. In some cases this
leads to a necessary and sufficient condition for the existence of such
difference sets.

1 Introduction

A (v,k, \)-difference set in a group G of order v is a k-subset D of G such
that every nonidentity element g of G has exactly A representations g = d;dy*
with dqi,ds € D. In this paper, we only consider abelian difference sets,
i.e. difference sets in abelian groups.

Recently, two new parameter series for difference sets were discovered by
Chen (submitted) and Davis, Jedwab (1996). Chen’s difference sets have
parameters
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where ¢ = p/ is a power of 3 or a square of an odd prime power and ¢ is any
positive integer. For t = 1, such a difference set is a Hadamard difference
set. Any difference set with the above parameters (for any prime power g)
and t > 2 will be called a Chen difference set. Chen’s examples all have
an elementary abelian Sylow p-subgroup; we will show that this is forced in
some cases. However, in general there remains a large gap between the known
necessary and sufficient conditions on the existence of Chen difference sets. I
do not know if the exponent bound obtained in this paper can be improved.
The other recent series of difference sets constructed by Davis and Jedwab



has parameters
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where ¢t > 2 is a positive integer. Any difference set with these parameters
will be called a Davis-Jedwab difference set. Note that Davis-Jedwab
difference sets are also Chen difference sets (put ¢ = 2). Davis and Jedwab
(1996) constructed Davis-Jedwab difference sets in all abelian groups of order
220+2(22t — 1)/3 which have a Sylow 2-subgroup S, of exponent at most
4, with the single exception of t = 2 and Sy = Z3. We will show that
the condition exp(Sy) < 4 is also necessary for the existence abelian Davis-
Jedwab difference sets with the so-called character divisibility property.
Here we say that an (v, k, A)-difference set D of square order n = k — X in an
abelian group G has the character divisibility property (CD property)
if the character value x(D) is divisible by 4/n for all nontrivial characters x
of G, see Jungnickel, Schmidt (to appear).

We emphasize that the CD property is a very natural assumption which is
satisfied by all known difference sets with ged(v,n) > 1. Difference sets with
ged(v,n) > 1 without the CD property - if they exist - must be difference
sets of a completely new type. Therefore, it is reasonable to consider these
two types of difference sets separately.

2 Preliminaries

Let us collect some results which will be needed in the following sections.
Throughout the paper, we will use following notation. Let G be a finite
abelian group. We identify a subset A of G with the element 3 -4 g of
the group ring ZG. For B = Y ccbyg € ZG we write |B| := ¥ ¢ b, and
BY = YgeG byg~'. Let U be a subgroup of G; the natural epimorphism
G — G/U is always assumed to be extended to ZG by linearity and is
denoted by py. Furthermore, we write Gy := G/U. If D is a subset of
G with py(D) = Y cq, dgg then the numbers d, = [D N Ug| are called
coefficients of py (D) or intersection numbers of D with respect to U.
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The following lemma is a direct consequence of the definition of a difference
set.

Lemma 2.1 Let D be a (v,k, \)-difference set in an abelian group G, and
let U be a subgroup of G. Then

pU(D)IOU(D)(il) =n++ ‘U')\GU,

and hence -
x(pv(D))x(pu (D)) = n

for every nontrivial character x of Gy.

Definition 2.2 A prime p is called self-conjugate modulo a positive integer
m if there is a positive integer j with

P’ = —1 mod n,
where m = p*m’ with (m',p) = 1.

Lemma 2.3 (Turyn (1965)) Let £ be a complex m-th root of unity, and
let t be an integer which is self-conjugate modulo m. If A € Z[£] and

AA =0 mod t**
for a positive integer a then
A =0 mod t°.

As usual in papers on the existence of difference sets with (v,n) > 1, Ma’s
Lemma will be the essential tool.

Lemma 2.4 (Ma (1985)) Let p be a prime, and let G be a finite abelian
group with cyclic Sylow p-subgroup. If Y € ZG satisfies the condition

x(Y) =0 mod p*
for all nontrivial characters x of G then there are X1, Xo € ZG with
Y = anl + PXQ,

where P is the unique subgroup of order p of G.
Furthermore, the coefficients of X1 and X5 can be chosen to be nonnegative
if Y has nonnegative coefficients.



The next lemma is a consequence of the inversion formula, see Curtis, Reiner
(1962).

Lemma 2.5 Let G be a finite abelian group, and let t be a postive integer.
If B € ZG with
X(B)=0mod t

for all characters of G then
B =0 mod t/(|G|,1).

Finally, we recall the central result of Turyn’s classical paper [Turyn (1965,
Theorem 6)]. By G* we denote the character group of G.

Theorem 2.6 Let D be any subset of an abelian group G, and let m be a
positive integer such that xx1(D) = 0 mod m for all x in a subgroup H of G*,
(|H|,m) = 1, where x1 is a character of G of order w > 1 and |[HN(x1)| =1
and assume xx1(D) # 0 for some x € H. Then

2" 1G] > mw|H|,

where r is the number of distinct prime divisors of w.

3 Chen difference sets

In this section, we will improve the exponent bound which follows from The-
orem 2.6 in the case of Chen difference sets with odd ¢. In some cases, this
will give a necessary and sufficient condition for the existence of these differ-
ence sets. We will use arguments similar to those of Arasu, Davis, Jedwab
(1995). A very nice description of this method can be found in Pott (1995).
As a consequence of Turyn’s result we have the following.

Proposition 3.1 Lftt g = p/ be a prime power, and let G be an abelian
group of order 4q2t‘22—j11 containing a Chen difference set D having the CD

property. Denote the Sylow p-subgroup of G by S,. Then the following hold.
a) If p is odd then exp(S,) < q.
b) If p =2 then exp(Sy) < 4q.



Proof ,
t
a) Put m = ¢* !, |H| = 49112%11 and w = exp(S,) in Theorem 2.6.

b) Put m = ¢* 1, |H| = (512;__11 and w = exp(S,) in Theorem 2.6. O

Remark

Because of Lemma 2.3, in the following cases every abelian Chen difference
set must have the CD property.

a) ¢ odd, t = 2 and the Sylow 2-subgroup of G is isomorphic to Z3 (note
that 8 is the exact divisor of |G| = 4¢*(¢* + 1)).

b) q even, t = 2.

We will improve the exponent bound following from Turyn’s theorem by the
following result.

Theorem 3.2 Let g = p! be an odd prime power, and let G be an abelian
group of order 4¢* ‘;2__11, fyt > 2, containing a Chen difference set D having
the CD property. Denote the Sylow p-subgroup of G by S,. Then exp(S,) <

pIL

Corollary 3.3 Let ¢ = p’ be an odd prime power, and let G be an abelian
group of order 4¢*(¢>+1). If the Sylow 2-subgroup S, is isomorphic to Z3 and
a Chen difference set exists in G then the exponent of the Sylow p-subgroup
S, of G is at most p/='. In particular, if f = 2 and Sy = Z3 then a Chen
difference set in G exists if and only if S, is elementary abelian.

Proof of Theorem 3.2

Assume S, = Z, x H where Z, is a cyclic group of order ¢ and H is a
subgroup of S, of order ¢*~*. We will use the notation introduced in Section
2. Let K be any complement of Z, in S,. By Ma’s Lemma, we have

pr(D) = @1 X + PY, (1)

where X,Y are elements of ZG x having nonnegative coefficients and P is
the subgroup of Gk of order p. Obviously, X can be viewed as a subset of
Gk, and we can assume that no coset of P is contained in X. We write
wy = | X NPyl for g € Gk and Y = ¥ cray9, where T is a set of distinct
coset representatives of P in Gg. In view of (1), the coefficient of 1 in



pk (D)pk (D) is p¥ a2 4 ¢* % ¥ w,. Hence Lemma 2.1 gives us

pzaz + q4t72 ng _ q4t72 + q2t71)\' (2)

Let L be the preimage of P under px. From (1) we see that the coefficient
of 1in py(D)pL (D)"Y is p? ¥ a2 + ¢*~? ¥ w?. Hence Lemma 2.1 implies

p2 Z a?] 4 q4t—2 Z ’UJ; _ q4t—2 _|_pq2t—1)\' (3)

From (2) and (3) we infer

> (pwy —wg) =p—1. (4)

geT

Since 0 < wy, < p—1, we conclude that wy, = 1 or p—1 for one A and wy = 0
for all g # h.

Now, fix any complement of Z, in Sp, say H. From Lemma 2.5 we know
that pg (D) is divible by ¢*72, say pg(D) = ¢ *u = ¥ ,cq, byg. Then by
Lemma 2.1

21
-1 _ 2, 2 4 +1
uu'" = q¢° + 1)—Gy,
¢ +q(g—1) 1 o
hence b, = ¢* + ¢*(q — D&+ - 1“ Also, by = q(L A1) _1) +1) and |Gy| =

4q(q2—1k
Let us define ¢, = by — (¢ —1)/2. The point of this transformation is the nice

formula
> - (5)
9€GH
which is easily proved using the expressions for ) by, 3 bg and |Gy|.
Since exp(H) < ¢q and t > 2, the rank of H must be at least three. Let
91, ---,9r, T > 3, be a basis of H, and let

Kijk = <g1zi792zj7g3zkag47 "'agT>

fori,j,k =0,...,p—1, where z is an element of order p of Z,. Then each Kj;j
is a complement of Z, in S, and K;jx Ky juy = H(z) for all (4, j, k) # (', 5/, k).
From the conclusion following (4), we know that for every triple (i, 7, k) there
is a coset Ljj, of K;jx(z) = H(z) such that either



(i) there is a coset of Kjjj in L;;; which is completely contained in D and all
other cosets of Kjj; in L;j; have an empty intersection with D or

(ii) there are p — 1 cosets of Kjj; in L;j, which are completely contained in
D and the remaining coset has an empty intersection with D.

We conclude Lij, # Liju for (i,7,k) # (7,5, k'). Otherwise L;j, = Ly jip
would have to be contained in D since every coset of Kjj;, in L;j; meets every
coset of Ky in Lijy.

Furthermore, we observe that every coset L;j, (4,7, k) # (0,0,0), leads to p
coefficients by = p/ L or b, = (p — 1)p/ ' in u = py(D)/¢* 2.

If by = p/* then ¢y = 3(—(p — 2)p/ * + 1), and if by = (p — 1)p/ ! then
cg = 5((p—2)p’* +1). In both cases, we have |c,| > 2((p—2)p/* —1). We
also know that b, = ¢ for at least one g since there is a wy, > 1. As there are
(p® — 1) cosets Ly, (i,7,k) # (0,0,0), it follows that

4% > (g+ 1+ @ - Dpllp—2)p" " = 1% (6)
geGH
For p = 3 and f = 2, we get 43 ,cq, c2 > 100 + 26 - 3 - 4 = 412 which
yields a contradiction since 43 cq, cg = 4¢* = 324 by (5). However, for
(p, f) # (3,2) we get

4% ¢ > -Dpp't-1)
9gE€GH
> (p* = 1)g(p’™" - 2)
= g =p"" 20" 1 2)
= ¢ - 1/p—2p" 7 +2/p))
4q2

(the last step uses (p, f) # (3,2)). This again contradicts (5). O

Remarks

a) The estimates used in the proof of Theorem 3.2 are rather crude. However,
it seems to be unclear if this can be viewed as an evidence for a possible
improvement of the exponent bound.

b) A brief look at the proof of Theorem 3.2 shows that the method does not
work for p = 2. In the next section, we present a method for p = 2, f = 1.
It remains an open question if the exponent bound in Proposition 3.1 b) can
be attained for p =2, f > 1.



4 Davis-Jedwab difference sets

It was already mentioned that Davis-Jedwab difference sets exist in in all
abelian groups of order 2272(2% —1)/3 ¢t > 2, which have a Sylow 2-subgroup
Sy of exponent at most 4, with the single possible exception of ¢ = 2 and
Sy & Z3. In Ma, Schmidt (submitted), it was shown that for ¢ = 2 an
abelian group containing a Davis-Jedwab difference set must have a Sylow
2-subgroup of exponent at most 4. The following theorem is a generalization
of this result.

Theorem 4.1 Let G be an abelian group of order 22772(2% — 1)/3, t > 2,
with Sylow 2-subgroup S,. With the possible exception of t = 2 and Sy = Z3,
a Davis-Jedwab difference set D in G that has the CD property exists if and
only if exp(Sy) < 4.

Remark

For t = 2 in Theorem 4.1 the CD property is always is satisfied, see Lemma
2.3. It is not known wether the CD property can be forced for t > 2 or acts
as a wonderbra on Theorem 4.1.

Proof of Theorem 4.1

Putting m = 2% w = exp(S;) and |H| = (2% — 1)/3 in Theorem 2.6 we
conclude exp(Ss) < 8. It remains to show exp(Sy) # 8. Assume the contrary
and write Sy = Zg X H, where Zg is cyclic of order 8 and exp(H) < 8.
If rank(H) = 1 then ¢t = 2 and S, = ZZ. However, this case was already
excluded by Arasu, Sehgal (1995), see also Ma, Schmidt (1995, Corollary
3.3). Hence we can assume rank(H) > 2.

Let U be any be any complement of Zg in S;. From Lemma 2.5 we get
pu(D) = 0 mod 2%~*, say py(D) = 2**wy, wy = e, 099, and Ma’s
Lemma gives

wy = 8X + PY, (7)

where P is the subgroup of order 2 in Gy and X,Y are elements of ZGy
with nonnegative coefficients. Since p(D) cannot have coefficients greater
than |U| = 2%, we conclude | X N PY| = 0.

Applying a character of order 8 to the equation

22t—1 + 1

wngfl) =64(1+ 3

Gv) (8)
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following from Lemma 2.1, we see | Xy| > 1. Furthermore, we know that

Gyl = 8(2* —1)/3,
doa, = 8(2** +1)/3,

2275—1 1
doal = 64(l+7+

3 )

The formula for 3 a follows by comparing the coefficient of 1 in (8).
We define b, = a, — 2. Then a calculation using the formulae for |G|, > a,
and 3 a? gives

> b2 =64 9)

If | X| > 2 then b7 > 72 which is impossible. Thus |X| = 1. Let z be the
element of order 2 of Zg. Since | X N PY| = 0 we conclude that

(%) for every complement U of Zg in Sy there is a coset Ly of U(z) such that
one coset of U in Ly is completely contained in D and the other has empty
intersection with D.

Write H =< g1, 9> > XK where possibly |K| = 1. Let U;; =< ¢12°, g227 >
xK, i,j = 0,1. By (x), obviously Ly,; # Ly, for (i,j) # (¢,j'). Further-
more, the cosets Ly,;, (4,7) # (0,0), imply 6 coefficients 4 in wy since every
Ly,;, (i,7) # (0,0), is the union of two cosets of H which both intersect each
of the two cosets of Uj; in Ly,; in exactly 4 elements.

Now, we will derive a contradiction to (9) for U = H. We know from above
that wy has one coeflicient 8 and at least 6 coefficients 4. Let {a, : g € T'}
be the remaining coefficients of wg. Since

dYoby = |wy|—(8+4-6)—2(Gu[—7)
geT
= —10

we infer 3 . bg > 10. Thus

2 2 2
Db > (8-2)°46(4—2)*+10
= 10,

a contradiction to (9). O
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