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Abstract

The essential fact behind the so-called field-descent method is that certain cyclo-

tomic integers necessarily are contained in relatively small fields and thus must have

relatively small complex modulus. In this paper, we develop a method which reveals

a complementary phenomenon: certain cyclotomic integers cannot be contained in

relatively small fields and thus must have relatively large complex modulus.

This method, in particular, yields progress towards the circulant Hadamard ma-

trix conjecture. In fact, we show that such matrices give rise to certain “twisted

cyclotomic integers” which often have small complex modulus, but are not contained

in small fields. Hence our “anti-field-descent” method provides new necessary con-

ditions for the existence of circulant Hadamard matrices. The application of the

new conditions to previously open cases of Barker sequences shows that there is no

Barker sequence of length ` with 13 < ` ≤ 4 · 1033. Furthermore, 229,682 of the

237,807 known open cases of the Barker sequence conjecture are ruled out.

∗Ka Hin Leung’s research is supported by grant No. R-146-000-209-112, Ministry of Education, Sin-

gapore.
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1 Introduction

A circulant Hadamard matrix of order v is a square matrix of the form

H =


a1 a2 · · · av

av a1 · · · av−1

· · · · · · · · · · · ·
a2 a3 · · · a1


with ai ∈ {−1, 1} for all i and HHT = vI. No circulant Hadamard matrix of order larger

than 4 has ever been found. This led Ryser [11, p. 134] to the following.

Conjecture 1.1. No circulant Hadamard matrix of order larger than 4 exists.

The following is a classical result [15].

Result 1.2 (Turyn). If an Hadamard matrix of order v exists, then v = 4u2 for some

odd integer u which is not a prime power.

A sequence a1, ..., av, ai = ±1, is called a Barker sequence of length v if∣∣∣∣∣
v−j∑
i=1

aiai+j

∣∣∣∣∣ ≤ 1 for j = 1, ..., v − 1.

Storer and Turyn [14] proved that there is no Barker sequence of odd length exceeding

13. Furthermore, the following is well known, see [1, Chapter VI, §14].

Result 1.3. The existence of a Barker sequence of length ` > 13 implies the existence of

a circulant Hadamard matrix of order `.

Thus there is also the following.

Conjecture 1.4. There are no Barker sequences of length exceeding 13.

While Conjecture 1.4 has been settled in [14] for odd lengths, the case of even length

is still open despite powerful partial results [6, 8, 12, 13, 15].

It turns out that the results of this paper are particularly useful for the study of

Conjecture 1.4. In particular, we will show that there is no Barker sequence of length `

with 13 < ` ≤ 4 · 1033. Moreover, we will settle all 19 open cases with ` ≤ 1050 identified

in [3] (note, however, that the list of open cases with ` ≤ 1050 given in [3] is possibly

incomplete; please refer to [3] for more details). Furthermore, in total, 237,807 open cases

of Barker sequences of length ` ≤ 10100 were identified in [3] (again, this list is possibly

incomplete). We will rule out 229,682 of these 237,807 cases.

As the results of our paper are highly technical, we give an informal overview of the

main ideas now. We assume that the reader is familiar with basic algebraic number theory,

as treated in [2], for instance.
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Write ζm = exp(2πi/m). The elements of Z[ζm] are called cyclotomic integers.

Suppose there is a circulant Hadamard matrix of order 4u2, where u > 1 is an integer.

It is well known that this implies the existence of a “flat” X ∈ Z[ζ4u2 ] with |X|2 = u2

(by “flat” we mean that X can be written as X =
∑
aiζ

i
m with small ai’s). Let p be

the largest prime divisor of u. Let σ be the unique automorphism of Q(ζ4u2) of order p.

The “field descent method” [8] shows that the ideal XZ[ζ4u2 ] usually is not be invariant

under σ if X is flat. However, in many cases, most prime ideals of Z[ζ4u2 ] above u are

invariant under σ. This can be used to show that XσX often is divisible by a relatively

large integer, say w. Then Y = XσX/w is a cyclotomic integer. We call Y a “twisted

cyclotomic integer”. The properties of these twisted cyclotomic integers are the key to all

our results. Note |Y | = u2/w, which is relatively small if w is large.

We will show that the ideal Y Z[ζ4u2 ] is not invariant under σ if the same is true for

the ideal XZ[ζ4u2 ]. This means that Y is contained in Q(ζ4u2), but Y η is not contained in

the subfield Q(ζ4u2/p) for any root of unity η. The details of constructing such cyclotomic

integers Y with relatively small complex modulus which live in relatively large fields will

be worked out in Section 3. There are several ways of optimizing the construction of Y ,

which substantially strengthen and complicate the results. For instance, sometimes p has

to be replaced by a smaller prime divisor of u or we have to use homomorphisms to start

with an X which may not be that flat, but is contained in a proper subfield of Q(ζ4u2).

In Sections 4 and 5, we develop tools which provide necessary conditions for the

existence of twisted cyclotomic integers Y . A major step is Theorem 4.5 which deals with

the basic case Y ∈ Q(ζq) where q is a prime power. This result is of independent interest

and essentially solves the following number theoretic problem: Consider a “nontrivial”

solution X ∈ Z[ζq] of |X|2 = v2, which is contained in a subfield K of Q(ζq). Find a sharp

general lower bound for v in terms of the extension degree [Q(ζq) : K].

The necessary condition for the existence of Y in Theorem 4.5 is so strong that it

provides the desired contradictions in most applications we are interested in. Thus, after

Theorem 4.5 has been established, it essentially suffices to concentrate on deriving nec-

essary conditions for the existence of twisted cyclotomic integers in fields that are not of

form Q(ζq). This is the purpose of Theorem 5.4. The main tool for the proof of Theorem

5.4 is new estimates for Cassel’s M-function [4] that are obtained from Galois action on

cyclotomic integers.

Finally, in Section 6, the number theoretic results of Sections 3 – 5 are applied to

circulant Hadamard matrices and Barker sequences, and some computational results are

presented.
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2 Preliminaries

2.1 Group Rings, Characters, and Difference Sets

Let G be a finite (multiplicatively written) group of order v, let R be a ring, and let R[G]

denote group ring of G over R. Every X ∈ R[G] can be written as X =
∑

g∈G agg with

ag ∈ R. The ag’s are called the coefficients of X. We identify a subset S of G with

the group ring element
∑

g∈S g. Let 1G denote the identity element of G and let r be an

integer. To simplify notation, we write r for the group ring element s1G. Let s be an

integer. We set X(s) =
∑

g∈G agg
s.

We need some additional notation for the case R = Z[ζm]. Let t be an integer co-

prime to m. For X =
∑

g∈G agg ∈ Z[ζm][G], we write X(t) =
∑
aσgg

t where σ is the

automorphism of Q(ζm) determined by ζσm = ζtm.

For an abelian group G, we denote its group of complex characters by Ĝ. The trivial

character of G is the character χ0 with χ0(g) = 1 for all g ∈ G. We always implicitly

assume that characters are extended to group rings in the natural way, i.e., χ(
∑

g∈G agg) =∑
g∈G agχ(g). The following is a standard result, see [1, Chapter VI, Lemma 3.5], for

instance.

Result 2.1. Let G be a finite abelian group and X =
∑

g∈G agg ∈ C[G]. Then

ag =
1

|G|
∑
χ∈Ĝ

χ(Xg−1)

for all g ∈ G.

To prove our results on Conjecture 1.1, we will use the language of difference sets. A

(v, k, λ, n)-difference set in a finite group G of order v is a k-subset D of G such that

every element g 6= 1 of G has exactly λ representations g = d1d
−1
2 with d1, d2 ∈ D. The

positive integer n = k − λ is called the order of the difference set. For an introduction

to difference sets, see [1, Chapter VI].

Using group rings and characters, difference sets in abelian groups can be characterized

as follows [1, Chapter VI, Lemma 3.2].

Result 2.2. Let D be a k-subset of a abelian group G of order v. Then D is a (v, k, λ, n)

difference set in G if and only if

DD(−1) = n+ λG (1)

in Z[G]. Furthermore, (1) holds if and only if

|χ(D)|2 = n

for all nontrivial characters χ of G.
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In this paper, we only deal with Hadamard difference sets, i.e., difference sets

with parameters (v, k, λ, n) = (4u2, 2u2 − u, u2 − u, u2) where u is a positive integer. The

following is well known, see [1, Chapter VI, §14].

Result 2.3. A circulant Hadamard matrix of order 4u2 exists if and only if there is a

Hadamard difference set in the cyclic group of order 4u2.

2.2 Number Theoretic Background

Throughout this paper, we assume basic algebraic number theory as treated in [2] or [7],

for instance.

See [2, Section 2.3, Thm. 2] for a proof of the following result of Kronecker.

Result 2.4. An algebraic integer all of whose conjugates have absolute value at most 1 is

a root of unity.

Note that Result 2.4 implies that any cyclotomic integer of absolute value 1 must be

a root of unity, since the Galois group of a cyclotomic field is abelian.

To exploit Galois action on cyclotomic integers, we need the following relative integral

bases of cyclotomic fields which are invariant under certain automorphisms.

Lemma 2.5. Let p be an odd prime and let a ≥ 2 be an integer. Let t be an integer with

(t, p) = 1 and write f = ordp(t). If ordpa(t) = f , then there is B ⊂ {1, . . . , pa−1− 1} with

|B| = (pa−1 − 1)/f such that

{1} ∪
⋃
b∈B

{ζbtipa : i = 0, . . . , f − 1} (2)

is an integral basis of Q(ζpa) over Q(ζp).

Proof. Let I ⊂ Z with |I| = pa−1 = [Q(ζpa) : Q(ζpa−1)]. It is well known and straightfor-

ward to prove that {ζjpa : j ∈ I} is an integral basis of Q(ζpa) over Q(ζp) if and only if the

elements of I are pairwise incongruent modulo pa−1.

For x = 1, . . . , pa−1− 1, let g(x) be the unique integer with g(x) ≡ xt (mod pa−1) and

1 ≤ g(x) ≤ pa−1− 1. Note ordpa−1(t) = f , as ordpa(t) = ordp(t) = f by assumption. Thus

every orbit of the map g on {1, . . . , pa−1 − 1} has length f . Let B ⊂ {1, . . . , pa−1 − 1} be

a set with |B| = (pa−1 − 1)/f which contains exactly one representative of each of these

orbits. Then the set

{0} ∪
⋃
b∈B

{bti : i = 0, . . . , f − 1}

has cardinality pa−1 and its elements are pairwise incongruent modulo pa−1. This implies

the set defined in (2) is an integral basis of Q(ζpa) over Q(ζp).
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Remark 2.6. The assumption a ≥ 2 in Lemma 2.5 cannot be omitted. In fact, if a = 1,

then
⋃
b∈B{ζbt

i

p : i = 0, . . . , f − 1} (and not {1} ∪
⋃
b∈B{ζbt

i

pa : i = 0, . . . , f − 1}) is an

integral basis of Q(ζp) over Q.

The following result is a special case of [12, Thm. 2.1.4]. As it is needed repeatedly in

this paper and the proof for this special case is easier than in the general case, we include

a proof here for the convenience of the reader.

If η is a complex root of unity and k is the smallest positive integer with ηk = 1, we

say that k is the order of η.

Result 2.7. Let v, t be positive integers with (v, t) = 1. Let σ be the automorphism of

Q(ζv) determined by ζσv = ζtv. Suppose X ∈ Z[ζv] and |X|2 is an integer. If all prime ideals

of Z[ζv] above XZ[ζv] are invariant under σ, then there are roots of unity η, τ ∈ Z[ζv] with

(Xτ)σ = ±η(Xτ) (3)

such that every prime divisor of the order of η divides t− 1.

Proof. As all prime ideals of Z[ζv] above XZ[ζv] are invariant under σ by assumption, we

have Xσ = γX for some unit γ of Z[ζv]. Since |X|2 is an integer, we have |Xσ|2 = |X|2.
Thus γ is a root of unity by Result 2.4. Suppose p is a prime divisor of the order of γ

which does not divide t−1. Write γ = ζjpaγ
′ where γ′ is a root of unity whose order is not

divisible by p. As (p, t− 1), there is an integer i with j + i(t− 1) ≡ 0 (mod pa). Hence

(Xζ ipa)
σ = γ′ζj+itpa X = γ′(Xζ ipa).

Repeating this argument, if necessary, we obtain (3).

A proof of the following result can be found in [13, Thm. 1.4.3], for instance.

Result 2.8. Let p be a prime, let m be a positive integer, and write m = pam′ with

(m′, p) = 1. Let p be a prime ideal above p in Z[ζm]. If σ ∈ Gal(Q(ζm)/Q) satisfies

ξσm′ = ξp
j

m′ for some positive integer j, then pσ = p.

Definition 2.9. Let p be a prime, let m be a positive integer, and write m = pam′ with

(p,m′) = 1, a ≥ 0. If there is an integer j with pj ≡ −1 (mod m′), then p is called self-

conjugate modulo m. A composite integer n is called self-conjugate modulo m if every

prime divisor of n has this property.

The following is a result of Turyn [15].

Result 2.10. Suppose that A ∈ Z[ζm] satisfies

|A|2 ≡ 0 mod n2

for some positive integer n which is self-conjugate modulo m. Then A ≡ 0 mod n.
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Note that Results 2.4 and 2.10 imply the following well-known fact: If A ∈ Z[ζm]

satisfies |A|2 = n2 and n is self-conjugate modulo m, then A = ηn for some root of unity

η. We will need the following generalization.

Proposition 2.11. Suppose that A ∈ Z[ζm] satisfies |A|2 = n, where n is an odd integer

which is self-conjugate modulo m. Write n = w2n′ where n′ =
∏k

i=1 pi is the square-free

part of n and the pi’s are distinct primes (k = 0, i.e., n′ = 1 is allowed). Then n′ divides

m and there is a root of unity η such that

A = ηw

k∏
i=1

Gpi , (4)

where

Gpi =

pi−1∑
x=1

(
x

p

)
ζxpi

and
( )

is the Legendre symbol.

Proof. Let X, Y be any elements of Z[ζm] satisfying |X|2 = |Y |2 = n.

Claim We have Y = ηX for some root of unity η.

Proof of the claim: As n is self-conjugate modulo m by assumption, all prime ideals

of Z[ζm] above nZ[ζm] are invariant under complex conjugation by Result 2.8. Thus

|X|2 = |Y |2 = n implies that XZ[ζm] and Y Z[ζm] have the same prime ideal factorization.

Hence X = εY for some unit ε. Note |ε| = 1, as |X|2 = |Y |2. Hence ε is a root of unity

by Result 2.4, and this proves the claim.

Suppose that pi does not divide m for some i. Then the prime ideals of Z[ζm] above

piZ[ζm] are unramified. Furthermore, as shown above, these prime ideals are invariant

under complex conjugation. Hence each of these prime ideal occurs in the factorization

of piZ[ζm] to the first power and occurs in the factorization of |A|2Z[ζm] = AĀZ[ζm] to

an even power. This contradicts |A|2 = n = w2
∏k

i=1 pi. Thus each pi divides m, i.e., n′

divides m.

Let Y = ηw
∏k

i=1Gpi . Note that |Gpi |2 = Gpi for all i, as Gpi is a quadratic Gauss

sum (see [7, Prop. 8.2.2, p. 92]). Hence |Y |2 = w2
∏k

i=1 pi = n = |A|2 and (4) follows

from the claim.

We now recall some results of Cassels [4] which will be needed to derive necessary

conditions on the existence of twisted cyclotomic integers. For X ∈ Z[ζm], let

M(X) =
1

ϕ(m)

∑
σ∈Gal(Q(ζm)/Q)

(XX)σ,
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where ϕ denotes the Euler totient function. Note

M(X) ≥ 1 (5)

for X 6= 0 by the inequality of geometric and arithmetic means, since
∏

(XX)σ ≥ 1. The

following was proved in [4].

Result 2.12. Let X ∈ Z[ζm]. Let p be a prime divisor of m and write m = pam′ with

(p,m′) = 1.

(a) Supppose a > 1 and write X =
∑pa−1−1

i=0 Xiζ
i
pa with Xi ∈ Z[ζpm′ ]. Then

M(X) =

pa−1−1∑
i=0

M(Xi).

(b) Suppose a = 1 and write X =
∑p−1

i=0 Xiζ
i
p with Xi ∈ Z[ζm′ ]. Then

(p− 1)M(X) =

p−1∑
i<j

M(Xi −Xj).

For a prime q, let Fq denote the field of order q. Let χ be a multiplicative character

of Fq. The Gauss sum G(χ) is defined by

G(χ) =
∑
x∈Fq

χ(x)ζxq .

Note that this definition uses the convention χ(0) = 0. For a proof of the following result,

see [12, Thm. 2.2.2].

Result 2.13. Let q be an odd prime and let b, w be positive integers with (w, q) = 1.

Suppose X ∈ Z[ζqbw] satisfies |X|2 = qc for some positive integer c. Then there is an

integer j such that

Xζj
qbw
∈ Z[ζw]

or

Xζj
qbw

= G(χ)Z,

where Z ∈ Z[ζw] and χ is a multiplicative character of Fq. Furthermore, |Z|2 = qc−1.

2.3 A Bound on the Complex Modulus of Character Sums

Suppose D is a difference set of order n in an abelian group G. Let χ be a nontrivial

character of G. By Result 2.2, the character sum χ(D) =
∑

d∈d χ(d) has squared complex

modulus n.
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The field descent method developed in [8, 12, 13] provides upper bounds on the com-

plex modulus of character sums and thus yields necessary conditions for the existence of

difference sets. The following result can be obtained by the field descent approach and,

in fact, is implicitly contained in [8]. For the convenience of the reader, we include a

self-contained proof just for the situation we need, which is substantially simpler than the

general version in [8].

Result 2.14. Let G = V ×H be an abelian group where (|V |, |H|) = 1, V = 〈g〉 is cyclic

of order v, and H is an abelian group of exponent h∗. Let p be an odd prime such that

v ≡ 0 (mod p2). Let n be a positive integer coprime to |H|, and let D be an element of

Z[G] with whose coefficients all lie in the interval [0, C]. Suppose that, for every character

χ of G with χ(g) = ζv, we have

|χ(D)|2 = n (6)

and

χ(D)ηχ ∈ Z[ζvh∗/p] (7)

for some root of unity ηχ (depending on χ). Then

n ≤ |H|v
2C2

4pϕ(v)
.

Proof. Let pa be the largest power of p dividing v and write v = paw. Note that a ≥ 2,

as v ≡ 0 (mod p2) by assumption. Let t be an integer with ordpa(t) = p and t ≡
1 (mod wh∗) and let σ be the automorphism of Q(ζvh∗) determined by ζσvh∗ = ζtvh∗ . Note

that the fixed field of σ is Q(ζvh∗/p). Hence, by (7), for every character χ of G with

χ(g) = ζv, the ideal χ(D) ∈ Z[ζvh∗/p] is invariant under σ. As χ(D)χ(D(−1)) = |χ(D)|2 ≡
0 (mod n) by (6), we conclude

χ(D)σχ(D) ≡ 0 (mod n). (8)

Recall that g is a generator of V and let ρ : Z[G] → Z[ζv][H] be the homomorphism

determined by ρ(g) = ζv and ρ(h) = h for h ∈ H. Note that χ(D(t)) = χ(D)σ for all

characters χ of G. Thus (8) implies

χ(D(t)D(−1)) = χ(D)σχ(D) ≡ 0 (mod n)

for every character χ of G with χ(g) = ζv. By the definition of ρ, this implies

χ(ρ(D)(t)ρ(D)(−1)) ≡ 0 (mod n) (9)

for all characters χ of H (recall that ρ(D) is an element of Z[ζv][H]). As (n, |H|) = 1 by

assumption, Result 2.1 and (9) imply

ρ(D)(t)ρ(D)(−1) ≡ 0 (mod n). (10)
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Write ρ(D)(t)ρ(D)(−1) = nE with E ∈ Z[ζv][H]. By (6), we have χ(EE(−1)) = |χ(E)|2 = 1

for all characters χ of H. Hence EE(−1) = 1 by Result 2.1.

Write E =
∑

h∈H ehh with eh ∈ Z[ζv]. As EE(−1) = 1, we have∑
h∈H

|eh|2 = 1. (11)

This implies that, for all h ∈ H, every conjugate of eh has absolute value at most 1.

By Result 2.4, one of the eh’s must be a root of unity and all other eh’s must be zero. We

conclude E = ±ζjvk for some integer j and k ∈ H.

Recall ρ(D)(t)ρ(D)(−1) = nE. Note that ρ(D)ρ(D)(−1) = n by (6) and Result 2.1.

Using E = ±ζjvk, we conclude

ρ(D)(t) = ρ(D)(t)ρ(D)ρ(D)(−1)n−1 = Eρ(D) = δζjvkρ(D). (12)

with δ = ±1. Write ζjv = ζrpaζ
s
w. By the definition of t, we have tp ≡ 1 (mod vh∗) and

thus ρ(D)(t
p) = ρ(D). Using (12) repeatedly, we get

ρ(D) = ρ(D)(t
p) = δpζ

r(tp−1)/(t−1)
pa ζspw k

pρ(D).

Multiplying this equation with ρ(D)(−1) and using ρ(D)ρ(D)(−1) = n, we get

δpζ
r(tp−1)/(t−1)
pa ζspw k

p = 1. (13)

As k ∈ H and (p, |H|) = 1, this implies k = 1. Furthermore (13) implies (δζsw)p = 1, as

(2w, p) = 1. This, in turn, implies δζsw = 1. Hence (13) simplifies to

ζ
r(tp−1)/(t−1)
pa = 1. (14)

As ordpa(t) = p, we have t ≡ 1 ( mod p). Write t = 1+pcx where pc is the largest power of

p dividing t− 1. We have c ≥ 1, as t ≡ 1 (mod p). Moreover, by the Binomial Theorem,

tp ≡ (1+pcx)p ≡ 1+pc+1x ( mod p2c+1), as p is odd. Thus the largest power of p dividing

tp − 1 is pc+1. Hence p2 does not divide (tp − 1)/(t− 1). Thus r ≡ 0 (mod pa−1) by (14).

In summary, we have shown that (12) implies

ρ(D)(t) = ζr
′pa−1

pa ρ(D)

for some integer r′. As ordpa(t) = p, we have t − 1 6≡ 0 (mod pa) and thus there is an

integer d with (t− 1)d+ r′(pa−1) ≡ 0 (mod pa). Hence

(ζdpaρ(D))(t) = ζtd+r
′pa−1

pa ρ(D) = ζdpaρ(D). (15)

Write

Y = ζdpaρ(D) =
∑
h∈H

Yhh
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with Yh ∈ Z[ζpaw]. Note that (15) implies Y σ
h = Yh and thus Yh ∈ Z[ζpa−1w] for all h ∈ H.

Now write D =
∑

h∈H Dhh with Dh ∈ Z[V ]. Moreover, write V = P ×K where P is

the Sylow p-subgroup of V . Note |P | = pa and |K| = w. Let b be a generator of P with

ρ(b) = ζpa and write

Dh =

p−1∑
i=0

Dhib
i

with Dhi ∈ Z[〈bp〉K]. We have

Yh = ρ(Dh) =

p−1∑
i=0

ρ(Dhi)ζ
i
pa .

Note ρ(Dhi) ∈ Z[ζpa−1w] and that {1, . . . , ζp−1pa } is independent over Q(ζpa−1w). As Yh ∈
Z[ζv/p], we conclude ρ(Dhi) = 0 for all i > 0 for all h. This implies

ρ(D) = ρ

(∑
h∈H

Dhh

)
=
∑
h∈H

ρ(Dh0)h = ρ

(∑
h∈H

Dh0h

)
. (16)

Write Z =
∑

h∈H Dh0h. Note Z ∈ Z[W × H] where W = 〈bp〉K. Furthermore, the

coefficients of Z are in [0, C], since the same is true for D by assumption. Note that (6)

and (16) imply

|χ(Z)|2 = n (17)

for all characters χ of G with χ(g) = ζv.

Write Z =
∑

k∈L zkk with zk ∈ Z where L = W × H. Note 0 ≤ zk ≤ C for all k.

Moreover, |L| = v|H|/p. Let ` =
∑

k∈L zk. The coefficient of 1 in ZZ(−1) is
∑

k∈L z
2
k.

Thus
v|H|
p

∑
k∈L

z2k =
∑
χ∈L̂

|χ(Z)|2 (18)

by Result 2.1.

Let τ be any character of L whose order is divisible by v/p. Then τ is the restriction

of a character χ of G whose order is divisible by v. Hence

|τ(Z)|2 = |χ(Z)|2 = n (19)

by (17). Note that there are exactly ϕ(v/p)|H| = ϕ(v)|H|/p characters of L whose order

is divisible by v/p. Furthermore, we have χ0(Z) = ` where χ0 denotes the trivial character

of L. Thus (18) and (19) imply

v|H|
p

∑
k∈L

z2k ≥ `2 +
nϕ(v)|H|

p
. (20)

11



On the other hand,
∑

k∈L z
2
k ≤ C` since 0 ≤ zk ≤ C. Thus

v|H|
p

∑
k∈L

z2k − `2 ≤
v|H|C`

p
− `2 ≤ v2|H|2C2

4p2
. (21)

Combining (20) and (21), we get

nϕ(v)|H|
p

≤ v2|H|2C2

4p2

and thus the assertion.

2.4 Some Notation

The following notation will be used repeatedly in this paper.

Notation 2.15. Let x, y be positive integers and let p be a prime.

• The largest nonnegative integer a such that pa divides x is denoted by νp(x).

• The largest divisor of x which is coprime to y is denoted by ω(x, y).

• Write x = x′pνp(x). We denote the order of p modulo x′ by ord′x(p).

3 Twisted Cyclotomic Integers from Circulant

Hadamard Matrices

In this section, we show how circulant Hadamard matrices give rise to what we call

“twisted cyclotomic integers”. These numbers are intriguing, since they have small com-

plex modulus, but live in fields with relatively large extension degree over Q. These two

properties tend to contradict each other, which allows us to derive necessary conditions

for the existence of twisted cyclotomic integers in the next section.

Let u > 1 be be an odd integer and suppose a circulant Hadamard matrix of order 4u2

exists. Let G be a cyclic group of order 4u2. By Results 2.2 and 2.3, there is D ∈ Z[G]

with coefficients 0, 1 only, such that

DD(−1) = u2 + (u2 − u)G. (22)

Let d be a divisor of u and let U be a subgroup of G of order 2d2. Let ρ : G→ G/U

denote the natural epimorphism and write E = ρ(D). Then all coefficients of E lie in the

interval [0, 2d2], and we have

EE(−1) = u2 + 2(u2 − u)d2G. (23)

12



by (22).

Set v = u2/d2. Note that G/U is a cyclic group of order 2v and that v is odd, as u is

odd by assumption. Hence χ(E) ∈ Z[ζv] for every character χ of G/U . By (23), we have

|χ(E)|2 = u2 (24)

for every nontrivial character χ of G/U , as χ(G) = 0.

From now on, we assume (d, u/d) = 1. Let p be a prime divisor of u/d.

Lemma 3.1. Let E be as defined above. If

ϕ(d2) <
pϕ(u2)

2u2
, (25)

then there exists a nontrivial character χ of G/U such that χ(E)η /∈ Z[ζv/p] for all roots

of unity η in Z[ζv].

Proof. Suppose the statement of the lemma does not hold. Then, for every nontrivial

character χ of G/U , there exists a root of unity ηχ with

χ(E)ηχ ∈ Z[ζv/p]. (26)

Recall that the coefficients of E all lie in the interval [0, 2d2]. Note v/p = u2/(pd2) ≡
0 (mod p), as p divides u/d. In view of (24) and (26), we can apply Result 2.14 with

|H| = 2 and C = 2d2. This yields

u2 ≤ 2u4(2d2)2

4pd4ϕ(u2/d2)
. (27)

Note that ϕ(u2/d2) = ϕ(u2)/ϕ(d2), as (d, u/d) = 1. Thus (27) implies ϕ(d2) ≥ pϕ(u2)/(2u2).

This contradicts (25).

Let χ be a character of G/U as given in Lemma 3.1 and set Y = χ(E). Then

|Y |2 = u2, Y ∈ Z[ζv], and Y η 6∈ Z[ζv/p] (28)

for all roots of unity η.

In the following, we use Notation 2.15. Write νp(v) = 2a. Let t be an integer with

(u, t) = 1, ordp2a(t) = p, and t ≡ 1 (mod v/p2a). (29)

Let σ ∈ Gal(Q(ζv)/Q) be defined by ζσv = ζtv. We first need to determine prime ideals of

Z[ζv] above uZ[ζv] that are fixed by σ.

Lemma 3.2. Let q 6= p be a prime divisor of u. If

νp(ordp2a(q)) > νp(ord′u/d(q)), (30)

then the prime ideals above qZ[ζv] in Z[ζv] are invariant under σ.

13



Proof. Write h = ord′v/p2a(q) and k = ord′u/d(q) (here we use Notation 2.15). We claim

νp(h) ≤ νp(k). (31)

It is a well-known fact and straightforward to prove that ordx2(y)/ordx(y) divides x

for all positive integers x, y with (x, y) = 1. Hence ord′u2/(d2p2a)(q)/ord′u/(dpa)(q) divides

ω(u/(dpa), q). Furthermore, note that v/p2a = u2/(d2p2a). Thus we can write

ord′v/p2a(q) = ord′u2/(d2p2a)(q) = e ord′u/(dpa)(q)

for some integer e dividing ω(u/(dpa), q). Moreover, ω(u/(dpa), q) and thus e is not

divisible by p, as νp(u) = a. Hence

νp(h) = νp
(
ord′v/p2a(q)

)
= νp

(
ord′u/(dpa)(q)

)
≤ νp

(
ord′u/d(q)

)
= νp(k).

This proves (31).

By assumption (30) and (31), we have

νp(h) ≤ νp(k) < νp(ordp2a(q)).

This implies ordp2a(q
h) ≡ 0 (mod p). Since Z∗p2a is cyclic, it follows that the subgroup of

Z∗p2a generated by qh contains all elements of order p in Z∗p2a . Recall that t is an integer

satisfying (29). Since t is of order p in Z∗p2a , there is an integer j with

t ≡ qhj (mod p2a). (32)

On the other hand, we have t ≡ 1 (mod ω(v/p2a, q)) and qhj ≡ 1 (mod ω(v/p2a, q))

by the definition of h. Thus

t ≡ qhj (mod ω(v, q)).

by (32). Hence, by Result 2.8, the prime ideals above qZ[ζv] in Z[ζv] are indeed invariant

under σ.

Remark 3.3. Inequality (30) relates the subgroup of Z∗p2a generated by q to the subgroup

of Z∗ω(v/p2a,q) generated by q. In fact, (30) is equivalent to ordp2a(q
ord′

v/p2a
(q)

) ≡ 0 ( mod p).

Let m be a divisor of u with m ≡ 0 (mod pa) such that (30) is satisfied for every

prime factor q 6= p of m. Note that t ≡ 1 (mod v/p2a) and thus

t ≡ 1 ≡ pordv/p2a (p) (mod v/p2a).

Hence, by Result 2.8, the prime ideals above pZ[ζv] in Z[ζv] are invariant under σ. Com-

bined with Lemma 3.2, this shows that all prime ideals above mZ[ζv] in Z[ζv] are invariant

under σ.
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Recall Y Y = u2. Hence Y Y ≡ 0 (mod m2), which implies Y σY ≡ 0 (mod m2), as

the prime ideals above mZ[ζv] in Z[ζv] are invariant under σ. We conclude that X =

Y σY /m2 is an algebraic integer, i.e., X ∈ Z[ζu2/d2 ]. Note |X|2 = u4/m4. For the purpose

of our applications, we need m to be large. Thus we will choose m as large as possible,

i.e., include all prime factors q of u in m which satisfy (30). On the other hand, we do

not want X to lie in a field Q(ζk) with small k. The following lemma addresses the latter

issue.

Lemma 3.4. We have Xη 6∈ Z[ζv/p] for all roots of unity η. Moreover,

N(X) =
u2p

m2p
,

where N denotes the norm of Q(ζv) relative to Q(ζv/p).

Proof. Suppose there is a root of unity ξ such that Z = Xξ ∈ Z[ζu2/(pd2)]. Note that

ZY = Y σY Y ξ/m2 = Y σξu2/m2. (33)

Applying N to (33), we get

ZpN(Y ) = N(Y σ)N(ξ)u2p/m2p = N(Y )N(ξ)

(
u2

m2

)p
.

Since N(Y ) 6= 0, this implies Zp ≡ 0 (mod (u2/m2)p) and hence Z ≡ 0 (mod u2/m2).

Thus Z = θu2/m2 for some root of unity θ by Result 2.4, as |Z| = u2/m2. Hence

Y σY

m2
= X = Zξ =

ξθu2

m2
.

Recall that Y Y = u2, i.e., u2/Y = Y . Thus

Y σ =
ξθu2m2

Y m2
=
ξθu2

Y
= Y ξθ. (34)

Recall Y ∈ Z[ζv]. Thus ξθ is root of unity in Z[ζv] and there are integers i, j and δ ∈
{−1, 1} with ξθ = δζ ip2aζ

j
v/p2a . Note that ζσp2a = ζtp2a and ζσv/p2a = ζv/p2a by the definition

of σ. Using (34) repeatedly, we get

Y = Y σp = Y δζ
i(tp−1)/(t−1)
p2a ζjpv/p2a .

This implies

δζ
i(tp−1)/(t−1)
p2a ζjpv/p2a = 1. (35)

Taking both sides of (35) to the power v, we get δv = 1 and thus δ = 1, as v is odd. Now

take both sides of (35) to the power p2a. This shows ζjp
2a+1

v/p2a = 1 and hence ζjv/p2a = 1,

since (p, v/p2a) = 1. So (35) implies

ζ
i(tp−1)/(t−1)
p2a = 1.
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The same argument as in the proof of Result 2.14 (please refer to the paragraph after

equation (14)) shows that p2 does not divide (tp− 1)/(t− 1) and thus i ≡ 0 (mod p2a−1).

Hence, as t− 1 6≡ 0 (mod p2a), there is an integer d such that ζ i+dtp2a = ζdp2a . In summary,

we have

(ζdp2aY )σ = δζ i+dtp2a ζ
j
v/p2aY = ζdp2aY, (36)

as δ = ζjv/p2a = 1 and ζ i+dtp2a = ζdp2a . By (36), we have a Y ζdp2a ∈ Z[ζu2/(pd2)], contradicting

(28).

Note that N(Y σ) = N(Y ) and recall |Y |2 = u2. Hence N
(
Y σY

)
= N

(
Y Y
)

= N(u2) =

u2p and thus

N(X) = N

(
Y σY

m2

)
=

u2p

m2p
.

Summarizing the results of this section, we have the following.

Theorem 3.5. Let u > 1 be an odd integer and suppose that a circulant Hadamard matrix

of order 4u2 exists. Let d be a divisor of u with (d, u/d) = 1 and let p be a prime divisor

of u/d such that

ϕ(d2) <
pϕ(u2)

2u2
. (37)

Let pa be the largest power of p dividing u and write v = u2/d2. Let m be a divisor of u

with m ≡ 0 (mod pa) such that

νp(ordp2a(q)) > νp(ord′u/d(q))

for every prime factor q 6= p of m. Then there is X ∈ Z[ζv] with

|X|2 =
u4

m4
and Xη 6∈ Z[ζv/p] (38)

for all roots of unity η. Furthermore,

NQ(ζv)/Q(ζv/p)(X) =
u2p

m2p
, (39)

where NQ(ζv)/Q(ζv/p) denotes the norm of Q(ζv) relative to Q(ζv/p).

4 Cyclotomic Integers in Q(ζpa) whose Complex Mod-

uli are Integers

Let p be an odd prime and let v be a positive integer. In order to study the twisted cyclo-

tomic integers constructed in the previous section, we need to find a condition ensuring

that Y Y = v2, Y ∈ Z[ζpa ], has only trivial solutions. Here we call a solution Y trivial if it

has the form Y = ηv where η is a root of unity. We first review the relevant results in the

literature. The following result is implicitly contained in the proof of [13, Thm. 2.2.3].
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Result 4.1. Let p be an odd prime, let a be a positive integer, and let f be a divisor of

p− 1. Suppose Y ∈ Z[ζpa ] satisfies Y Y = v2 where v is a positive integer with (v, p) = 1.

Moreover, let q1, . . . , qs be the distinct prime divisors of v and suppose that

νp(ordpa(qi)) ≥ a− 1 (40)

for i = 1, . . . , s. If Y is contained in the subfield K of Q(ζpa) with [Q(ζpa) : K] = f and

f >
2v(p− 1)

p
, (41)

then Y = ±v.

For a = 1, Result 4.1 was first discovered by Chan [5, Lemmas 2.3, 2.4]. Note that,

in this case, condition (40) is always satisfied. In [13, Thm. 2.2.3], Chan’s result was

extended to the case a > 1 by a field descent argument based on assumption (40).

In the present paper, however, it turns out that we only have to deal with cases

where a > 1 and (40) is not satisfied. Thus we require a version of Result 4.1 without

assumption (40). In this vain, we previously had obtained the following result, which is

implicitly contained in the proof of [9, Lemma 3.4].

Result 4.2. Let p be an odd prime, let a be a positive integer, and let f be a divisor of

p− 1. Suppose Y ∈ Z[ζpa ] satisfies Y Y = v2 where v is a positive integer with (v, p) = 1.

If Y is contained in the subfield K of Q(ζpa) with [Q(ζpa) : K] = f and

f > v2, (42)

then Y = ±v.

Note that Result 4.2 does not require assumption (40). Condition (42), however, is

much more restrictive than (41). In summary, for the study of twisted cyclotomic integers,

Result 4.1 is useless due to assumption (40) and Result 4.2 is almost useless because of

assumption (42).

In this section, we resolve these difficulties. In Theorem 4.5, we show that v2 can be

replaced by 2v − 1 in Result 4.2. Hence, quite surprisingly, with rare exceptions, Result

4.1 holds even if assumption (40) is not satisfied. In fact, Theorem 4.5 is best possible

in the following sense: Let p = 4v − 1 be a prime and set Y =
(∑p−1

b=1 ζ
b2

p

)
/2. Then

Y Y = v and Y is contained in the subfield K of Q(ζp) with [Q(ζp) : K] = 2v − 1. Thus

the assertion of Theorem 4.5 becomes false if the assumption f > 2v − 1 is replaced by

f ≥ 2v − 1.

We start with two preliminary combinatorial lemmas.
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Lemma 4.3. Let b0, . . . , bp−1 be integers and set t = |{i : bi 6= 0}|. If t > 0, then

p

p−1∑
i=0

b2i − (

p−1∑
i=0

bi)
2 ≥ p− t

t
(

p−1∑
i=0

bi)
2.

Proof. We may assume bi = 0 for i ≥ t. Using Cauchy-Schwarz, we get

t

p−1∑
i=0

b2i = t
t−1∑
i=0

b2i ≥ (
t−1∑
i=0

bi)
2 = (

p−1∑
i=0

bi)
2.

Therefore,

p

p−1∑
i=0

b2i − (

p−1∑
i=1

bi)
2 ≥ (p− t)

p−1∑
i=0

b2i ≥
p− t
t

(

p−1∑
i=0

bi)
2.

Lemma 4.4. Let b0, . . . , bp−1 be integers and let T be the largest positive integer such that

exist i1, . . . , iT with 0 ≤ i1 < · · · < iT ≤ p− 1 and bi1 = · · · = biT . Then

p

p−1∑
i=0

b2i − (

p−1∑
i=0

bi)
2 ≥ max{T (p− T ), p(p− T )/2}.

Proof. Observe that

p

p−1∑
i=0

b2i − (

p−1∑
i=0

bi)
2 =

∑
j<k

(bj − bk)2. (43)

By the definition of T , there is an integer b such that there are exactly T numbers bi that

are all equal to b and the remaining bi’s are not equal to b. Without loss of generality,

we may assume b0 = · · · = bT−1 = b and bT , . . . , bp−1 6= b. Hence bj 6= bk whenever

0 ≤ j ≤ T − 1 and T ≤ k ≤ p − 1. Note that (bj − bk)2 ≥ 1 if bj 6= bk, as the bi’s are

integers by assumption. Thus

∑
j<k

(bj − bk)2 ≥
T−1∑
j=0

p−1∑
k=T

(bj − bk)2 ≥ T (p− T ). (44)

On the other hand, by the definition of T , for every j with 0 ≤ j ≤ p− 1, there are at

least p− T indices k with bj − bk 6= 0. Therefore,

∑
j<k

(bj − bk)2 =
1

2

p−1∑
j,k=0

(bj − bk)2 ≥
p(p− T )

2
. (45)

The assertion of the lemma follows from (43–45).

The following is the central result of this section.
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Theorem 4.5. Let p be an odd prime, let a be a positive integer, and let f be a divisor of

p− 1. Suppose Y ∈ Z[ζpa ] satisfies Y Y = v2 where v is a positive integer with (v, p) = 1.

If Y is contained in the subfield K of Q(ζpa) with [Q(ζpa) : K] = f and

f > 2v − 1, (46)

then Y = ±v.

Proof. Let t be an integer with (p, t) = 1 and ordpa(t) = ordp(t) = f . Let σ be the

automorphism of Q(ζpa) determined by ζσpa = ζtpa . Note that K is the fixed field of σ.

Hence

Y σ = Y. (47)

First suppose that f is even. Then σf/2 is the unique involution in Gal(Q(ζpa)/Q),

which is complex conjugation. Hence (47) implies Y = Y . As Y Y = v2 by assumption,

we conclude Y = ±v. Thus the assertion of Theorem 4.5 holds.

From now on, we assume that f is odd. To exploit (47), we use the integral basis of

Q(ζpa) over Q(ζp) defined in Lemma 2.5. Hence we write

Y = Y0 +
∑
k∈B

f−1∑
j=0

Yk,jζ
tjk
pa . (48)

with Yk,j ∈ Z[ζp]. Note

Y σ = Y σ
0 +

∑
k∈B

f−1∑
j=0

Y σ
k,jζ

tj+1k
pa .

Moreover, ζt
fk
pa = ζkpa , as ordpa(t) = f . For convenience, we set Yk,f = Yk,0 for k ∈ B.

Since Y σ = Y and {1} ∪
⋃
k∈B{ζt

jk
pa : j = 0, . . . , f − 1} is linearly independent over Q(ζp),

we conclude that

Y σ
0 = Y0 and Yk,j+1 = Y σ

k,j for all i ∈ B and j = 0, . . . , f − 1. (49)

For convenience, we write Yk for Yk,0. By (48) and (49), we have

Y = Y0 +
∑
k∈B

f−1∑
j=0

(
Ykζ

k
pa

)σj
. (50)

Write Y0 =
∑p−1

i=0 ciζ
i
p and Yk =

∑p−1
i=0 ckiζ

j
p with ci ∈ Z and cki ∈ Z for all i, k. As∑p−1

i=0 ζ
i
p = 0, the ci’s and cki’s are not uniquely determined, but that will not affect

our arguments. The main idea of our proof is deriving constraints on the ci’s and cki’s

stemming from |Y |2 = v2.

Claim 1 We have

v2(p− 1) = p

p−1∑
i=0

c2i −

(
p−1∑
i=0

ci

)2

+ f
e∑

k=1

p p−1∑
i=0

c2ki −

(
p−1∑
i=0

cki

)2
 . (51)
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Note that each of the terms
(
p
∑p−1

i=0 c
2
i −

(∑p−1
i=0 ci

)2)
and

(
p
∑p−1

i=0 c
2
ki −

(∑p−1
i=0 cki

)2)
,

k = 1, . . . , e, is nonnegative by Cauchy-Schwarz. This fact will be used repeatedly to

obtain lower bounds for the right hand side of (51).

To prove Claim 1, first notice that, by the definition of B, there are integers γ(j, k)

such that

{(ζkpa)σ
j

ζ
γ(j,k)

pa−1 : j = 0, . . . , f − 1, k ∈ B} = {1, ζpa , . . . , ζp
a−1−1
pa }.

LetM be the function defined in Result 2.12. Note thatM(Y ) = v2, as |Y |2 = v2. Thus

Result 2.12 (a) and (50) imply

v2 =M(Y )

=M

(
Y0 +

∑
k∈B

f−1∑
j=0

(
Ykζ

k
pa

)σj)

=M(Y0) +M

(∑
k∈B

f−1∑
j=0

(
Y σj

k ζ
−γ(j,k)
pa−1

)
(ζkpa)

σjζ
γ(j,k)

pa−1

)

=M(Y0) +
∑
k∈B

f−1∑
j=0

M
(
Y σj

k ζ
−γ(j,k)
pa−1

)

=M(Y0) +
∑
k∈B

f−1∑
j=0

M(Yk)

=M(Y0) + f
∑
k∈B

M(Yk).

(52)

Using Result 2.12 (b), we get

M(Y0) =
1

p− 1

∑
i<j

(ci − cj)2 =
1

p− 1

p p−1∑
i=0

c2i −

(
p−1∑
i=0

ci

)2


and similar expressions for the M(Yk)’s. Together with (52), this proves Claim 1.

Recall Y0 =
∑p−1

i=0 ciζ
i
p. We add a multiple of

∑p−1
i=0 ζ

i
p = 0 to Y0, if necessary, so that

there is at least one k > 0 with ck = 0.

Claim 2 We can assume |c0| < v.

Suppose |c0| ≥ v. Replacing Y by −Y , if necessary, we have c0 ≥ v. Recall that

Y σ
0 = Y0 by (49). As ck = 0 and the orbits of σ on {ζp, . . . , ζp−1p } all have length f , we

conclude that there are at least f indices i > 0 with ci = 0. Let M = {i : ci 6= 0}. We

just have shown |M | ≤ p− f . Furthermore, it is straightforward to verify

p

p−1∑
i=0

c2i −

(
p−1∑
i=0

ci

)2

= (p− |M |)
∑
i∈M

c2i +
∑
i,j∈M
i<j

(ci − cj)2. (53)
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To get a lower bound for the right hand side of (53), we now show

(c0 − ci)2 + (p− |M |)c2i ≥ v2 (54)

for all i ∈M , i 6= 0, with equality if and only if c0 = v and ci = 0. Note that the minimum

of the function g(x) = (c0 − x)2 + fx2 over x ∈ R occurs for x = c0/(f + 1).

First suppose c0 ≤ f + 1. Note that (46) implies f > 2v, as f is odd by assumption.

As the minimum of g(x) over x ∈ Z occurs for x = 0 or x = 1, we have g(ci) ≥
min{c20, (c0 − 1)2 + f} ≥ v2, as c0 ≥ v and f > 2v. Furthermore, g(ci) = v2 if and only if

ci = 0 and x = 0.

Now suppose c0 > f + 1. Then

g

(
c0

f + 1

)
≥
(
c0 −

c0
f + 1

)2

=
c20f

2

(f + 1)2
> f 2 > 4v2,

as f > 2v by assumption.

In summary, we have shown g(ci) ≥ v2 with equality if and only of c0 = v and ci = 0.

As p− |M | ≥ f , this proves (54).

Now suppose that we have equality in (54) for all i ∈ M , i 6= 0. Then c0 = v and

ci = 0 for i = 1, . . . , p − 1, i.e., Y0 = v. Thus M(Y0) = v2. By (52), however, we have

M(Y0) + f
∑

k∈BM(Yk) = v2. Hence
∑

k∈BM(Yk) = 0 and this, in view of (5), implies

Yi = 0 for all i > 0. Thus Y = Y0 = v, which implies the assertion of Theorem 4.5.

Hence we can assume (c0− ci)2 + (p−|M |)c2i > v2 for at least one i ∈M , i 6= 0. Thus,

using c0 ≥ v, (53), and (54), we get

p

p−1∑
i=0

c2i −

(
p−1∑
i=0

ci

)2

≥ (p− |M |)c20 +
∑
i∈M
i6=0

(
(p− |M |)c2i + (c0 − ci)2

)
> (p− |M |)v2 + (|M | − 1)v2

= (p− 1)v2.

But this implies that the right hand side of (51) is larger than (p− 1)v2, a contradiction.

This completes the proof of Claim 2.

Write Γ =
∑p−1

i=0 ci + f
∑

k∈B
∑p−1

i=0 cki.

Claim 3. Γ = ±v + λp with λ ∈ Z and |λ| < v.

Recall that, by (50),

Y =

p−1∑
i=0

ciζ
i
p +

∑
k∈B

f−1∑
j=0

((
p−1∑
i=0

ckiζ
j
p

)
ζkpa

)σj

=

p−1∑
i=0

ciζ
pa−1i
pa +

∑
k∈B

f−1∑
j=0

p−1∑
i=0

ckiζ
pa−1jt+kt
pa .
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Write

D(x) =

p−1∑
i=0

cix
pa−1i +

∑
k∈B

f−1∑
j=0

p−1∑
i=0

ckix
pa−1jt+kt.

Let ρ : Z[x]→ Z[ζpa ] be the homomorphism determined by ρ(x) = ζpa . Note that the

kernel of ρ is {
h(x)(1 + xp

a−1

+ · · ·+ x(p−1)p
a−1

) : h ∈ Z[x]
}
.

As |Y |2 = v2, we have ρ(D(x)D(xp
a−1)) = Y Y = v2. Thus

D(x)D(xp
a−1) = v2 + h(x)(1 + xp

a−1

+ · · ·+ x(p−1)p
a−1

). (55)

for some h ∈ Z[x]. Note Γ = D(1). Hence Γ2 = D(1)2 = v2 + h(1)p ≡ v2 (mod p) by

(55). This implies Γ = ±v (mod p) and thus Γ = ±v + λp for some integer λ. To prove

Claim 3, it remains to show |λ| < v.

Recall Y0 =
∑

i∈M ciζ
i
p, |M | ≤ p − f , and ci = 0 for i 6∈ M . Thus, using Lemma 4.3

and (51), we get

(p− 1)v2 ≥ p

p−1∑
i=0

c2i −

(
p−1∑
i=0

ci

)2

≥ f

p− f

(
p−1∑
i=0

ci

)2

.

This implies ∣∣∣∣∣
p−1∑
i=0

ci

∣∣∣∣∣ ≤ v

√
(p− 1)(p− f)

f
<

vp√
f
. (56)

Recall Yk =
∑p−1

i=0 ckiζ
j
p . As stated above, the cki’s are not uniquely determined. For

each k, we may, however, choose the cki’s such that of Nk = |{i : cki 6= 0}| is minimal.

Note that this implies that p − Nk is the maximum number such that p − Nk of the

numbers cki, i = 0, . . . , p− 1, are equal.

First suppose Nk ≥ (p+ 1)/2 and thus p−Nk ≤ (p− 1)/2 for some k. Then

(p− 1)v2 ≥ f

p p−1∑
i=0

c2ki −

(
p−1∑
i=0

cki

)2
 ≥ f(p− 1)2

4
(57)

by Lemma 4.4 and (51). Note that f ≤ (p− 1)/2, as p is an odd prime and f is an odd

divisor of p − 1. Thus (57) implies v2 ≥ f(p − 1)/4 ≥ f 2/2. But this is impossible, as

f > 2v by assumption.

We have shown Nk ≤ (p− 1)/2 for all k. Hence Lemma 4.3 and (51) imply

(p− 1)v2 ≥ f

p p−1∑
i=0

c2ki −

(
p−1∑
i=0

cki

)2
 ≥ f(p−Nk)

Nk

(
p−1∑
i=0

cki

)2

≥ f

(
p−1∑
i=0

cki

)2

. (58)
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Set xk =
∑p−1

i=0 cki. Using (58) and 2v < f ≤ (p− 1)/2, we get

|xk| ≤
v
√
p− 1√
f

<
f
√
p− 1

2
√
f

=

√
f(p− 1)

2
<
p− 1

2
. (59)

The trivial fact
∑p−1

i=0 c
2
ki ≥ |xk| and (59) imply

p

p−1∑
i=0

c2ki −

(
p−1∑
i=0

cki

)2

≥ p|xk| − x2k

≥ p|xk| −
p− 1

2
|xk|

=
p+ 1

2
|xk|.

(60)

Using (51) and (60), we get (p− 1)v2 ≥ f(p+1)
2

∑
k∈B |xk| and thus

∑
k∈B

|xk| ≤
2(p− 1)v2

f(p+ 1)
< v, (61)

as f > 2v by assumption.

Recall Γ =
∑p−1

i=0 ci + f
∑

k∈B
∑p−1

i=0 cki = ±v + λp and xk =
∑p−1

i=0 cki and that we

assume v ≥ 2. Using (56) and (61), we get

|λ| ≤ 1

p
(v + |Γ|) ≤ 1

p

(
v +

vp√
f

+ fv

)
=

(
f + 1

p
+

1√
f

)
v < v,

as f ≥ 2v + 1 ≥ 5 and p ≥ 2f + 1 ≥ 10. This proves Claim 3.

Claim 4 We may assume λ > 0 and c0 = v + λ− f or c0 = −v + λ.

Recall Y0 =
∑p−1

i=0 ciζ
i
p and that Y σ

0 = Y0 by (49). Note hat Y σ
0 = Y0 implies ci = cj

if i and j are in the same orbit of x 7→ xt on Z/pZ. As ordp(t) = f , this implies∑p−1
i=1 ci ≡ 0 (mod f). We conclude

∑p−1
i=0 ci ≡ c0 (mod f) and hence Γ ≡ c0 (mod f).

By Claim 3, we thus get c0 ≡ ±v + λp (mod f). Note that p ≡ 1 (mod f). This

implies c0 ≡ ±v + λ (mod f). Thus c0 = ±v + λ + αf for some integer α. Replacing Y

by −Y if necessary, we may assume 0 ≤ λ < v. Therefore, 2v > ±v + λ > −v. If α ≥ 1,

we conclude c0 > v as f > 2v. If α ≤ −2, then c0 < −2v. But by Claim 2, −v < c0 < v.

Therefore, α ∈ {0,−1}. If α = 0, then c0 = −v + λ, as c0 = v + λ is impossible by Claim

2. Similarly, c0 = v + λ− f if α = −1. This proves Claim 4.

Recall
∑p−1

i=1 ci = fc. Write d =
∑

k∈B
∑p−1

i=0 cki. Then Γ = c0 + fc+ fd and

|d| ≤
∑
k∈B

|xk| < v (62)

by (61). (Recall that xk =
∑p−1

i=0 cki.)
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Claim 5
p−1∑
i=1

(ci − c0)2 ≥ (p− 1)

(
v − fd

p− 1

)2

. (63)

We consider the two cases occurring in Claim 4.

Case 1 c0 = v + λ − f . By Claim 3, Γ = ±v + λp. If Γ = −v + λp, then −v + λ ≡
c0 ≡ v + λ (mod f) by assumption. But this implies 2v ≡ 0 (mod f) which contradicts

f > 2v. Hence we have

Γ = v + λp = c0 + fc+ fd = v + λ− f + fc+ fd

and thus λ(p− 1) = fc+ fd− f . As
∑p−1

i=1 ci = fc, we get

p−1∑
i=1

(ci − c0)2 ≥
p−1∑
i=1

(
fc

p− 1
− c0

)2

= (p− 1)

(
fc

p− 1
− v − λ+ f

)2

= (p− 1)

(
fc

p− 1
− v − fc+ fd− f

p− 1
+ f

)2

= (p− 1)

(
f − fd
p− 1

− v + f

)2

= (p− 1)

((
f − v +

f

p− 1

)
− fd

p− 1

)2

.

Since and f > 2v, we have f − v + f
p−1 > v. Moreover, fd

p−1 < v by (62). Hence

f − v + f
p−1 −

fd
p−1 > v − fd

p−1 > 0 and thus

p−1∑
i=1

(ci − c0)2 > (p− 1)

(
v − fd

p− 1

)2

.

Case 2 c0 = −v + λ. In this case, Γ = −v + λp = −v + λ+ fc+ fd and thus λ(p− 1) =

fc+ fd. We get

p−1∑
i=1

(ci − c0)2 ≥
p−1∑
i=1

(
fc

p− 1
− c0

)2

= (p− 1)

(
fc

p− 1
+ v − λ

)2

= (p− 1)

(
fc

p− 1
+ v − fc+ fd

p− 1

)2

= (p− 1)

(
v − fd

p− 1

)2

.
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This completes the proof of Claim 5.

Claim 6 d = 0 and
p−1∑
i=1

(ci − c0)2 = (p− 1)v2. (64)

By (51) and (63), we obtain

(p− 1)v2 ≥ (p− 1)

(
v − fd

p− 1

)2

.

This implies d ≥ 0. To prove Claim 6, it suffices to show d = 0, as Claim 6 then

follows from Claim 5. Suppose d > 0. Recall xk =
∑p−1

i=0 cki and d =
∑

k∈B
∑p−1

i=0 cki =∑
k∈B xk. As d > 0, there is a subset B′ of B such that such that xk > 0 for k ∈ B′ and∑
k∈B′ xkj ≥ d. Since the cki’s are integers, we get

∑
k∈B′

p p−1∑
i=0

c2ki −

(
p−1∑
i=0

cki

)2
 =

∑
k∈B′

(
−x2k + p

p−1∑
i=0

c2ki

)

≥
∑̀
j=1

(
−x2k + p

p−1∑
i=0

cki

)
= −

∑
k∈B′

x2kj + p
∑
k∈B′

xk

≥ −

(∑
k∈B′

xk

)2

+ p
∑
k∈B′

xk,

(65)

where the last inequality holds because of xk > 0 for all k ∈ B′. Recall
∑

k∈B′ xk ≥ d. We

have
∑

k∈B′ xk < v by (61) and the function x 7→ −x2 + px is increasing for 0 ≤ x ≤ v, as

v < f/2 < p/4 by assumption. Thus (65) implies

∑
k∈B′

p p−1∑
i=0

c2ki −

(
p−1∑
i=0

cki

)2
 ≥ −d2 + pd. (66)

Note that

p

p−1∑
i=0

c2i −

(
p−1∑
i=0

ci

)2

=
∑
i<j

(ci − cj)2 ≥
p−1∑
i=1

(ci − c0)2. (67)

Combining (51), (63), (66), and (67), we get

(p− 1)v2 ≥ (p− 1)

(
v − fd

p− 1

)2

+ f(−d2 + pd)

= (p− 1)v2 +
f 2d2

p− 1
− 2vfd+ f(−d2 + pd).
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This implies −2vfd + f(−d2 + pd) ≤ 0, i.e., 2v ≥ p− d. Recall that 2v < f ≤ (p− 1)/2

by assumption and d < v by (61). Combining these inequalities, we find

2v ≥ p− d > p− v > p− f/2 > (p− 1)/2 ≥ f > 2v,

a contradiction. We thus conclude d = 0, which proves Claim 6.

We are finally ready to finish the proof of Theorem 4.5. From (67) and (64), we get

p

p−1∑
i=0

c2i −

(
p−1∑
i=0

ci

)2

≥ (p− 1)v2. (68)

But (51) and (68) imply

p

p−1∑
i=0

c2ki −

(
p−1∑
i=0

cki

)2

= 0

and thus Yk = 0 for all k ∈ B, i.e., Y = Y0.

By (51), (67), and (64), we have

(p− 1)v2 =
∑
i<j

(ci − cj)2 =

p−1∑
i=1

(ci − c0)2

and thus
∑

0<i<j(ci − cj)
2 = 0. This implies c1 = c2 = . . . = cp−1. Hence Y0 = c0 +

c1
∑p−1

i=1 ζ
i
p = c0 − c1 ∈ Z. As |Y0|2 = |Y |2 = v2, we conclude Y = ±v. This completes the

proof of Theorem 4.5.

To make use of Theorem 4.5, we need to show that cyclotomic integers Y ∈ Q(ζpa) with

Y Y = v2 (up to multiplication with a root of unity) are contained in suitable subfields of

Q(ζpa). This is the purpose of the following lemma.

Lemma 4.6. Let p be an odd prime and let a, v be positive integers with (v, p) = 1.

Suppose that Y ∈ Z[ζpa ] satisfies |Y |2 = v2. Let q1, . . . , qk are be distinct prime divisors

of v and set

f = gcd(ordp(q1), . . . , ordp(qk)).

Let K be the subfield of Q(ζpa) with [Q(ζpa) : K] = f . We have Y η ∈ K for some root of

unity η.

Proof. The proof is essentially the same as part of the proof of [9, Lemma 3.4]. For the

convenience of the reader, we include a proof here. If f = 1, there is nothing to show.

Thus suppose f > 1. Let t be an integer with (p, t) = 1 and ordpa(t) = ordp(t) = f . Let

σ be the automorphism of Q(ζpa) determined by ζσpa = ζtpa . Note that K is the fixed field

of σ.
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Let q be any prime divisor of v. By the definition of f , there is an integer j(q) such

that ordpa(q
j(q)) = f = ordpa(t). As the multiplicative group Z∗pa modulo pa is cyclic, this

implies that qj(q) and t generate the same subgroup of Z∗pa . Thus there is an integer m(q)

with t ≡ qj(q)m(q) (mod pa). Hence the prime ideals of Z[ζpa ] above qZ[ζpa ] are invariant

under σ by Result 2.8. Since this is true for every prime divisor q of v, we conclude that

all prime ideals of Z[ζpa ] above vZ[ζpa ] are invariant under σ. Hence, by Result 2.7, there

are roots of unity η, τ such that (Y τ)σ = ±η(Y τ) and every prime divisor of the order

of η divides t − 1. But p does not divide t − 1, as ordp(t) = f > 1. As η ∈ Z[ζpa ], this

implies η = ±1. Thus, replacing Y by Y τ , if necessary, we may assume

Y σ = δY (69)

with δ = ±1.

First suppose that f is even. Then σf/2 is the complex conjugation in Q(ζpa) and thus

Y = Y σf/2 = δf/2Y by (69). As Y Y = v2 by assumption, we conclude δf/2Y 2 = v2. As

δ = ±1, this implies Y = ζj4v for some integer j. Since ζ4 6∈ Q(ζpa), we infer that j is

even. Hence Y = ±v and thus, in particular, Y ∈ K.

Now suppose that f is odd. Applying σ repeatedly to (69), we get Y σf = δfY . But

σf is the identity, as f = ordpa(t). Hence δf = 1 and thus δ = 1, as f is odd. Therefore,

Y σ = Y by (69), i.e., Y ∈ K.

The following theorem combines the results of this section and strengthens the con-

clusion by employing Turyn’s Result 2.10.

Theorem 4.7. Let p be an odd prime and let a, v be positive integers with (v, p) =

1. Suppose that X ∈ Z[ζpa ] satisfies |X|2 = v2. Write v = v0v1 such that ordp(q) ≡
0 (mod 2) for all prime divisors q of v0 and ordp(q) ≡ 1 (mod 2) for all prime divisors

q of v1. If v1 = 1 or

v1 > 1 and gcd(ordp(q1), . . . , ordp(qk)) > 2v1 − 1, (70)

where q1, . . . , qk are the distinct prime divisors of v1, then X = ηv for some root of unity

η.

Proof. We first use Result 2.10 to show X ≡ 0 (mod v0). Let q be a prime divisor of v0

and let qb be the largest power of q dividing v0. We claim

X ≡ 0 (mod qb). (71)

By assumption, ordp(q) is even. Thus ordpa(q) is also even, say ordpa(q) = 2e. Hence

qe is an involution in the multiplicative group modulo pa. As −1 is the only involution

in this group, we have qe ≡ −1 (mod pa). Thus q is self-conjugate modulo pa. We have
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|X|2 = v2 ≡ 0 (mod q2b) by assumption. Result 2.10 implies X ≡ 0 (mod qb), which

proves (71). As (71) holds for every prime divisor q of v0, we indeed have X ≡ 0 ( mod v0).

Write

X = v0Y

where Y ∈ Z[ζpa ] and |Y |2 = v21. To prove Theorem 4.7, we have to show Y = ηv1 for

some root of unity η.

First suppose v1 = 1. Then v0 = v, |Y | = |X|/v = 1, and thus Y is a root of unity by

Result 2.4. This proves the assertion in the case v1 = 1. Thus we may assume v1 > 1.

Recall that q1, . . . , qk are the prime divisors of v1. Set f = gcd(ordp(q1), . . . , ordp(qk)).

Let K be the subfield of Q(ζpa) with [Q(ζpa) : K] = f . As |Y |2 = v21, we have Y η ∈ K
for some root of unity η by Lemma 4.6. As f > 2v1− 1 by assumption (70), Theorem 4.5

implies Y η = ±v1. This completes the proof of Theorem 4.7.

5 Necessary Conditions for the Existence of Twisted

Cyclotomic Integers

We consider a solution of Y Y = v2 to be trivial if it has the form Y = ηv where η is a root

a root of unity. Theorem 4.7 provides a necessary condition for the existence of nontrivial

solutions to Y Y = v2. In fact, this condition is so strong that it yields the desired

contradictions in most applications we are interested in. Thus it is essential to study

cyclotomic integers which satisfy the conditions of Theorem 3.5, but are not contained in

a field of the form Q(ζpa). The following theorem provides valuable information on the

structure of such cyclotomic integers.

Lemma 5.1. Let p be an odd prime and let a, w be positive integers with a ≥ 2 and

(p, w) = 1. Suppose X ∈ Z[ζpaw] \ Z[ζpa−1w] satisfies |X|2 = n where n is a positive

integer. Write

X =

p−1∑
i=0

Aiζ
i
pa

with Ai ∈ Z[ζpa−1w]. Let d be a divisor of w. If

Ai ∈ Z[ζpa−1d] (72)

for i = 1, . . . , p− 1, then

A0 ∈ Z[ζpa−1d]. (73)

Proof. Note

n = |X|2 =

p−1∑
i,j=0

AiAjζ
i−j
pa =

p−1∑
k=0

ζkpa

(
p−1∑
l=k

AlAl−k + ζpa−1

k−1∑
l=0

AlAp−k+l

)
.
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As {ζkpa : k = 0, . . . , p− 1} is independent over Q(ζpa−1w), we infer

p−1∑
l=0

AlAl = n, (74)

p−1∑
l=k

AlAl−k + ζpa−1

k−1∑
l=0

AlAp−k+l = 0 (75)

for k = 1, . . . , p− 1. From (72) and (74), we conclude

A0A0 = n−
p−1∑
i=1

AiAi ∈ Z[ζpa−1d]. (76)

Note that

AkA0 + ζpa−1A0Ap−k = −
p−1∑
l=k+1

AlAl−k − ζpa−1

k−1∑
l=1

AlAp−k+l (77)

for k = 1, . . . , p − 1 by (75). Denote the right hand side of (77) by Tk. As Tk does not

contain any term involving A0, we have Tk ∈ Z[ζpa−1d] by (72).

Suppose Aj 6= 0 for some j with 1 ≤ j ≤ p − 1. If Ap−j = 0, then (77) implies

A0 = Tj/Aj ∈ Q(ζpa−1d), contradicting (73). Hence

Ap−j 6= 0 for all j > 0 with Aj 6= 0. (78)

Now suppose Aj 6= 0 and Ak 6= 0 for some j, k > 0 with j 6= p− k. We have

AjA0 + ζpa−1A0Ap−j = Tj,

AkA0 + ζpa−1A0Ap−k = Tk
(79)

by (77). We now view (79) as a linear system with variables A0 and A0. Suppose

AjAp−k 6= AkAp−j. Then the determinant of the coefficient matrix of the linear system

(79) is nonzero. As Aj, Ak, Ap−j, Ap−k, Tj, Tk ∈ Q(ζpa−1d), this implies A0 ∈ Q(ζpa−1d) ∩
Z[ζpa−1d] = Z[ζpa−1d], contradicting (73). We conclude

AjAp−k = AkAp−j (80)

for all j, k > 0 with Aj 6= 0 and Ak 6= 0.

As X 6∈ Z[ζpa−1w] by assumption, there is k with 1 ≤ k ≤ p − 1 and Ak 6= 0. Set

α = Ap−k/Ak. Note that α ∈ Q(ζpa−1d) by (72). Moreover,

Ap−j =
AjAp−k
Ak

= αAj (81)

for all j > 0 with Aj 6= 0 by (80). But (81) also holds for those j > 0 with Aj = 0, since

Ap−j = 0 in this case by (78). Hence (81) holds for j = 1, . . . , p− 1.
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Write Z =
∑p−1

i=1 Aiζ
i
pa and note that X = A0 + Z. Using (81), we compute

Z =

p−1∑
i=1

Aiζ
−i
pa

= ζpa−1

p−1∑
i=1

Aiζ
p−i
pa

= ζpa−1

p−1∑
i=1

Ap−iζ
i
pa

= αζpa−1

p−1∑
i=1

Aiζ
i
pa

= αζpa−1Z.

Recall that |X|2 = n. Hence

n = A0A0 + ZA0 + ZA0 + ZZ

= A0A0 + Z(A0 + αζpa−1A0) + αζpa−1Z2.
(82)

Note that (82) is a quadratic equation in the variable Z with coefficients from Q(ζpa−1w).

This implies that the degree of the extension Q(ζpa−1w, Z)/Q(ζpa−1w) is at most 2. But

Z = X − A0 ∈ Q(ζpaw) \ Q(ζpa−1w), as X ∈ Q(ζpaw) \ Q(ζpa−1w) by assumption and

A0 ∈ Q(ζpa−1w). Thus the degree of the extension Q(ζpa−1w, Z)/Q(ζpa−1w) is divisible by

p. This is a contradiction, as p is odd.

In order to make use of Lemma 5.1, we need the following lemma which uses auto-

morphisms to obtain a lower bound for Cassel’s M-function.

Lemma 5.2. Let w = rav where r is an odd prime and a, v are positive integers with

(r, v) = 1. Let t be and integer with (w, t) = 1 and write f = ordr(t). Define σ ∈
Gal(Q(ζw)/Q) by ζσw = ζtw. Suppose X ∈ Z[ζw] \ Z[ζra−1v] satisfies Xσ = δX for some

δ ∈ Z[ζra−1v]. Then

M(X) ≥

{
f(r−f)
r−1 if f < r − 1,

r+1
4

if f = r − 1.
(83)

Remark 5.3. In the case where v = 1 and f = r−1 in Lemma 5.2, it is possible to prove

M(X) ≥ r−1 (instead ofM(X) ≥ (r+1)/4). This can be used to obtain an improvement

of our main result, Theorem 6.1. As the required argument is quite complicated, however,

and we have not found any additional cases of circulant Hadamard matrices it would rule

out, we skip that.

Proof of Lemma 5.2. Write X =
∑r−1

i=0 Xiζ
i
ra with Xi ∈ Z[ζra−1v]. As X /∈ Z[ζra−1v], there

is j > 0 with Xj 6= 0. Let k : {0, . . . , r − 1} → {0, . . . , r − 1} be the map such that k(i)
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is the unique integer with 0 ≤ k(i) ≤ r− 1 and ti ≡ k(i) (mod r). Note that all orbits of

k on {1, . . . , r − 1} have length f , since ordr(t) = f . By assumption,

Xσ =
r−1∑
i=0

Xσ
i ζ

ti
ra =

r−1∑
i=0

(Xσ
i ζ

ti−k(i)
ra )ζ

k(i)
ra = δX =

r−1∑
i=0

(δXi)ζ
i
ra . (84)

Case 1 a ≥ 2. Note that Xσ
i ζ

ti−k(i)
ra ∈ Z[ζra−1v], as Xi ∈ Z[ζra−1v] and ti ≡ k(i) (mod r).

Moreover, δ ∈ Z[ζra−1v] by assumption, and {1, ζra , . . . , ζr−1ra } is linearly independent over

Q(ζra−1v). Hence (84) implies Xσ
i ζ

ti−k(i)
ra = δXk(i) for i = 0, . . . , r − 1. Thus, as Xj 6= 0,

we have Xk(j) 6= 0 as well. Consequently, Xj, Xk(j), . . . , Xkf−1(j) are all nonzero. Applying

Result 2.12 (a) and (5), we obtain M(X) ≥
∑f−1

i=0 M(Xki(j)) ≥ f . This implies (83).

Case 2 a = 1. Note that the representation of X as
∑r−1

i=0 Xiζ
i
ra is not unique, but we

may assume the representation is chosen such that T = |{i : Xi 6= 0}| is minimum among

all possible representations of X. It follows that, for each fixed i, there are at most r− T
indices k with Xk = Xi (otherwise, the representation X =

∑r−1
k=0(Xk−Xi)ζ

k
r would have

less than T nonzero (Xk − Xi)’s). Thus, for any fixed i, the number of indices k with

Xi −Xk 6= 0 is at least T . Therefore, by Result 2.12 (b) and (5), we obtain

(r − 1)M(X) =
∑
i<k

M(Xi −Xk) =
1

2

∑
i 6=k

M(Xi −Xk) ≥
rT

2
.

If T ≥ (r+ 1)/2, then we concludeM(X) ≥ r(r+ 1)/4(r− 1)) > (r+ 1)/4. This implies

(83).

Now suppose T < (r + 1)/2. Then T ≤ (r − 1)/2, as r is odd. Let S = {i : Xi 6= 0}.
Then |S| = T ≤ (r − 1)/2. Note that ζtir = ζ

k(i)
r . As Xσ = δX, we have

Xσ =
∑
i∈S

Xσ
i ζ

it
r =

∑
i∈S

Xσ
i ζ

k(i)
r = δ

∑
i∈S

Xiζ
i
r. (85)

Moreover, δ ∈ Z[ζv], Xi ∈ Z[ζv], and Xσ
i ∈ Z[ζv] for all i, since a = 1. As |S| ≤ (r− 1)/2,

the set

T = {ζ ir : i ∈ S} ∪ {ζk(i)r : i ∈ S}

contains at most r−1 elements of {ζ ir : i = 0, . . . , r−1}. Hence T is linearly independent

over Q(ζv). Therefore, (85) implies {k(i) : i ∈ S} = S. Thus, as j > 0 and Xj 6= 0, we

conclude that S contains a whole orbit of k on {1, . . . , r − 1}. Hence |S| ≥ f . Moreover,

(r − 1)M(X) =
∑
i<k

M(Xi −Xk) ≥
∑
i∈S

∑
k 6∈S

M(Xi −Xk) ≥ |S|(r − |S|). (86)

As f ≤ |S| ≤ (r − 1)/2 and the function g(x) = x(r − x) is increasing for 1 ≤ x ≤ r/2,

(86) implies M(X) ≥ f(r − f)/(r − 1). This proves (83) for f < r − 1.

Finally, if f = r− 1, we set t′ = t2 and apply (83) with t replaced by t′ and σ replaced

by σ2. As ordr(t
′) = (r − 1)/2, this shows M(X) ≥ (r − 1)(r + 1)/4(r − 1) = (r + 1)/4.

This completes the proof of Lemma 5.2.
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In the following theorem, we combine Lemmas 5.1 and 5.2 to obtain a lower bound on

the complex modulus of cyclotomic integers. We remark that we use Notation 2.15 again.

Theorem 5.4. Let p be an odd prime and let a, w be positive integers, where a ≥ 2, w is

odd, and (w, p) = 1. Suppose X ∈ Z[ζpaw] satisfies |X|2 = n where n is a positive integer

with (n, p) = 1. Furthermore, suppose that

Xη 6∈ Z[ζpa−1w] and Xη 6∈ Z[ζpa ] (87)

for all roots of unity η. Let t be an integer with (t, pw) = 1 and write f = ordpa(t).

Suppose f > 1, that f divides p− 1, and that, for every prime divisor q of n, there is an

integer sq with

qsq ≡ t (mod ω(paw, q)). (88)

Let S be the set of prime divisors of w and set

fs = min

{
s− 1

2
,
ordps(t)

ordp(t)

}
for s ∈ S. If ν2(ordp(t)) ≥ 1, set

S ′ = {s ∈ S : ν2(ords(t)) = ν2(ordp(t))},

otherwise, set S ′ = ∅. Then S \ S ′ is nonempty and

n ≥ ordp(t) min

{
fs(s− fs)
s− 1

: s ∈ S \ S ′
}
. (89)

Proof. Note that ordp(t) = ordpa(t) = f , as f divides p − 1 by assumption. Define

τ ∈ Gal(Q(ζpaw)/Q) by τ(ζpaw) = ζtpaw. By assumption (88) and Result 2.8, all prime

ideals of Z[ζpaw] above nZ[ζpaw] are invariant under τ . Hence, by Result 2.7, there are

roots of unity ξ1, ξ2 ∈ Z[ζpaw] such that (Xξ1)
τ = ±ξ2(Xξ1) and every prime divisor of

the order of ξ2 divides t− 1. Note that the order of ξ2 is not divisible by p, as ordp(t) > 1

by assumption and thus p does not divide t− 1. In particular, ζ2 ∈ Z[ζpa−1w].

Write

Y = Xξ1 =

p−1∑
i=0

Aiζ
i
pa (90)

with Ai ∈ Z[ζpa−1w] and δ = ±ξ2. Note Y τ = δY . Let k : {0, . . . , p− 1} → {0, . . . , p− 1}
be the function such that k(i) it ≡ k(i) (mod p). As Y τ = δY , we have

p−1∑
i=0

(
Aτi ζ

it−k(i)
pa

)
ζ
k(i)
pa =

p−1∑
i=0

(δAi)ζ
i
pa

and thus

Aτi ζ
it−k(i)
pa = δAk(i) (91)
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for i = 0, . . . , p− 1, as {1, ζpa , . . . , ζp−1pa } is linearly independent over Q(ζpa−1w).

Since Y /∈ Z[ζpa−1w] by assumption (87), we have Aj 6= 0 for some j with 1 ≤ j ≤ p−1.

Moreover, (91) implies

Aki(j) = ηiAj, i = 0, . . . , f − 1, (92)

for some root of unity ηi (depending on i). Note that (92) implies M(Aki(j)) = M(Aj)

for j = 0, . . . , f − 1. By Result 2.12 (a), we obtain

n =M(X) ≥
f−1∑
i=0

M(Aki(j)) = fM(Aj). (93)

To prove (89), we need to find a lower bound for M(Aj).

Claim Let r be a prime divisor of w and write b = νr(w). If Aj 6∈ Z[ζpa−1w/rb ], then

M(Aj) ≥
fr(r − fr)
r − 1

. (94)

Let σ = τ f . As Y τ = δσ, we have

Y σ = (δY τ )τ
f−1

= · · · =

(
f−1∏
i=0

δτ
i

)
Y. (95)

Moreover, σ fixes ζpa , since f = ordpa(t). Hence, using the usual independence argument,

we see that (95) implies Aσj = ηAj, where η =
∏f−1

i=0 δ
τ i . Recall δ = ±ξ2 and that every

prime divisor of the order of ξ2 divides t− 1. In particular, the order of δ is not divisible

by p.

First suppose that the order of η is divisible by r. Then r divides the order of ξ2 and

thus r divides t− 1. This implies ordpr(t) = ordp(t) and fr = 1. Hence (94) holds by (5),

as Aj 6= 0.

On the other hand, if r does not divide the order of η, then η ∈ Z[ζw/rb ], as the order

of δ is not divisible by p. Moreover, since Aj ∈ Z[ζpa−1w] by the definition of the Ai’s and

Aj 6∈ Z[ζpa−1w/rb ] by the assumption of the claim, there is a nonnegative integer c such

that Aj ∈ Z[ζpa−1w/rc ] \ Z[ζpa−1w/rc+1 ]. Hence we can apply Lemma 5.2 to Aj and this

shows that (94) holds. This completes the proof of the claim.

Finally, by (93) and (94), to prove Theorem 5.4, it suffices to show that

Aj 6∈ Z[ζpa−1w/rνr(w) ] (96)

for some j > 0 and some r ∈ S \ S ′.

Set v =
∏

s∈S′ s
νs(w). Suppose (96) does not hold, i.e., Aj ∈ Z[ζpa−1w/rνr(w) ] for all j > 0

and all r ∈ S \ S ′. Then A0 ∈ Z[ζpa−1w/rνr(w) ] for all j > 0 and all r ∈ S \ S ′ by Lemma

5.1. This implies Y ∈ Z[ζpav]. Hence it suffices to show Y 6∈ Z[ζpav].
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Suppose Y ∈ Z[ζpav]. Let s be a prime divisor of v. As s ∈ S ′, we have

ν2(ords(t)) = ν2(ordp(t)) ≥ 1

by the definition of S ′. Hence there is an integer x ≥ 1 such that

ordp(t) = 2xyp and ords(t) = 2xys (97)

where yp and ys are odd integers. Set

z = 2x−1ypp
a−1

∏
r∈S′

yrr
νs(v)−1.

Using the fact that p and v are odd by assumption, it is straightforward to verify that

tz ≡ −1 (mod pa) and tz ≡ −1 (mod s) (98)

for all s ∈ S ′. Note that (88) and (98) imply that n is self-conjugate modulo pav. Recall

that we assume Y ∈ Z[ζpav] and |Y |2 = n. Thus Proposition 2.11 implies

Y β = w2

k∏
i=1

Gpi (99)

for integer w and some root of unity β, where the pi’s are distinct prime divisors of (n, pav).

Recall that (n, p) = 1 by assumption. Hence each pi divides v. Thus, as Gpi ∈ Z[ζpi ],

the right hand side of (99) is contained in Z[ζv]. Hence (99) implies Xξ1η = Y η ∈ Z[ζv],

contradicting assumption (87).

6 Necessary Conditions for the Existence of Circu-

lant Hadamard Matrices

We are now ready to prove the main result of this paper. We use Notation 2.15 again.

Theorem 6.1. Let u > 1 be an odd integer and suppose that a circulant Hadamard matrix

of order 4u2 exists. Let d be a divisor of u with (d, u/d) = 1 and let p be a prime divisor

of u/d such that

ϕ(d2) <
pϕ(u2)

2u2
. (100)

Let pa be the largest power of p dividing u/d. Let m be a divisor of u with m ≡ 0 ( mod pa)

such that

νp(ordp2a(q)) > νp(ord′u/d(q)) (101)

for all prime divisors q 6= p of m.
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Let t be an integer coprime to u/d such that ordp(t) > 1 and, for every prime divisor

q of u/m, there is an integer sq with

qsq ≡ t (mod ω(u2/d2, q)). (102)

Let S be the set of prime divisors of u/(dpa). If ν2(ordp(t)) ≥ 1, set

S ′ = {s ∈ S : ν2(ords(t)) = ν2(ordp(t))}

and S ′ = ∅ otherwise. For s ∈ S \ S ′, set

fs = min

{
ordps(t)

ordp(t)
,
s− 1

2

}
.

Then

ordp(t) ≤
u4

m4
max

{{
2m2

u2

}
∪
{

(s− 1)

fs(s− fs)
: s ∈ S \ S ′

}}
. (103)

Remark 6.2. For the application of Theorem 6.1 to a specific u, it is necessary to identify

appropriate values for p, m, and t. First of all, p usually is chosen as one of the largest

prime divisors of u (each possible p has to be tested). Once p is chosen, we take m as large

as possible, i.e., we include all prime factors of u in m which satisfy (101). The choice of t

is more complicated. Usually, we choose t such that ordp(t) is as large as possible among

those t which satisfy (102). Nevertheless, in the frequently occurring case where u/m is a

prime power, say u/m = qb, we simply can take an integer t with t ≡ q ( mod ω(u2/d2, q))

and t ≡ 1 (mod q2b) (which exists due to the Chinese remainder theorem).

Proof of Theorem 6.1. By Theorem 3.5, there is X ∈ Z[ζu2/d2 ] with

|X|2 =
u4

m4
and Xη 6∈ Z[ζu2/(pd2)] (104)

for all roots of unity η.

First suppose Xη ∈ Z[ζp2a ] for some root of unity η. Note that p does not divide u/m,

as m ≡ 0 (mod pa). Moreover, u/d ≡ 0 (mod p) by assumption. Thus, by (102), for

every prime divisor q of u/m, there is an integer sq with qsq ≡ t (mod p). This implies

ordp(q) ≡ 0 (mod ordp(t)) and thus

gcd(ordp(q1), . . . , ordp(qt)) ≡ 0 (mod ordp(t)), (105)

where the qi’s are the distinct prime divisors of u/m. Note that Xη 6= u2/m2 for all roots

of unity η by (104). Thus, in view of (105), Theorem 4.7 implies 2u2/m2 ≥ ordp(t), i.e.,

ordp(t) ≤
u4

m4

2m2

u2
.
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Hence (103) holds.

Now suppose Xη 6∈ Z[ζp2a ] for all roots of unity η. Then we have

|X|2 =
u4

m4
, Xη 6∈ Z[ζu2/(pd2)], and Xη 6∈ Z[ζp2a ] (106)

for all roots of unity η. In view of (102) and (106), we can apply Theorem 5.4 to X, which

shows that (103) holds.

In the numerous cases where u/m is a prime power, say qb, we obtain the following

improvement of Theorem 6.1. The difference to Theorem 6.1 is that the number (q −
1)/(fq(q− fq)) is not included in (109) in the set over which the maximum is taken. Note

that all numbers in this set are at most 1. Hence those numbers in the set are critical which

are relatively close to 1. In most cases, q is relatively small and thus (q − 1)/(fq(q − fq))
is relatively close to 1. Therefore, removing (q − 1)/(fq(q − fq)) from the set sometimes

significantly reduces the value of the maximum.

Theorem 6.3. Let u > 1 be an odd integer and suppose that a circulant Hadamard matrix

of order 4u2 exists. Let d be a divisor of u with (d, u/d) = 1 and let p be a prime divisor

of u/d such that

ϕ(d2) <
pϕ(u2)

2u2
. (107)

Let pa be the largest power of p dividing u/d. Let q 6= p be a prime dividing u such that

νp(ordp2a(r)) > νp(ord′u/d(r)) (108)

for every prime divisor r of u with r 6= p and r 6= q.

Let qb be the largest power of q dividing u, and let S be the set of prime divisors of

u/d which are different from p. If ν2(ordp(t)) ≥ 1, set

S ′ = {s ∈ S : ν2(ords(t)) = ν2(ordp(t))}

and S ′ = ∅ otherwise. For s ∈ S \ S ′, set

fs = min

{
ordps(q)

ordp(q)
,
s− 1

2

}
.

Then

ordp(q) ≤ q4b max

{{
2

q2

}
∪
{

(s− 1)

fs(s− fs)
: s ∈ S \ (S ′ ∪ {q})

}}
. (109)

Proof. Let t be an integer with t ≡ q (mod ω(u2/d2, q)) and t ≡ 1 (mod q2b). Note

ords(t) = ords(q) for all prime divisors s 6= q of u/d. We use Theorem 6.1 with m = u/qb

and the t we just have defined. Note that the essential difference between (109) and (103)
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is that the number (q − 1)/(fq(q − fq)) is not included in (109) in the set over which

the maximum is taken. Thus the value of the maximum on the right hand side of (109)

may be smaller than that on the right hand side of (103), and we have to justify this

improvement.

First of all, if q does not divide u/d, then the right hand sides of (103) and (109)

coincide and thus (109) follows from Theorem 6.1.

Hence we can assume that q divides u/d. As in the proof of Theorem 6.1, we see that

there is X ∈ Z[ζu2/d2 ] with

|X|2 =
u4

m4
= q4b and Xη 6∈ Z[ζu2/(pd2)] (110)

for all roots of unity η. Furthermore,

N(X) =
u2p

m2p
= q2bp (111)

by Theorem 3.5, where N denotes the norm of Q(ζu2/d2) relative to Q(ζu2/(pd2)).

If there is a root of unity τ such that Xτ ∈ Z[ζu2/(d2q2b)], then, following the same

argument as in the proof of Theorem 6.1, we do not need to include the number (q −
1)/(fq(q− fq)) in (109) in the set over which the maximum is taken. Hence (109) follows

from Theorem 5.4 in this case.

Thus we can assume

Xτ 6∈ Z[ζu2/(d2q2b)] (112)

for all roots of unity τ . Recall |X|2 = q4b. Result 2.13 and (112) imply

X = ζju2/d2G(χ)Z (113)

for some integer j, where χ is a multiplicative character of Fq, Z ∈ Z[ζu2/(d2q2b)], and

|Z|2 = q4b−1. Note that χ cannot be the trivial character. Otherwise, χ(x) = 1 for all

x ∈ Fq \ {0}, which implies G(χ) = −1 and thus |Z|2 = |X|2/|G(χ)|2 = q4b, contradicting

|Z|2 = q4b−1.

Let x denote the order of χ. Note that x divides q−1. Furthermore, as χ is nontrivial,

we have x ≥ 2. Let β be a primitive element of Fq with χ(β) = ζx. Note G(χ) ∈ Z[ζqx].
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Let α be the automorphism of Q(ζqx) defined by ζαq = ζβq and ζαx = ζx. Then

G(χ)α =

∑
x∈Fq

χ(x)ζxq

α

=

(
q−1∑
i=1

χ(βi)ζβ
i

q

)α

=

q−1∑
i=1

ζ ixζ
αi+1

q

= ζ−1x

q−1∑
i=1

ζ i+1
x ζα

i+1

q

= ζ−1x

q−1∑
i=1

ζ ixζ
αi

q

= ζ−1x G(χ).

(114)

As G(χ) ∈ Z[ζu2/d2 ] and thus G(χ)α ∈ Z[ζu2/d2 ], we have

ζx = G(χ)/G(χ)α ∈ Z[ζu2/d2 ]. (115)

by (114).

Now suppose x > 2. Note that x is not divisible by 4 by (115), since u2/d2 is odd.

Thus x has an odd prime divisor, say x0. Note that x0 divides u2/d2 by (115). Recall

that x divides q − 1. Thus x0 also divides q − 1. If x0 = p, then ordp(q) = 1 and (109)

trivially holds. If x0 6= p, then x0 ∈ S \S ′, as ordx0(q) = 1 and, moreover, fx0 = 1. Hence

the maximum on the right hand side of (109) equals 1 and (109) follows from Theorem

6.1 (note that the maximum in (103) is at most 1 in any case).

So we may assume x = 2. We claim

Zη 6∈ Z[ζu2/(pd2q2b)] (116)

for all roots of unity η. As x = 2, we have

G(χ) ∈ Z[ζq]. (117)

Suppose Zη ∈ Z[ζu2/(pd2q2b)] for some root of unity η. Then

G(χ)Zη ∈ Z[ζu2/(pd2)] (118)

by (117), since q divides u/d by assumption. Recall X ∈ Z[ζu2/d2 ]. Combining (113) and

(118), we get

Xζ−ju2/d2η = G(χ)Zη ∈ Z[ζu2/(pd2)].
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But this contradicts (110). This proves (116).

Next, we claim

Zη 6∈ Z[ζp2a ] (119)

for all roots of unity η. Recall that N denotes the norm of Q(ζu2/d2) relative to Q(ζu2/(pd2)).

By (111) and (113), we have

q2bp = N(X) = N(ζju2/d2)N(G(χ))N(Z). (120)

Note that

N(G(χ)) = G(χ)p, (121)

as G(χ) ∈ Z[ζq] ⊂ Q(ζu2/(pd2)).

Now suppose Zη ∈ Z[ζp2a ] for some root of unity η. Note that we can assume that η

has odd order, since Z ∈ Z[ζu2/d2 ] and u2/d2 is odd. Thus γ := ζ−ju2/d2η is a root of unity

of odd order. By (120) and (121), we have

q2bpN(γ) = G(χ)pN(Zη). (122)

Let z be a primitive root modulo q2b and let σ ∈ Gal(Q(ζu2/d2)/Q) be given by

ζσ
q2b

= ζz
q2b

and ζσ
u2/(d2q2b)

= ζu2/(d2q2b). As x = 2, we have

G(χ)σ = −G(χ) (123)

by (114). Furthermore, note N(Zη)σ = N(Zη), as Zη ∈ Z[ζp2a ] by assumption and p2a

divides u2/(d2q2b). Thus

N(γ)σ = −N(γ) (124)

by (122) and (123), as p is odd. But (124) is impossible, since N(γ) is a root of unity of

odd order. This proves (119).

In summary, we have shown

Z ∈ Z[ζu2/(d2q2b)], |Z| = q2b−1, Zη 6∈ Z[ζu2/(pd2q2b)], and Zη 6∈ Z[ζp2a ]

for all roots of unity η. Hence

q2b−1 ≥ ordp(q) min

{
fs(s− fs)
s− 1

: s ∈ T
}

(125)

by Theorem 5.4, where T is the set of prime divisors s of u/d which are different from p

and q and do not satisfy ν2(ords(q)) = ν2(ordp(q)) ≥ 1. Since T = S \ (S ′ ∪ {q}), where

S and S ′ are the sets defined in the statement of Theorem 6.3, we see that (125) implies

(109). This completes the proof.

39



Theorem 6.4. There is no Barker sequence of length ` with 13 < ` ≤ 4 · 1033.

Proof. Suppose a Barker sequence of length ` with 13 < ` ≤ 4 · 1033 exists. Then l = 4u2

with u = 5 ·13 ·29 ·41 ·2953 ·138200401 by [3, Thm. 1]. But this is impossible by Theorem

6.3 (see Table 1 below for the details).

Finally, we present some computational results which illustrate the application of the

results in this section. In [3], a total of 19 open cases of Barker sequences of length ` = 4u2

with 13 < ` ≤ 1050 was identified. All these 19 cases can be ruled out using Theorem

6.3. Table 1 contains relevant numerical data. The columns for p, qb, d, q4b, and ordp(q)

contain the values used in Theorem 6.3 to rule out the corresponding case. The column

“max” gives the value of the maximum on the right hand side of (109). The column

“LHS/RHS” contains the quotient of the left hand side and the right hand side in (109).

By Theorem 6.3, the fact that this quotient is larger than 1 implies that in all these cases

there is no circulant Hadmard matrix of order 4u2 and thus no Barker sequence of length

4u2. The values in the last three columns of Table 1 are rounded to two significant decimal

digits and given in scientific notation.

A total of 237,807 open cases of Barker sequences with length ` ≤ 10100 was identified

in [3]. Theorem 6.3 rules out 229,682 of these 237,807 cases. The computational data

(similar to Table 1) for this search are available from the authors upon request. The

smallest of the 237,807 cases given in [3] which is not ruled out by Theorem 6.3 is u =

30109 · 1128713 · 2167849 · 268813277.

Concerning circulant Hadamard matrices, 1371 open cases with u ≤ 1013 were found

in [3]. Theorem 6.3 rules out 423 of these cases. Table 2 contains relevant numerical data

for the 20 smallest u’s for which circulant Hadamard matrices of order 4u2 are ruled out

by Theorem 6.3. The format of Table 2 is the same as that of Table 1. The data for

the remaining cases are available from the authors upon request. The smallest case of

circulant Hadamard matrices which has not been ruled out still is u = 11715 = 3·5·11·71.
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