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Abstract

The essential fact behind the so-called field-descent method is that certain cyclo-
tomic integers necessarily are contained in relatively small fields and thus must have
relatively small complex modulus. In this paper, we develop a method which reveals
a complementary phenomenon: certain cyclotomic integers cannot be contained in

relatively small fields and thus must have relatively large complex modulus.

This method, in particular, yields progress towards the circulant Hadamard ma-
trix conjecture. In fact, we show that such matrices give rise to certain “twisted
cyclotomic integers” which often have small complex modulus, but are not contained
in small fields. Hence our “anti-field-descent” method provides new necessary con-
ditions for the existence of circulant Hadamard matrices. The application of the
new conditions to previously open cases of Barker sequences shows that there is no
Barker sequence of length ¢ with 13 < ¢ < 4 -1033. Furthermore, 229,682 of the

237,807 known open cases of the Barker sequence conjecture are ruled out.

*Ka Hin Leung’s research is supported by grant No. R-146-000-209-112, Ministry of Education, Sin-
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1 Introduction

A circulant Hadamard matrix of order v is a square matrix of the form

a]_ a2 PR a”U

Ay a1 Ay—1
H =

a2 a3 .. al

with a; € {—1,1} for all i and HH” = vI. No circulant Hadamard matrix of order larger
than 4 has ever been found. This led Ryser [11, p. 134] to the following.

Conjecture 1.1. No circulant Hadamard matrixz of order larger than 4 exists.
The following is a classical result [15].

Result 1.2 (Turyn). If an Hadamard matriz of order v exists, then v = 4u® for some

odd integer w which is not a prime power.

A sequence ay, ..., a,, a; = 1, is called a Barker sequence of length v if

v—j

E ;@45

=1

<lforj=1,..,v—1.

Storer and Turyn [14] proved that there is no Barker sequence of odd length exceeding
13. Furthermore, the following is well known, see [1, Chapter VI, §14].

Result 1.3. The existence of a Barker sequence of length ¢ > 13 implies the existence of

a circulant Hadamard matrix of order €.
Thus there is also the following.
Conjecture 1.4. There are no Barker sequences of length exceeding 13.

While Conjecture 1.4 has been settled in [14] for odd lengths, the case of even length
is still open despite powerful partial results [6, 8, 12, 13, 15].

It turns out that the results of this paper are particularly useful for the study of
Conjecture 1.4. In particular, we will show that there is no Barker sequence of length ¢
with 13 < ¢ < 4-10%. Moreover, we will settle all 19 open cases with ¢ < 10%° identified
in [3] (note, however, that the list of open cases with ¢ < 10°° given in [3] is possibly
incomplete; please refer to [3] for more details). Furthermore, in total, 237,807 open cases
of Barker sequences of length ¢ < 10'° were identified in [3] (again, this list is possibly
incomplete). We will rule out 229,682 of these 237,807 cases.

As the results of our paper are highly technical, we give an informal overview of the
main ideas now. We assume that the reader is familiar with basic algebraic number theory,

as treated in [2], for instance.



Write (,, = exp(2mi/m). The elements of Z[(,,] are called cyclotomic integers.
Suppose there is a circulant Hadamard matrix of order 4u?, where u > 1 is an integer.
It is well known that this implies the existence of a “flat” X € Z[(4,2] with |X|? = u?
(by “flat” we mean that X can be written as X = > a;¢*, with small a;’s). Let p be
the largest prime divisor of u. Let ¢ be the unique automorphism of Q((y,2) of order p.
The “field descent method” [8] shows that the ideal XZ[(4,2] usually is not be invariant
under ¢ if X is flat. However, in many cases, most prime ideals of Z[(,2] above u are
invariant under o. This can be used to show that XX often is divisible by a relatively
large integer, say w. Then Y = X?X /w is a cyclotomic integer. We call Y a “twisted
cyclotomic integer”. The properties of these twisted cyclotomic integers are the key to all

our results. Note |Y| = u?/w, which is relatively small if w is large.

We will show that the ideal YZ[(4,2] is not invariant under o if the same is true for
the ideal XZ[(4,2]. This means that Y is contained in Q((4,2), but Y7 is not contained in
the subfield Q((4y2/p) for any root of unity 1. The details of constructing such cyclotomic
integers Y with relatively small complex modulus which live in relatively large fields will
be worked out in Section 3. There are several ways of optimizing the construction of Y,
which substantially strengthen and complicate the results. For instance, sometimes p has
to be replaced by a smaller prime divisor of u or we have to use homomorphisms to start
with an X which may not be that flat, but is contained in a proper subfield of Q((y,z2).

In Sections 4 and 5, we develop tools which provide necessary conditions for the
existence of twisted cyclotomic integers Y. A major step is Theorem 4.5 which deals with
the basic case Y € Q((,) where ¢ is a prime power. This result is of independent interest
and essentially solves the following number theoretic problem: Consider a “nontrivial”
solution X € Z[(,] of | X |* = v?, which is contained in a subfield K of Q({,). Find a sharp

general lower bound for v in terms of the extension degree [Q((,) : K].

The necessary condition for the existence of Y in Theorem 4.5 is so strong that it
provides the desired contradictions in most applications we are interested in. Thus, after
Theorem 4.5 has been established, it essentially suffices to concentrate on deriving nec-
essary conditions for the existence of twisted cyclotomic integers in fields that are not of
form Q((,). This is the purpose of Theorem 5.4. The main tool for the proof of Theorem
5.4 is new estimates for Cassel’s M-function [4] that are obtained from Galois action on

cyclotomic integers.

Finally, in Section 6, the number theoretic results of Sections 3 — 5 are applied to
circulant Hadamard matrices and Barker sequences, and some computational results are

presented.



2 Preliminaries

2.1 Group Rings, Characters, and Difference Sets

Let G be a finite (multiplicatively written) group of order v, let R be a ring, and let R[G]
denote group ring of G over R. Every X € R[G] can be written as X = deG
ag € R. The a,’s are called the coefficients of X. We identify a subset S of G with
the group ring element ges 9- Let 1g denote the identity element of G and let 7 be an

agg with

integer. To simplify notation, we write r for the group ring element slg. Let s be an
integer. We set X(®) = > gec @99’
We need some additional notation for the case R = Z[(,]. Let ¢ be an integer co-

prime to m. For X = Y ;a9 € Z[(n][G], we write X = Y~ a7g" where o is the
automorphism of Q(¢,,) determined by (7 = (',.

For an abelian group G, we denote its group of complex characters by G. The trivial
character of GG is the character xo with xo(g) = 1 for all g € G. We always implicitly
assume that characters are extended to group rings in the natural way, i.e., x(>_ gec Qg g) =
> gec @gx(g). The following is a standard result, see [1, Chapter VI, Lemma 3.5, for

mstance.

Result 2.1. Let G be a finite abelian group and X =

a, = é > x(Xg™h

xe@G

ag9 € C[G]. Then

geG

forallg e G.

To prove our results on Conjecture 1.1, we will use the language of difference sets. A
(v, k, A\, n)-difference set in a finite group G of order v is a k-subset D of G such that
every element g # 1 of (¢ has exactly A representations g = did," with dy,dy € D. The
positive integer n = k — X is called the order of the difference set. For an introduction
to difference sets, see [1, Chapter VI].

Using group rings and characters, difference sets in abelian groups can be characterized
as follows [1, Chapter VI, Lemma 3.2].

Result 2.2. Let D be a k-subset of a abelian group G of order v. Then D is a (v,k, A\,n)
difference set in G if and only if

DDV =+ )\G (1)
in Z|G]. Furthermore, (1) holds if and only if
X(D)[ =n

for all nontrivial characters x of G.



In this paper, we only deal with Hadamard difference sets, i.e., difference sets
with parameters (v, k, A\, n) = (4u?, 2u® — u,u? — u,u?) where u is a positive integer. The

following is well known, see [1, Chapter VI, §14].

Result 2.3. A circulant Hadamard matriz of order 4u? exists if and only if there is a

Hadamard difference set in the cyclic group of order 4u?.

2.2 Number Theoretic Background

Throughout this paper, we assume basic algebraic number theory as treated in [2] or [7],

for instance.

See [2, Section 2.3, Thm. 2] for a proof of the following result of Kronecker.

Result 2.4. An algebraic integer all of whose conjugates have absolute value at most 1 is

a root of unity.

Note that Result 2.4 implies that any cyclotomic integer of absolute value 1 must be

a root of unity, since the Galois group of a cyclotomic field is abelian.

To exploit Galois action on cyclotomic integers, we need the following relative integral

bases of cyclotomic fields which are invariant under certain automorphisms.

Lemma 2.5. Let p be an odd prime and let a > 2 be an integer. Let t be an integer with
(t,p) = 1 and write f = ord,(t). If ordye(t) = f, then there is B C {1,...,p"" ' — 1} with
|B| = (p*~* —1)/f such that

(U ri=0,....f -1} (2)

beB

is an integral basis of Q((pa) over Q((,).

Proof. Let I C Z with |I| = p* ! = [Q(pa) : Q({pa-1)]. It is well known and straightfor-
ward to prove that {(ga : j € I} is an integral basis of Q((,«) over Q((,) if and only if the

elements of I are pairwise incongruent modulo p®~1.

Forx =1,...,p* ! —1, let g(x) be the unique integer with g(x) = z* (mod p*~!) and
1 < g(x) < p*!'—1. Note ord,a-1(t) = f, as ordye(t) = ord,(t) = f by assumption. Thus
every orbit of the map g on {1,...,p* ' — 1} has length f. Let B C {1,...,p" ' — 1} be
a set with |B| = (p~! — 1)/f which contains exactly one representative of each of these
orbits. Then the set
{oruJ{pti=o0,....f—1}
beB

has cardinality p®~! and its elements are pairwise incongruent modulo p®~!. This implies
the set defined in (2) is an integral basis of Q((y«) over Q(,). O



Remark 2.6. The assumption ¢ > 2 in Lemma 2.5 cannot be omitted. In fact, if a = 1,

then (Jycp{C" : i =0,....f — 1} (and not {1} UUJyep{C% : i =0,....f —1}) is an
integral basis of Q((,) over Q.

The following result is a special case of [12, Thm. 2.1.4]. As it is needed repeatedly in
this paper and the proof for this special case is easier than in the general case, we include

a proof here for the convenience of the reader.

If  is a complex root of unity and % is the smallest positive integer with n* = 1, we

say that k is the order of 7.

Result 2.7. Let v,t be positive integers with (v,t) = 1. Let o be the automorphism of
Q(¢,) determined by ¢ = (!, Suppose X € Z[(,] and | X |? is an integer. If all prime ideals
of Z[(,] above XZ[(,] are invariant under o, then there are roots of unity n, T € Z[(,] with

(X7)7 = £n(X7) (3)
such that every prime divisor of the order of n divides t — 1.

Proof. As all prime ideals of Z[(,] above XZ[(,] are invariant under ¢ by assumption, we
have X = 4 X for some unit 7 of Z[(,]. Since |X|? is an integer, we have |X7|? = | X|2.
Thus 7 is a root of unity by Result 2.4. Suppose p is a prime divisor of the order of ~
which does not divide t — 1. Write v = Cgav’ where +/ is a root of unity whose order is not
divisible by p. As (p,t — 1), there is an integer i with j +i(t — 1) =0 (mod p®). Hence

(XCa)” =7 G X =7(X ).
Repeating this argument, if necessary, we obtain (3). O]
A proof of the following result can be found in [13, Thm. 1.4.3], for instance.

Result 2.8. Let p be a prime, let m be a positive integer, and write m = p*m’ with
(m/,p) = 1. Let p be a prime ideal above p in Z[Gy]. If o € Gal(Q((n)/Q) satisfies

£, = 55/ for some positive integer j, then p° = p.

Definition 2.9. Let p be a prime, let m be a positive integer, and write m = p*m’ with
(p,m/) =1, a > 0. If there is an integer j with p’ = —1 (mod m/'), then p is called self-
conjugate modulo m. A composite integer n is called self-conjugate modulo m if every

prime divisor of n has this property.
The following is a result of Turyn [15].
Result 2.10. Suppose that A € Z[(,,] satisfies
|A]? = 0 mod n?
for some positive integer n which is self-conjugate modulo m. Then A =0 mod n.
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Note that Results 2.4 and 2.10 imply the following well-known fact: If A € Z[(y)
satisfies |A|> = n? and n is self-conjugate modulo m, then A = nn for some root of unity

1. We will need the following generalization.

Proposition 2.11. Suppose that A € Z|[(,,] satisfies |A|? = n, where n is an odd integer
which is self-conjugate modulo m. Write n = w?n’ where n' = Hlepi 1s the square-free
part of n and the p;’s are distinct primes (k =0, i.e., n’ =1 is allowed). Then n' divides

m and there is a root of unity n such that

k
A=nuw]]G. (4)

=1

where
pi—1 T
6= (2)a
x=1 p

and (—) 15 the Legendre symbol.

Proof. Let XY be any elements of Z[(,,] satisfying | X|* = |V |> = n.
Claim We have Y = nX for some root of unity 7.

Proof of the claim: As n is self-conjugate modulo m by assumption, all prime ideals
of Z[(,] above nZ[(,,] are invariant under complex conjugation by Result 2.8. Thus
| X]? = |Y'|* = n implies that XZ[(,,] and YZ[(,,] have the same prime ideal factorization.
Hence X = €Y for some unit . Note || = 1, as | X|* = |Y|>. Hence € is a root of unity

by Result 2.4, and this proves the claim.

Suppose that p; does not divide m for some . Then the prime ideals of Z[(,,] above
piZ[(n] are unramified. Furthermore, as shown above, these prime ideals are invariant
under complex conjugation. Hence each of these prime ideal occurs in the factorization
of piZ[(,] to the first power and occurs in the factorization of |A|?Z[(,,] = AAZ[(,] to
an even power. This contradicts |A|? = n = w? Hle p;. Thus each p; divides m, i.e., n/

divides m.

Let Y = nw ][], G,, Note that |G,,|> = G,, for all i, as G, is a quadratic Gauss
sum (see [7, Prop. 8.2.2, p. 92]). Hence |Y|> = w? [\, pi = n = |A]* and (4) follows

from the claim. O

We now recall some results of Cassels [4] which will be needed to derive necessary

conditions on the existence of twisted cyclotomic integers. For X € Z[(,,], let

M(X) = om) > (xX),
PN o eGal(@(cm) /)



where ¢ denotes the Euler totient function. Note
M(X)>1 (5)

for X # 0 by the inequality of geometric and arithmetic means, since [[ (X X)? > 1. The

following was proved in [4].

Result 2.12. Let X € Z[(y). Let p be a prime divisor of m and write m = p*m’ with
(p,m') =1.
(a) Supppose a > 1 and write X = Z‘f:)l_l Xi(o with X; € Z[(pmy]. Then

a—l_l

M(X) = Z M(X;).

(b) Suppose a =1 and write X = 37~} X;(), with X; € Z[Go]. Then

(b~ M) = 3 M(X, — X)),

1<J

For a prime ¢, let F, denote the field of order ¢q. Let x be a multiplicative character
of F,. The Gauss sum G(x) is defined by

Glx) = x(@).

z€Fy

Note that this definition uses the convention x(0) = 0. For a proof of the following result,
see [12, Thm. 2.2.2].

Result 2.13. Let ¢ be an odd prime and let b,w be positive integers with (w,q) = 1.
Suppose X € Z[(p,) satisfies | X|* = ¢° for some positive integer c. Then there is an
integer j such that

X, € ZIC]

or

Xcgbw = G(X)Z7

where Z € Z[Cy] and x is a multiplicative character of F,. Furthermore, |Z|* = ¢“L.

2.3 A Bound on the Complex Modulus of Character Sums

Suppose D is a difference set of order n in an abelian group G. Let x be a nontrivial
character of G. By Result 2.2, the character sum x(D) = >, x(d) has squared complex
modulus n.



The field descent method developed in [8, 12, 13] provides upper bounds on the com-
plex modulus of character sums and thus yields necessary conditions for the existence of
difference sets. The following result can be obtained by the field descent approach and,
in fact, is implicitly contained in [8]. For the convenience of the reader, we include a
self-contained proof just for the situation we need, which is substantially simpler than the

general version in [§].

Result 2.14. Let G =V x H be an abelian group where (|V|,|H|) =1, V = (g) is cyclic
of order v, and H 1is an abelian group of exponent h*. Let p be an odd prime such that
v =0 (mod p?). Let n be a positive integer coprime to |H|, and let D be an element of
Z|G] with whose coefficients all lie in the interval [0, C]. Suppose that, for every character
X of G with x(g) = ¢, we have

X(D)* =n (6)
and

X(D)1y € ZlCons ) (7)

for some root of unity n, (depending on x). Then

< |H|v2C?
= App(v)
Proof. Let p* be the largest power of p dividing v and write v = p®w. Note that a > 2,
as v = 0 (mod p?) by assumption. Let ¢ be an integer with ord,(t) = p and t =
1 (mod wh*) and let o be the automorphism of Q((,+) determined by ¢7,. = ¢,.. Note
that the fixed field of o is Q((yn+/p). Hence, by (7), for every character x of G with
x(9) = ¢, the ideal x(D) € Z[(pp+yp] is invariant under 0. As x(D)x (DY) = |x(D)|* =
0 (mod n) by (6), we conclude

X(D)°x(D) =0 (mod n). (8)

Recall that ¢ is a generator of V and let p : Z|G] — Z[(,|[H] be the homomorphism
determined by p(g) = ¢, and p(h) = h for h € H. Note that x(D®W) = x(D)? for all
characters x of G. Thus (8) implies

K(DODED) = x(D)PX(D) =0 (mod n)
for every character x of G with x(g) = (,. By the definition of p, this implies
X(p(D)Wp(D)"V) = 0 (mod n) (9)

for all characters y of H (recall that p(D) is an element of Z[(,]|[H]). As (n,|H|) =1 by
assumption, Result 2.1 and (9) imply

p(D)YPp(D)=Y =0 (mod n). (10)

9



Write p(D)® p(D) Y = nE with E € Z[(,|[H]. By (6), we have x(EEY) = |x(E)|? =1
for all characters x of H. Hence EE(™") = 1 by Result 2.1.

Write E =, enh with e, € Z[(,]. As EECY =1, we have
Z |€h|2 =1. (11)
heH

This implies that, for all h € H, every conjugate of e, has absolute value at most 1.
By Result 2.4, one of the e;’s must be a root of unity and all other e;,’s must be zero. We
conclude E = +(Jk for some integer j and k € H.

Recall p(D)®p(D)=Y = nE. Note that p(D)p(D)™" = n by (6) and Result 2.1.
Using £ = +¢/k, we conclude
p(D)V = p(D)Vp(D)p(D)"Vn™" = Ep(D) = 6¢]kp(D). (12)

with 0 = +1. Write ¢J = (J.(;. By the definition of ¢, we have #* = 1 (mod vh*) and
thus p(D)®) = p(D). Using (12) repeatedly, we get

p(D) = p(D)") = 5" VD rir p(D).
Multiplying this equation with p(D)(™" and using p(D)p(D)"" = n, we get
5pc;“§t”*1)/(t*1)gspkp — 1. (13)

As k € H and (p,|H|) = 1, this implies £ = 1. Furthermore (13) implies (0¢})? = 1, as
(2w, p) = 1. This, in turn, implies 6¢5 = 1. Hence (13) simplifies to

G =, (14)

Asordy(t) = p, we have t = 1 (mod p). Write t = 1+ p°c where p° is the largest power of
p dividing t — 1. We have ¢ > 1, as t = 1 (mod p). Moreover, by the Binomial Theorem,
P = (1+p°x)? = 1+p“a (mod p**™), as p is odd. Thus the largest power of p dividing
tP — 1 is p°™'. Hence p? does not divide (t? —1)/(t — 1). Thus r = 0 (mod p®~ 1) by (14).

In summary, we have shown that (12) implies

a—1

p(D)® = (7" p(D)

for some integer 7. As ord,.(t) = p, we have t —1 # 0 (mod p”) and thus there is an
integer d with (t — 1)d +7'(p® ') = 0 (mod p®). Hence

(CLp(D))® = ¢t p(D) = (L p(D). (15)

Write
Y =(lp(D) =D Yih

heH

10



with Y, € Z[(pa,|. Note that (15) implies Y7 =Y}, and thus Y), € Z[(pa-1,,] for all h € H.

Now write D =, Dyh with D, € Z[V]. Moreover, write V' = P x K where P is
the Sylow p-subgroup of V. Note |P| = p® and |K| = w. Let b be a generator of P with
p(b) = (e and write

p—1
Dy =Y Dyb'
=0

with Dy; € Z[(b*)K]. We have

3
L

Vi =p(Dr) = > p(Dhi) G-

@
Il
=)

Note p(Dy;) € Z[Gp-1,) and that {1,...,¢5 '} is independent over Q((pa-1,,). As Y, €
Z[Cyyp), we conclude p(Dy;) = 0 for all ¢ > 0 for all h. This implies

D)=p (Z th) = p(Dwo)h=p (Z Dhoh) . (16)

heH heH heH

Write Z =}, .y Dnoh. Note Z € Z[W x H] where W = (b) K. Furthermore, the
coeflicients of Z are in [0, C], since the same is true for D by assumption. Note that (6)
and (16) imply

X(Z)]F =n (17)

for all characters x of G with x(g) = (,.

Write Z = ZkeL zik with 2z, € Z where L = W x H. Note 0 < z, < C for all k.
Moreover, |L| = v|H|/p. Let £ = >, ; 2. The coefficient of 1 in ZZV is 3°, _, 22.

Thus
S - Yz (1)

kel XGL

by Result 2.1.

Let 7 be any character of L whose order is divisible by v/p. Then 7 is the restriction

of a character y of G whose order is divisible by v. Hence
I7(Z)] = IX(Z2)] =n (19)

by (17). Note that there are exactly ¢(v/p)|H| = ¢(v)|H|/p characters of L whose order
is divisible by v/p. Furthermore, we have xo(Z) = ¢ where o denotes the trivial character
of L. Thus (18) and (19) imply

S g o L] 20

kel p
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On the other hand, ZkeL z,% < (¥ since 0 < z, < C. Thus

H H|CY 2IH?C?
vl ’Zz,%—ﬁév‘—l—ézg%- (21)
P e p P
Combining (20) and (21), we get
mp(o)|H| _ | H}C?

p T 4p?

and thus the assertion. O

2.4 Some Notation

The following notation will be used repeatedly in this paper.

Notation 2.15. Let x, y be positive integers and let p be a prime.
e The largest nonnegative integer a such that p* divides x is denoted by v,(x).
e The largest divisor of = which is coprime to y is denoted by w(z,y).

e Write x = 2/p"»(®*). We denote the order of p modulo z’ by ord’ (p).

3 Twisted Cyclotomic Integers from Circulant

Hadamard Matrices

In this section, we show how circulant Hadamard matrices give rise to what we call
“twisted cyclotomic integers”. These numbers are intriguing, since they have small com-
plex modulus, but live in fields with relatively large extension degree over Q. These two
properties tend to contradict each other, which allows us to derive necessary conditions

for the existence of twisted cyclotomic integers in the next section.

Let u > 1 be be an odd integer and suppose a circulant Hadamard matrix of order 4u?
exists. Let G be a cyclic group of order 4u®. By Results 2.2 and 2.3, there is D € Z[G]|
with coefficients 0, 1 only, such that

DDV =42 + (v —u)G. (22)

Let d be a divisor of u and let U be a subgroup of G of order 2d*. Let p: G — G/U
denote the natural epimorphism and write E' = p(D). Then all coefficients of E lie in the

interval [0, 2d?], and we have
EETY =42 4+ 2(u® — u)d*G. (23)

12



by (22).
Set v = u?/d?. Note that G/U is a cyclic group of order 2v and that v is odd, as u is
odd by assumption. Hence x(E) € Z[(,] for every character x of G/U. By (23), we have

X(E) = u® (24)
for every nontrivial character x of G/U, as x(G) = 0.
From now on, we assume (d,u/d) = 1. Let p be a prime divisor of u/d.
Lemma 3.1. Let E be as defined above. If

2
Pd") < =55

then there exists a nontrivial character x of G/U such that x(E)n ¢ Z[Cy/p) for all roots
of unity n in Z[(,].

(25)

Proof. Suppose the statement of the lemma does not hold. Then, for every nontrivial

character x of G/U, there exists a root of unity 7, with

Recall that the coefficients of E all lie in the interval [0,2d?]. Note v/p = u?/(pd?) =
0 (mod p), as p divides u/d. In view of (24) and (26), we can apply Result 2.14 with
|H| =2 and C = 2d*. This yields

2 2ut(2d%)?

' 27
~ Apdio(u?/d?) 1)
Note that p(u?/d?) = p(u?)/p(d?), as (d,u/d) = 1. Thus (27) implies p(d?) > pp(u?)/(2u?).
This contradicts (25). O
Let x be a character of G/U as given in Lemma 3.1 and set Y = x(F). Then
|Y|2 = u2= Y e Z[gv]’ and Yn & Z[Cv/p] (28)

for all roots of unity 7.

In the following, we use Notation 2.15. Write v,(v) = 2a. Let ¢t be an integer with
(u,t) = 1,0rd,z(t) = p, and t =1 (mod v/p**). (29)

Let 0 € Gal(Q({,)/Q) be defined by ¢7 = ¢t. We first need to determine prime ideals of
Z[(,] above uZ[(,] that are fixed by o.

Lemma 3.2. Let g # p be a prime divisor of u. If

vp(ordyea(q)) > vy(ordy, 4(q)), (30)

then the prime ideals above qZ|[(,] in Z[(,] are invariant under o.

13



Proof. Write h = ord,, /,2.(q) and k = ord,, ,,(q) (here we use Notation 2.15). We claim

v/p2®

1%

() < (k). (31)

It is a well-known fact and straightforward to prove that ord,2(y)/ord,(y) divides x
for all positive integers x,y with (z,y) = 1. Hence ord,z (z,2(q)/0rds, (e (q) divides
w(u/(dp®),q). Furthermore, note that v/p** = u?/(d*p**). Thus we can write

Ofd;/p% (q) = Ord/u2/(d2p2a)(9) =e€ Ord;/(dp“)(Q)

for some integer e dividing w(u/(dp®),q). Moreover, w(u/(dp®),q) and thus e is not

divisible by p, as v,(u) = a. Hence

vp(h) =1 (Ord;/pQ‘l(q)) =Up (Ord;/(dpa)(Q)) < (Ord;/d@)) = vp(k).
This proves (31).

By assumption (30) and (31), we have
vp(h) < vy(k) < vp(ordyee(q)).

This implies ord,e(¢") =0 (mod p). Since Ly s cyclic, it follows that the subgroup of
Z;Za generated by ¢" contains all elements of order p in Z;Qa. Recall that ¢ is an integer

satisfying (29). Since ¢ is of order p in Lz, there is an integer j with
t=¢" (mod p**). (32)

On the other hand, we have t = 1 (mod w(v/p**,q)) and ¢ = 1 (mod w(v/p**,q))
by the definition of h. Thus
t =¢" (mod w(v,q)).

by (32). Hence, by Result 2.8, the prime ideals above ¢Z[(,] in Z[(,] are indeed invariant

under o. O

Remark 3.3. Inequality (30) relates the subgroup of Z,. generated by ¢ to the subgroup

of Z}, o) generated by ¢. In fact, (30) is equivalent to ordpza(qord:f/PQ‘l(Q)) =0 (mod p).

v/p2e,

Let m be a divisor of u with m = 0 (mod p®) such that (30) is satisfied for every
prime factor ¢ # p of m. Note that ¢ = 1 (mod v/p**) and thus

t=1=p" = (mod v/p*).

Hence, by Result 2.8, the prime ideals above pZ[(,| in Z[(,] are invariant under o. Com-
bined with Lemma 3.2, this shows that all prime ideals above mZ[(,| in Z[(,] are invariant

under o.
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Recall YY = w2 Hence YY = 0 (mod m?), which implies Y°Y = 0 (mod m?), as
the prime ideals above mZ|[(,] in Z[(,] are invariant under 0. We conclude that X =
Y?Y /m? is an algebraic integer, i.e., X € Z[(,2/42]. Note |X|*> = u*/m?. For the purpose
of our applications, we need m to be large. Thus we will choose m as large as possible,
i.e., include all prime factors ¢ of w in m which satisfy (30). On the other hand, we do
not want X to lie in a field Q({) with small k. The following lemma addresses the latter

issue.

Lemma 3.4. We have Xn & Z[Cy)p] for all roots of unity n. Moreover,
2p
N(X) =

m2p

where N denotes the norm of Q(¢,) relative to Q(Cy/p)-
Proof. Suppose there is a root of unity £ such that Z = X¢ € Z[(y2/(pa2)]. Note that
ZY =YYYE/m? = Yoeu? /m?. (33)

Applying N to (33), we get

2\ P
_ o 2/, 2p _ u
ZN(Y) = N( e N( ¥ = NN (1)
Since N(Y') # 0, this implies Z? = 0 (mod (u?/m?)P) and hence Z = 0 (mod u?/m?).
Thus Z = u?/m? for some root of unity 6 by Result 2.4, as |Z| = u?/m?. Hence

o 2
YY_X Zg_fgl;.
m

Recall that YY =2, ie., u?/Y =Y. Thus

0012002 a 2
Yo = f?mrg - 597“ =Yg, (34)

Recall Y € Z[(,]. Thus 50 is root of unity in Z[(,] and there are integers i,j and § €
{—1,1} with &0 = 5( 20 U/p . Note that (%, = (]

p2a and (° e = = (y/p2« by the definition
of 0. Using (34) repeatedly, we get

Vv Y5Cz(tr 1)/(t-1) 1j

v/p )

This implies
5C2(tp 1)/(t—1) ~jp

v/p
Taking both sides of (35) to the power v, we get §* = 1 and thus 0 = 1, as v is odd. Now
take both sides of (35) to the power p?*. This shows o
since (p,v/p**) = 1. So (35) implies

2a = L. (35)

v/p = 1 and hence Ci/pga =1,

2a

G-I/ g,

15



The same argument as in the proof of Result 2.14 (please refer to the paragraph after
equation (14)) shows that p? does not divide (t? — 1)/(t — 1) and thus i = 0 (mod p**~!).
Hence, as t — 1 # 0 (mod p?*), there is an integer d such that C;jadt = (fhe. In summary,
we have

( d Y)a _ 5Ci;|;dt J 2aY = C;l?ay’ (36)

P2 p?e Su/p
as 0 = Ci/an =1 and q,ztdt = ;lga. By (36), we have a Yngd € Z[Cu2)(pa2)); contradicting
(28).

Note that N(Y?) = N(Y) and recall |Y'|* = u*. Hence N (YY) =N (YY) = N(u?) =

u?P and thus

YoV ) u?P

m?2 m2r’

N(X):N(

Summarizing the results of this section, we have the following.

Theorem 3.5. Letu > 1 be an odd integer and suppose that a circulant Hadamard matrix

of order 4u? exists. Let d be a divisor of u with (d,u/d) =1 and let p be a prime divisor

of u/d such that

ol < 2200,

Let p* be the largest power of p diwviding u and write v = u*/d*. Let m be a divisor of u
with m =0 (mod p®) such that

(37)

vp(ordyea(q)) > vy (Ord;/d(Q))

for every prime factor ¢ # p of m. Then there is X € Z[(,] with
4

u
XP? = 2 and X ¢ 2, (38)
for all roots of unity n. Furthermore,
u?P
Now)/a,) (X) = (39)

where No(c,y/0(,,,) denotes the norm of Q((,) relative to Q(Cy/p)-

Co/p

4 Cyclotomic Integers in Q((,.) whose Complex Mod-

uli are Integers

Let p be an odd prime and let v be a positive integer. In order to study the twisted cyclo-
tomic integers constructed in the previous section, we need to find a condition ensuring
that YY = 02, Y € Z[(,.], has only trivial solutions. Here we call a solution Y trivial if it
has the form Y = nv where 7 is a root of unity. We first review the relevant results in the

literature. The following result is implicitly contained in the proof of [13, Thm. 2.2.3].
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Result 4.1. Let p be an odd prime, let a be a positive integer, and let f be a divisor of
p—1. Suppose Y € Z[(,a] satisfies YY = v? where v is a positive integer with (v,p) = 1.

Moreover, let qi,...,qs be the distinct prime divisors of v and suppose that
vp(ordpe(g;)) > a—1 (40)
fori=1,...,s. If Y is contained in the subfield K of Q((pe) with [Q((pe) : K] = f and

2w(p —1
- v(p—1)
p

f : (41)

then Y = $o.

For a = 1, Result 4.1 was first discovered by Chan [5, Lemmas 2.3, 2.4]. Note that,
in this case, condition (40) is always satisfied. In [13, Thm. 2.2.3], Chan’s result was

extended to the case a > 1 by a field descent argument based on assumption (40).

In the present paper, however, it turns out that we only have to deal with cases
where a > 1 and (40) is not satisfied. Thus we require a version of Result 4.1 without
assumption (40). In this vain, we previously had obtained the following result, which is

implicitly contained in the proof of [9, Lemma 3.4].

Result 4.2. Let p be an odd prime, let a be a positive integer, and let f be a divisor of
p—1. Suppose Y € Z[(,a] satisfies YY = v? where v is a positive integer with (v,p) = 1.
IfY is contained in the subfield K of Q((p) with [Q((pe) : K] = f and

f > (42)

then Y = $w.

Note that Result 4.2 does not require assumption (40). Condition (42), however, is
much more restrictive than (41). In summary, for the study of twisted cyclotomic integers,
Result 4.1 is useless due to assumption (40) and Result 4.2 is almost useless because of

assumption (42).

In this section, we resolve these difficulties. In Theorem 4.5, we show that v? can be
replaced by 2v — 1 in Result 4.2. Hence, quite surprisingly, with rare exceptions, Result
4.1 holds even if assumption (40) is not satisfied. In fact, Theorem 4.5 is best possible
in the following sense: Let p = 4v — 1 be a prime and set Y = (Zg;ll C£2> /2. Then
YY = v and Y is contained in the subfield K of Q(¢,) with [Q((,) : K] = 2v — 1. Thus
the assertion of Theorem 4.5 becomes false if the assumption f > 2v — 1 is replaced by
f>2v-1.

We start with two preliminary combinatorial lemmas.
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Lemma 4.3. Let by, ...,b,—1 be integers and set t = |{i : b; # 0}|. Ift > 0, then

p—1 p—1 D " p—1
pY B = (b > b
=0 =0 =0

p—1 t—1 t—1 p—1
LY =ty = (b = (b
i=0 i=0 i=0 i=0
Therefore,
p—1 p—1 p—1 P ¢ p—1
P bf— b))% > p—t bfz— b;)?
; (; ) = (p—1t) 2 ; (120 )

]

Lemma 4.4. Let by, ...,b,_1 be integers and let T' be the largest positive integer such that

exist iy,...,0p with 0 <4y <---<ip <p—1andb, = ---=b;,. Then
p—1 p—1
pY 07— () b:)? = max{T(p—T),plp—T)/2}.
i=0 i=0

Proof. Observe that

p—1 p—1

pY b — sz = (b —b). (43)

i=0 i= j<k
By the definition of T', there is an integer b such that there are exactly T' numbers b; that
are all equal to b and the remaining b;’s are not equal to b. Without loss of generality,
we may assume by = --- = bp_; = b and bp,...,b,_1 # b. Hence b; # b, whenever
0<j<T—-1land T <k < p—1. Note that (b; — bx)* > 1 if b; # by, as the b;’s are

integers by assumption. Thus

’ﬂ

—1 p—1
> (b5 —bi)* > (b —by)? > T(p—T). (44)

i<k J k=T

I
o

On the other hand, by the definition of T, for every 7 with 0 < 7 < p— 1, there are at
least p — 7" indices k with b; — by # 0. Therefore,

12 ~T
> (b — b)’ :§Zb—bk _%. (45)
i<k 4,k=0

The assertion of the lemma follows from (43-45). O

The following is the central result of this section.



Theorem 4.5. Let p be an odd prime, let a be a positive integer, and let f be a divisor of
p—1. Suppose Y € Z[(,a] satisfies YY = v? where v is a positive integer with (v,p) = 1.
IfY is contained in the subfield K of Q((pe) with [Q((pe) : K| = f and

f>2v-—1, (46)
then Y = dw.

Proof. Let t be an integer with (p,t) = 1 and ordy.(t) = ord,(t) = f. Let o be the
automorphism of Q((pe) determined by (% = (.. Note that K is the fixed field of o.

Hence
Y? =Y. (47)

First suppose that f is even. Then ¢//2 is the unique involution in Gal(Q((y.)/Q),
which is complex conjugation. Hence (47) implies Y = Y. As YY = v? by assumption,
we conclude Y = +v. Thus the assertion of Theorem 4.5 holds.

From now on, we assume that f is odd. To exploit (47), we use the integral basis of
Q((pe) over Q((,) defined in Lemma 2.5. Hence we write

/-1 ,
Y =Yo+ ) ) Vi (48)

keB j=0
with Yy, ; € Z[(,]. Note
f-1
g g i+1
=YO DD VG
keB j=0

Moreover, Ct k= C a, as ordya(t) = f. For convenience, we set Y;, ; = Yio for k € B.
Since Y? =Y and {1} U UkeB{C;ik :7=0,..., f—1} is linearly independent over Q(¢,),
we conclude that

Yy =Ypand Yy ;1 =Y/ foralli€e Band j =0,...,f -1 (49)

For convenience, we write Y}, for Y} o. By (48) and (49), we have

f-1 .
Y=Y +3 Y (). (50)

keB j=0

Write Yy = Y2070 i) and Yy = " k¢ with ¢; € Z and ¢; € Z for all 4,k. As
f:_ol C; = 0, the ¢;’s and ¢;’s are not uniquely determined, but that will not affect
our arguments. The main idea of our proof is deriving constraints on the ¢;’s and c¢;’s

stemming from |Y|? = v2.

Claim 1 We have

p—1 -1 \ 2 e p—1 p—1 2
vp—1)=p) & — ( ci) Z Py ( ck,) . (51)

=0



Note that each of the terms ( S —( folcl)2> and (pzZ o e — (3202, i) ),
k = 1,...,e, is nonnegative by Cauchy-Schwarz. This fact will be used repeatedly to
obtain lower bounds for the right hand side of (51).

To prove Claim 1, first notice that, by the definition of B, there are integers (j, k)
such that

all

(G Q2 =0, f =Lk € By = {1 i ).
Let M be the function defined in Result 2.12. Note that M(Y) = v?, as |Y|*> = v2. Thus
Result 2.12 (a) and (50) imply

v? = M(Y)

— M (YO + fi (Ygﬁ)“)

(52)

Using Result 2.12 (b), we get

1 p—1 p—1 2
0= e - (o5 ()

1<j =0
and similar expressions for the M(Y})’s. Together with (52), this proves Claim 1.

Recall Yy = » .~ czgl We add a multiple of Y2~ CZ = 0 to Yj, if necessary, so that
there is at least one k£ > 0 with ¢, = 0.

Claim 2 We can assume |¢| < v.

Suppose |co| > v. Replacing Y by =Y if necessary, we have ¢y > v. Recall that
Yy =Yy by (49). As ¢ = 0 and the orbits of o on {(,,...,¢?~'} all have length f, we
conclude that there are at least f indices ¢ > 0 with ¢; = 0. Let M = {i : ¢; # 0}. We
just have shown |M| < p — f. Furthermore, it is straightforward to verify

pZC?—( cl-) — | M) Zc + Z ci — ¢j)’. (53)

=0 ieEM i,jeM
1<J
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To get a lower bound for the right hand side of (53), we now show
(co— i)’ + (p — [M])c; > v? (54)
for all : € M, 1 # 0, with equality if and only if ¢y = v and ¢; = 0. Note that the minimum
of the function g(z) = (cy — z)? + fa? over x € R occurs for z = ¢o/(f + 1).
First suppose ¢g < f + 1. Note that (46) implies f > 2v, as f is odd by assumption.

As the minimum of g(z) over x € Z occurs for x = 0 or x = 1, we have g(¢;) >
min{c3, (co — 1)® + f} > v? as ¢g > v and f > 2v. Furthermore, g(¢;) = v? if and only if
c; =0and z =0.

Now suppose ¢g > f + 1. Then

(i)>(6_ Co )2_ C(%f2 >f2>4112
INFr1) =\ " F11) T (o2 ’

as f > 2v by assumption.

In summary, we have shown g(c;) > v? with equality if and only of ¢y = v and ¢; = 0.
As p— |M| > f, this proves (54).

Now suppose that we have equality in (54) for all i € M, i # 0. Then ¢y = v and
c;=0fori=1,...,p—1,ie., Yy =v. Thus M(Yy) = v%. By (52), however, we have
MYo) + [ pep M(Yi) = v2. Hence Y, .5 M(Y;) = 0 and this, in view of (5), implies
Y; =0 forall i > 0. Thus Y = Yy = v, which implies the assertion of Theorem 4.5.

Hence we can assume (co —¢;)? + (p — |M|)c? > v? for at least one i € M, i # 0. Thus,
using ¢y > v, (53), and (54), we get

p—1 p—1 2
ch?—(ZcZ) > (p—|M]J) co—l—z — |M|)c} + (co — &)%)
i=0 i=0

icM
1#0

> (p— |M|)v* + (IM] — 1)v?
= (p—1)?

But this implies that the right hand side of (51) is larger than (p — 1)v?, a contradiction.
This completes the proof of Claim 2.

Write T'= 27" ¢; + 2 ken S i
Claim 3. I' = +v + Ap with A € Z and |\| < v.

Recall that, by (50),

p-1 f-1 / fp-1 o’

=0 keB j=0 =0
p—1 f—1p—1
— p*li P jtkt
=Yl T+ ChiCpe :
i=0 keB j=0 i=0



Write

p—1 f—1p—1
1 a—1
D(z) = E Pt E E E cpga?” IR
i=0 kEB j=0 i=0

Let p : Z|z| — Z[(pe] be the homomorphism determined by p(x) = (. Note that the
kernel of p is
{h(x)(l T R = zm} .

As [Y |2 = 02, we have p(D(x)D(2z?*~1)) = YY = v2. Thus
D(z)D(a”" 1) = 0® + h(z)(1 4+ 27" 4 - 4 2P0, (55)

for some h € Z[z]. Note I' = D(1). Hence I'* = D(1)? = v* 4+ h(1)p = v* (mod p) by
(55). This implies I' = +v (mod p) and thus I' = +v 4+ Ap for some integer A. To prove

Claim 3, it remains to show |\| < v.

Recall Yy = .0 ¢l IM| < p— f, and ¢; = 0 for i ¢ M. Thus, using Lemma 4.3
and (51), we get

This implies

p—1
—1)(p —
ol < v\/(p p=/) o (56)
p f vii
Recall Y}, = » . 0 ck,(’J As stated above, the c¢g;’s are not uniquely determined. For

each k, we may, however, choose the ¢;’s such that of Ny = |[{i : ¢;; # 0}] is minimal.
Note that this implies that p — N, is the maximum number such that p — N, of the

numbers cx;, ¢ = 0,...,p — 1, are equal.

First suppose Ny, > (p+ 1)/2 and thus p — Ny < (p — 1)/2 for some k. Then

p—1 p—1 2 12
(p—1D*>f|pd - (Z %) > w (57)
=0 =0

by Lemma 4.4 and (51). Note that f < (p —1)/2, as p is an odd prime and f is an odd
divisor of p — 1. Thus (57) implies v? > f(p — 1)/4 > f%/2. But this is impossible, as
f > 2v by assumption.

We have shown Ny, < (p —1)/2 for all k. Hence Lemma 4.3 and (51) imply

f(p];ka) (; Cki) > f (2;: Cki) . (58

%

=
|
=
(4
[\
V
.
==
hej
M1
(@)
X
|
-
hej
M1
(@)
I
v
[\
[V
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Set x;, = Zf:_ol ci- Using (58) and 2v < f < (p —1)/2, we get

|xk|§v\/p—1<f\/p—1: fe-1) _p-1 (59)

VT 2VF 2 2

The trivial fact >>7-) ¢, > |x| and (59) imply
p—1 p—1 2
Py - (Z Cki) > plag| — 23
i=0 i=0
> play| — —

_p+1
2

(60)

5 |2

|-

Using (51) and (60), we get (p — 1)v? > @ > ke lzk| and thus

Z|x|_—)><v, (61)

keB
as [ > 2v by assumption.

Recall I' = Y7~ 0 i+ Y ren f;g cki = v+ Ap and z), = Zf;ol cri and that we
assume v > 2. Using (56) and (61), we get

lv L — U = v<v
e torms (o) (B2 ) e

as f >2v+1>5and p>2f+ 12> 10. This proves Claim 3.
Claim 4 We may assume A > 0 and co =v+ A — forcg=—v+ A\

Recall Yy = f 0 CZC; and that Yy = Y, by (49). Note hat Yy = Yj implies ¢; = ¢;
if 4 and j are in the same orbit of z — ' on Z/pZ. As ord,(t) = f, this implies
Sl e =0 (mod f). We conclude Y77 ¢; = ¢ (mod f) and hence I' = ¢y (mod f).

By Claim 3, we thus get ¢g = +v + Ap (mod f). Note that p = 1 (mod f). This
implies ¢ = v + A (mod f). Thus ¢g = +v + A+ af for some integer . Replacing Y
by —Y if necessary, we may assume 0 < A\ < v. Therefore, 20 > v+ A > —v. If a > 1,
we conclude ¢y > v as f > 2v. If a < =2, then ¢y < —2v. But by Claim 2, —v < ¢y < v.
Therefore, o € {0, —1}. If @« = 0, then ¢o = —v + A, as ¢g = v + A is impossible by Claim
2. Similarly, cg = v + A — f if @ = —1. This proves Claim 4.

Recall Y7~ ¢; = fc. Write d = Y oken Zf;ol cki- Then I' = ¢g + fe+ fd and

] <Y lael < (62)

keB

by (61). (Recall that zj, = 327" ¢4.)
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Claim 5

—

5 (ci—co)®>(—1) ("U - %)2 (63)

i=1

We consider the two cases occurring in Claim 4.

Case 1 ¢ =v+A—f. By Claim 3, I' = v+ Ap. If ' = —v + Ap, then —v 4+ )\ =
co = v+ A (mod f) by assumption. But this implies 20 = 0 (mod f) which contradicts

f > 2v. Hence we have
FP=v+Xp=co+ fe+fd=v+A—f+ fe+ fd

and thus A\(p — 1) = fe+ fd— f. As f;ll c; = fe, we get

2
-0 (L e r)
p—
B c fetfd—f L\
-0 (5 )
f—1d i
= _1)<p—1 _U+f)
2
=(p—1)( f-v+ i1)_pf_d1>
Since and f > 2v, we have f — v + p%l > v. Moreover, prd < v by (62). Hence

f fd fd
f_U+E—E>U—pT1>Oandthus

pi(ci —) > (p—1) <v— %)2.

i=1

Case 2 ¢cg=—v+ A Inthiscase, ' = —v+Ap=—v+ A+ fe+ fd and thus A(p — 1) =
fe+ fd. We get

B fe fe+ fd\°
_<p_1)(p—1+v_ p—1>



This completes the proof of Claim 5.
Claim 6 d = 0 and
D (ei—co) = (p— 1) (64)

By (51) and (63), we obtain

(p—1v* = (p—1) (v—ﬂ)Z-

p—1

This implies d > 0. To prove Claim 6, it suffices to show d = 0, as Claim 6 then
follows from Claim 5. Suppose d > 0. Recall z;, = Zf:_ol coand d =Y, p Zf:_ol Cri =
> kep Tk As d > 0, there is a subset B’ of B such that such that z; > 0 for k¥ € B’ and

Y ken Tk, = d. Since the cg;’s are integers, we get

p—1 p—1 2 p—1
Z chii - (Z Cki) = Z (—:L’i —I—chii>
=0 =0 1=0

keB’ keB’
l p—1
(i)
=1 i=0
Y Y

kepB’ keB’

2_(29%)2”2%

keB’ keDB’

(65)

where the last inequality holds because of z;, > 0 for all k € B'. Recall ), _p, x> d. We
have 3, _p xx < v by (61) and the function @ — —z? + px is increasing for 0 < z < v, as

v < f/2 < p/4 by assumption. Thus (65) implies

p—1 p—1 2
Z Py ci— (Z ckn) > —d® + pd. (66)
=0

keB/ i=0
Note that
p—1 p—1 2 p—1
pz c? — (Z Ci> = Z(Cl —¢)? > ) (e — ) (67)
i=0 i=0 i<j i=1
Combining (51), (63), (66), and (67), we get
fa_\’
(p—1v*>(p—1) (U - pTl) + f(=d* + pd)
. | fPd 2
=(p—1) —l—p_ . —2ufd+ f(—d” + pd).
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This implies —2vfd + f(—d* + pd) < 0, i.e., 2v > p — d. Recall that 2v < f < (p —1)/2
by assumption and d < v by (61). Combining these inequalities, we find

20>p—d>p—v>p—f/2>(p-1)/2> f>2v,

a contradiction. We thus conclude d = 0, which proves Claim 6.

We are finally ready to finish the proof of Theorem 4.5. From (67) and (64), we get

pZ c? — (Z cz-) > (p— 1)v? (68)

But (51) and (68) imply

and thus Y, =0 for all k € B, ie., Y =Y.
By (51), (67), and (64), we have

p—1
(p—1v* =) (ci—¢)* =D (ci—c)
i<j i=1
and thus Y7, .(c; —¢;)* = 0. This implies ¢; = ¢ = ... = ¢,-1. Hence Yy = ¢y +
1 Zf;ll ¢, =co—c €Z. As |Yp|* =|Y[* = v*, we conclude Y = Fv. This completes the
proof of Theorem 4.5. O

To make use of Theorem 4.5, we need to show that cyclotomic integers Y € Q((,e) with
YY = v? (up to multiplication with a root of unity) are contained in suitable subfields of

Q((pe). This is the purpose of the following lemma.

Lemma 4.6. Let p be an odd prime and let a,v be positive integers with (v,p) = 1.
Suppose that Y € Z[(pa] satisfies |Y|? = v Let qu,...,qx are be distinct prime divisors

of v and set
f =ged(ord,(q1), ..., ordy(qr))-

Let K be the subfield of Q((pa) with [Q((p) : K] = f. We have Yn € K for some root of
unity 1.

Proof. The proof is essentially the same as part of the proof of [9, Lemma 3.4]. For the
convenience of the reader, we include a proof here. If f = 1, there is nothing to show.
Thus suppose f > 1. Let ¢ be an integer with (p,t) = 1 and ordy.(t) = ord,(t) = f. Let
o be the automorphism of Q((pe) determined by (% = (.. Note that K is the fixed field

of o.
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Let ¢ be any prime divisor of v. By the definition of f, there is an integer j(q) such
that ord.(q’ @) = f = ord,e(t). As the multiplicative group Ly modulo p* is cyclic, this
implies that ¢?(? and ¢ generate the same subgroup of ZY.. Thus there is an integer m(q)
with ¢t = ¢?@™@ (mod p?). Hence the prime ideals of Z[(,«] above ¢Z[(,.] are invariant
under o by Result 2.8. Since this is true for every prime divisor ¢ of v, we conclude that
all prime ideals of Z[(y.] above vZ[(,«]| are invariant under o. Hence, by Result 2.7, there
are roots of unity 7,7 such that (Y7)7 = +n(Y'7) and every prime divisor of the order
of n divides t — 1. But p does not divide t — 1, as ord,(t) = f > 1. As n € Z[(pe], this

implies 7 = +1. Thus, replacing Y by Y7, if necessary, we may assume
Y7 =4Y (69)

with § = £1.

First suppose that f is even. Then ¢//? is the complex conjugation in Q(¢pe) and thus
Y =Y = 6712y by (69). As YY = v? by assumption, we conclude 67/2Y2 = v2. As
0 = +1, this implies Y = Q{v for some integer j. Since (4 & Q((pe), we infer that j is
even. Hence Y = 4o and thus, in particular, Y € K.

Now suppose that f is odd. Applying o repeatedly to (69), we get ye! = §/Y. But
ol is the identity, as f = ord,.(t). Hence 6/ =1 and thus § = 1, as f is odd. Therefore,
Y7 =Y by (69), ie.,Y € K. O

The following theorem combines the results of this section and strengthens the con-

clusion by employing Turyn’s Result 2.10.

Theorem 4.7. Let p be an odd prime and let a,v be positive integers with (v,p) =
1. Suppose that X € Z[(pa] satisfies | X|* = v2. Write v = vovy such that ord,(q) =
0 (mod 2) for all prime divisors q of vy and ord,(q) = 1 (mod 2) for all prime divisors

q ofvy. If vy =1 or
v; > 1 and ged(ordy(qr), ..., ord,y(gr)) > 2v; — 1, (70)

where qi, . .., q, are the distinct prime divisors of vy, then X = nv for some root of unity

n.

Proof. We first use Result 2.10 to show X = 0 (mod wvy). Let g be a prime divisor of vy
and let ¢® be the largest power of ¢ dividing vy. We claim

X =0 (mod ¢"). (71)

By assumption, ord,(q) is even. Thus ord,«(q) is also even, say ord,.(q) = 2e. Hence
¢° is an involution in the multiplicative group modulo p®. As —1 is the only involution

in this group, we have ¢° = —1 (mod p*). Thus q is self-conjugate modulo p*. We have
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|X|? = v2 = 0 (mod ¢**) by assumption. Result 2.10 implies X = 0 (mod ¢°), which
proves (71). As (71) holds for every prime divisor ¢ of vy, we indeed have X = 0 ( mod wy).

Write
X = /U()Y

where Y € Z[(] and |Y|*> = v}. To prove Theorem 4.7, we have to show Y = nu; for
some root of unity 7.

First suppose v; = 1. Then vy = v, |Y| = |X|/v = 1, and thus Y is a root of unity by

Result 2.4. This proves the assertion in the case v; = 1. Thus we may assume v; > 1.

Recall that ¢1, . .., g are the prime divisors of v;. Set f = ged(ord,(g1), .- ., ord,(qx)).
Let K be the subfield of Q((pe) with [Q((pe) : K] = f. As |Y|*> = 0%, we have Y1 € K
for some root of unity n by Lemma 4.6. As f > 2v; — 1 by assumption (70), Theorem 4.5
implies Y = f+v;. This completes the proof of Theorem 4.7. m

5 Necessary Conditions for the Existence of Twisted

Cyclotomic Integers

We consider a solution of Y'Y = v? to be trivial if it has the form Y = nv where 7 is a root
a root of unity. Theorem 4.7 provides a necessary condition for the existence of nontrivial

solutions to YY = 2.

In fact, this condition is so strong that it yields the desired
contradictions in most applications we are interested in. Thus it is essential to study
cyclotomic integers which satisfy the conditions of Theorem 3.5, but are not contained in
a field of the form Q((). The following theorem provides valuable information on the

structure of such cyclotomic integers.

Lemma 5.1. Let p be an odd prime and let a, w be positive integers with a > 2 and
(p,w) = 1. Suppose X € Z[Cpow) \ Z[(pa-14] satisfies | X|* = n where n is a positive

integer. Write

with A; € Z[(pe—14]. Let d be a divisor of w. If

A; € Z[Cpu14) (72)
fori=1,...,p—1, then
Ag € Z[Cprr4). (73)
Proof. Note
p—1 o p—1 p—1 L _k—l -
n = |AXV|2 = Z AZA]C;;J = Z Cga (Z AlAl—k; + Cpafl Z AlAp—k—i-l) .
1,j=0 k=0 =k 1=0
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As {C;fa tk=0,...,p— 1} is independent over Q((pa-1,,), we infer

p—1
> AA =, (74)
1=0
p—1 k—1
D AA G Y Ay =0 (75)
=k =0

for k=1,...,p—1. From (72) and (74), we conclude

p—1
AgAg =n— Y AiA; € Z[Gu4). (76)
i=1
Note that . -
. _
Ao+ G A Ay = — 0 AL — G Y A, (77)
I=k+1 =1

for k =1,...,p—1 by (75). Denote the right hand side of (77) by Ty. As T} does not
contain any term involving Ay, we have T}, € Z[(ya-14] by (72).

Suppose A; # 0 for some j with 1 < j < p—1. If A, ; = 0, then (77) implies
Ao =T;/A; € Q((pa-14), contradicting (73). Hence

A, ; #0for all j >0 with A; # 0. (78)

Now suppose A; # 0 and A, # 0 for some j, k > 0 with j # p — k. We have

AjAy + Gur AoAp—j = Tj,

S (79)
Ay + Gy Ag Ay, = Ty

by (77). We now view (79) as a linear system with variables Ay and A,. Suppose
AjA, r # ArA,_;. Then the determinant of the coefficient matrix of the linear system
(79) is nonzero. As Aj, Ay, Ap_j, Ap_i, Tj, T, € Q((pa—14), this implies Ay € Q((pa-14) N
Z[Gpa—14] = Z[Gpa—14], contradicting (73). We conclude

Ajdp k= Apdp (80)

for all j,k > 0 with A; # 0 and A; # 0.

As X & Z[(p-1,] by assumption, there is k with 1 < k& < p —1 and Ay # 0. Set
a = A,_i/Ai. Note that o € Q((pe-14) by (72). Moreover,

A; A,
Apj = jA—:k = ad;

for all 7 > 0 with A; # 0 by (80). But (81) also holds for those 7 > 0 with A; = 0, since
A,_; =0 in this case by (78). Hence (81) holds for j =1,...,p— 1.

(81)
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Write Z = Zﬁ’:—ll AZ-C;Q and note that X = Ay + Z. Using (81), we compute

—_

Z =3 A

1

(2

p—1

_= Cpafl Z AZC;;;z
i=1
p—1

=G Y ApiCla
i=1

p—1
= OéCpa—l Z A’L'C;a
i=1
= OéCpa—l Z
Recall that | X|*> = n. Hence

n=AyAy+ ZAg+ZAy+ 27

_ . _ 82
= AgAo + Z(Ay + ape-14g) + a(’pHZZ. (82)

Note that (82) is a quadratic equation in the variable Z with coefficients from Q((ya-1,,).
This implies that the degree of the extension Q((pa-1y,2)/Q((pa-1,,) is at most 2. But
Z =X -4 € Q(Gow) \ Q(pe-1w), as X € Q(Gaw) \ Q((pa-1,) by assumption and
Ay € Q((pa-14). Thus the degree of the extension Q((pe—14, Z)/Q((pe-14) is divisible by
p. This is a contradiction, as p is odd. O]

In order to make use of Lemma 5.1, we need the following lemma which uses auto-

morphisms to obtain a lower bound for Cassel’s M-function.

Lemma 5.2. Let w = r®v where r is an odd prime and a,v are positive integers with
(r,v) = 1. Let t be and integer with (w,t) = 1 and write f = ord,(t). Define o €
Gal(Q(¢w)/Q) by ¢2 = L. Suppose X € Z[Cw) \ Z[Cra-1,] satisfies X7 = 6X for some
0 € Z[Gra—1,]. Then

B=Piff<r—t,
M(X)Z{ill Jf—r—1 (83)

4

Remark 5.3. In the case where v =1 and f = r—1 in Lemma 5.2, it is possible to prove
M(X) > r—1 (instead of M(X) > (r+1)/4). This can be used to obtain an improvement
of our main result, Theorem 6.1. As the required argument is quite complicated, however,
and we have not found any additional cases of circulant Hadamard matrices it would rule

out, we skip that.

Proof of Lemma 5.2. Write X = 70 X;(la with X; € Z[Ga-1,]. As X ¢ Z[Ca1,], there

)

is 7 > 0 with X; #0. Let £: {0,...,r =1} — {0,...,r — 1} be the map such that k(%)
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is the unique integer with 0 < k(i) <r — 1 and ti = k(i) (mod r). Note that all orbits of
kon {1,...,r — 1} have length f, since ord,(t) = f. By assumption,

r—1 r—1
ZX;’ ¢l =D (X NG = 6X =D (6X4)G. (84)
=0 =0

Case 1 a > 2. Note that Xf(ﬁi_k(i) € Z[(ra—1,), as X; € Z[(ra—1,] and ti = k(i) (mod 7).
Moreover, § € Z[(,a-1,] by assumption, and {1, (ua, ..., (% '} is linearly independent over
Q((pa-1,). Hence (84) implies deifk(i) = 0Xy( for i = 0,...,7 — 1. Thus, as X; # 0,
we have Xj;) # 0 as well. Consequently, X;, Xz, ..., Xgr-1(;) are all nonzero. Applying
Result 2.12 (a) and (5), we obtain M(X) > S/ M(Xyi(jy) = f. This implies (83).

Case 2 a = 1. Note that the representation of X as >_._, D¢ ;Cl. is not unique, but we
may assume the representation is chosen such that 7' = |{i : X; # 0}| is minimum among
all possible representations of X. It follows that, for each fixed 7, there are at most r — T
indices k with X}, = X; (otherwise, the representation X = $"1_t (X}, — X;)¢* would have
less than 7" nonzero (Xj — X;)’s). Thus, for any fixed ¢, the number of indices k with
X; — Xx # 0 is at least T'. Therefore, by Result 2.12 (b) and (5), we obtain

(r=DMX) =D M(X; - X;) = ZMX Xp) > —.
i<k z;ék
If T > (r+1)/2, then we conclude M(X) > r(r+1)/4(r — 1)) > (r +1)/4. This implies
(83).
Now suppose T' < (r+1)/2. Then T' < (r —1)/2, as r is odd. Let S = {i : X; # 0}.
Then |S| =T < (r — 1)/2. Note that (% = ¢/, As X7 = §X, we have
=D _XIQr = XIqW =83 X (85)
ics ies ies
Moreover, 0 € Z[(,], X; € Z[(,], and X7 € Z[(,] for all 4, since a = 1. As S| < (r—1)/2,
the set
T={C:icStu{ct® .ic S}
contains at most r — 1 elements of {¢’ : 4 =0,...,7—1}. Hence T is linearly independent
over Q(¢,). Therefore, (85) implies {k(i) : ¢ € S} = S. Thus, as j > 0 and X; # 0, we
conclude that S contains a whole orbit of k£ on {1,...,r —1}. Hence |S| > f. Moreover,
(r=DMX) =D MX;— X)) =D Y M(X; = X;) = [8]|(r = |S]).  (86)
i<k i€S keS
As f < |S| < (r —1)/2 and the function g(z) = z(r — z) is increasing for 1 < z < r/2,
(86) implies M(X) > f(r — f)/(r — 1). This proves (83) for f <r — 1.
Finally, if f = r —1, we set ¢’ = t? and apply (83) with ¢ replaced by ¢’ and o replaced
by o2, As ord, (') = (r — 1)/2, this shows M(X) > (r —1)(r +1)/4(r — 1) = (r + 1) /4.
This completes the proof of Lemma 5.2. ]
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In the following theorem, we combine Lemmas 5.1 and 5.2 to obtain a lower bound on

the complex modulus of cyclotomic integers. We remark that we use Notation 2.15 again.

Theorem 5.4. Let p be an odd prime and let a, w be positive integers, where a > 2, w is
odd, and (w,p) = 1. Suppose X € Z[(pey| satisfies | X|*> =n where n is a positive integer
with (n,p) = 1. Furthermore, suppose that

X1 & ZlCpe-rw] and Xn & Z{Gpe] (87)

for all roots of unity n. Let t be an integer with (t,pw) = 1 and write f = ordy.(t).
Suppose f > 1, that f divides p — 1, and that, for every prime divisor q of n, there is an
integer s, with

Sq

¢°* =t (mod w(p*w,q)). (88)

Let S be the set of prime divisors of w and set

s —1 ord,y(t)
2 7 ord,(t)

fs = min{
for s € S. If vro(ord,(t)) > 1, set
S'={s €S :vy(ordy(t)) = va(ord,(t))},

otherwise, set 8" =10. Then S\ S’ is nonempty and

nZordp(t)min{%:seS\S’}. (89)
Proof. Note that ord,(t) = ord,(t) = f, as f divides p — 1 by assumption. Define
7 € Gal(Q(Cpow)/Q) by T(Cpew) = (lay,- By assumption (88) and Result 2.8, all prime
ideals of Z[(yaw]| above nZ[(pay] are invariant under 7. Hence, by Result 2.7, there are
roots of unity &1, & € Z[(pey| such that (X&)” = ££(X&) and every prime divisor of
the order of & divides ¢t — 1. Note that the order of &, is not divisible by p, as ord,(t) > 1

by assumption and thus p does not divide ¢ — 1. In particular, (» € Z[(pa—1,].
Write

p—1
Y =X& =) A (90)
=0

with A; € Z[(pe-1,) and 6 = £&. Note Y™ =Y. Let k: {0,...,p—1} = {0,...,p— 1}
be the function such that k(i) it = k(i) (mod p). As Y™ =Y, we have

p—1 p—1
(471G ) G = 3= (040G
i=0 =0
and thus
ATCD = 5 A (91)
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fori=0,...,p—1, as {1, (e, ... ,Cg;l} is linearly independent over Q((pa-1,).
Since Y ¢ Z[(a-1,,) by assumption (87), we have A; # 0 for some j with 1 < j <p—1.

Moreover, (91) implies

Ay =miA;, i =0, f—1, (92)
for some root of unity 7; (depending on 7). Note that (92) implies M (Ai¢;)) = M(A4;)
for j =0,...,f — 1. By Result 2.12 (a), we obtain

~
—

%

To prove (89), we need to find a lower bound for M(A4;).

Il
=)

Claim Let r be a prime divisor of w and write b = v,(w). If A; € Z[(pa-1,,4], then

M4y » I =8, (94)

r—1

Let 0 = 71/. As Y7 = §o, we have

f-1
Yo = (Y = = (H 5) Y. (95)

Moreover, o fixes (e, since f = ord,.(t). Hence, using the usual independence argument,
we see that (95) implies A7 = nA;, where n = Hzf;ol 6™. Recall § = +&, and that every
prime divisor of the order of & divides ¢t — 1. In particular, the order of ¢ is not divisible
by p.

First suppose that the order of 7 is divisible by r. Then r divides the order of & and
thus 7 divides ¢ — 1. This implies ord,, (t) = ord,(¢) and f, = 1. Hence (94) holds by (5),
as A; # 0.

On the other hand, if  does not divide the order of 7, then 1 € Z[(,,/,+], as the order
of § is not divisible by p. Moreover, since A; € Z[(pa-1,,] by the definition of the A;’s and
Aj & Z[Cpa—1y,0] by the assumption of the claim, there is a nonnegative integer ¢ such
that A; € Z[Cpa-14/rc] \ Z[Cpa-1,re+1]. Hence we can apply Lemma 5.2 to A; and this
shows that (94) holds. This completes the proof of the claim.

Finally, by (93) and (94), to prove Theorem 5.4, it suffices to show that
Aj & Z]Cparjyir o] (96)

for some j > 0 and some r € S\ 5’

Set v = [],cqe 5. Suppose (96) does not hold, i.e., A; € Z[(pa-1,,jur(w] for all j > 0
and all r € S\ S". Then Ay € Z[(pa-1,p0rw] for all j >0 and all » € S\ S" by Lemma
5.1. This implies Y € Z[(ya,]. Hence it suffices to show Y & Z[(pa,].
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Suppose Y € Z[(pay]. Let s be a prime divisor of v. As s € S’, we have
va(ords(t)) = ve(ord,(t)) > 1
by the definition of S’. Hence there is an integer x > 1 such that
ord,(t) = 2%y, and ord(t) = 2%y (97)

where y, and y, are odd integers. Set

Using the fact that p and v are odd by assumption, it is straightforward to verify that
t* = —1 (mod p®) and t* = —1 (mod s) (98)

for all s € S’. Note that (88) and (98) imply that n is self-conjugate modulo p®v. Recall
that we assume Y € Z[(ye,] and |Y|? = n. Thus Proposition 2.11 implies

k
yg=uw]G, (99)
=1

for integer w and some root of unity 3, where the p;’s are distinct prime divisors of (n, p®v).

Recall that (n,p) = 1 by assumption. Hence each p; divides v. Thus, as G,, € Z[(,],
the right hand side of (99) is contained in Z[(,]. Hence (99) implies X&1n = Yn € Z[(,],

contradicting assumption (87). O

6 Necessary Conditions for the Existence of Circu-

lant Hadamard Matrices

We are now ready to prove the main result of this paper. We use Notation 2.15 again.

Theorem 6.1. Let u > 1 be an odd integer and suppose that a circulant Hadamard matrix
of order 4u? exists. Let d be a divisor of u with (d,u/d) =1 and let p be a prime divisor
of u/d such that

o(d?) < f%f). (100)

Let p™ be the largest power of p dividing u/d. Let m be a divisor of u with m = 0 ( mod p®)
such that

vp(ordye(q)) > vp(ord,, 4(q)) (101)

for all prime divisors q # p of m.
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Let t be an integer coprime to u/d such that ord,(t) > 1 and, for every prime divisor

q of u/m, there is an integer s, with
¢ =t (mod w(u?/d?* q)). (102)
Let S be the set of prime divisors of u/(dp®). If va(ord,(t)) > 1, set
S"'={s €S :vy(ords(t)) = va(ord,(t))}

and S’ = () otherwise. For s € S\ S', set

oS )
Then y - o |
ordp(t)gwmax{{?}u{m:sesw}}. (103)

Remark 6.2. For the application of Theorem 6.1 to a specific u, it is necessary to identify
appropriate values for p, m, and ¢. First of all, p usually is chosen as one of the largest
prime divisors of u (each possible p has to be tested). Once p is chosen, we take m as large
as possible, i.e., we include all prime factors of u in m which satisfy (101). The choice of ¢
is more complicated. Usually, we choose ¢ such that ord,(t) is as large as possible among
those ¢ which satisfy (102). Nevertheless, in the frequently occurring case where u/m is a
prime power, say u/m = ¢°, we simply can take an integer t with t = ¢ (mod w(u?/d?, q))

and ¢t = 1 (mod ¢*°) (which exists due to the Chinese remainder theorem).

Proof of Theorem 6.1. By Theorem 3.5, there is X € Z[(,2/42] with
4

u
(XT? = — and Xn & Z[Cepae)] (104)

for all roots of unity 7.

First suppose Xn € Z[(,2.] for some root of unity 7. Note that p does not divide u/m,
as m = 0 (mod p®). Moreover, u/d = 0 (mod p) by assumption. Thus, by (102), for
every prime divisor ¢ of u/m, there is an integer s, with ¢** = ¢ (mod p). This implies
ord,(¢) = 0 (mod ord,(¢)) and thus

ged(ord,(qr), ..., ordy(¢q:)) = 0 (mod ord,(t)), (105)

where the ¢;’s are the distinct prime divisors of u/m. Note that Xn # u?/m? for all roots
of unity n by (104). Thus, in view of (105), Theorem 4.7 implies 2u?/m? > ord,(t), i.e.,

4 2
u® 2m
Ordp(t) S m 7
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Hence (103) holds.

Now suppose X1 & Z[(2.] for all roots of unity 7. Then we have

4
X2 = ;‘l— X0 & Z[Car o)), and X1 & Z[Coe] (106)

47

for all roots of unity 7. In view of (102) and (106), we can apply Theorem 5.4 to X, which
shows that (103) holds. O

In the numerous cases where u/m is a prime power, say ¢°, we obtain the following
improvement of Theorem 6.1. The difference to Theorem 6.1 is that the number (¢ —
1)/(fy(q— f;)) is not included in (109) in the set over which the maximum is taken. Note
that all numbers in this set are at most 1. Hence those numbers in the set are critical which
are relatively close to 1. In most cases, ¢ is relatively small and thus (¢ — 1)/(f,(¢ — f,))
is relatively close to 1. Therefore, removing (¢ — 1)/(f,(¢ — f,)) from the set sometimes

significantly reduces the value of the maximum.

Theorem 6.3. Letu > 1 be an odd integer and suppose that a circulant Hadamard matrix
of order 4u® exists. Let d be a divisor of u with (d,u/d) =1 and let p be a prime divisor
of u/d such that
pe(u?)
d?) < Z—2. 107
o) < 2 (107)

Let p* be the largest power of p dividing u/d. Let q # p be a prime dividing u such that
vp(ord,ea(r)) > Vp(ord'u/d(r)) (108)

for every prime divisor r of u with r # p and r # q.

Let ¢® be the largest power of q dividing w, and let S be the set of prime divisors of
u/d which are different from p. If va(ord,(t)) > 1, set

S"'={s €S :vy(ords(t)) = va(ord,(t))}

and S’ = () otherwise. For s € S\ S, set

. fordy(q) s—1
e S )

Then

o fo) < gt max{{ S U BN e svsu@n}] o

Proof. Let t be an integer with ¢t = ¢ (mod w(u?/d? q)) and t = 1 (mod ¢**). Note
ordy(t) = ordy(q) for all prime divisors s # ¢ of u/d. We use Theorem 6.1 with m = u/q
and the ¢ we just have defined. Note that the essential difference between (109) and (103)
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is that the number (¢ — 1)/(f,(¢ — f;)) is not included in (109) in the set over which
the maximum is taken. Thus the value of the maximum on the right hand side of (109)
may be smaller than that on the right hand side of (103), and we have to justify this

improvement.

First of all, if ¢ does not divide u/d, then the right hand sides of (103) and (109)
coincide and thus (109) follows from Theorem 6.1.
Hence we can assume that ¢ divides u/d. As in the proof of Theorem 6.1, we see that
there is X € Z[(,2/q42] with
o ut 4b
‘X’ = ﬁ =(q and XT] € Z[CUZ/(de)] (110)
for all roots of unity n. Furthermore,

N(Y) = L 111
(X) = a4 (111)
by Theorem 3.5, where N denotes the norm of Q((,2/42) relative to Q(Cu2/(pa2))-

If there is a root of unity 7 such that X7 € Z[(,2/(4242)], then, following the same
argument as in the proof of Theorem 6.1, we do not need to include the number (¢ —
1)/(f,(¢— f,)) in (109) in the set over which the maximum is taken. Hence (109) follows
from Theorem 5.4 in this case.

Thus we can assume
Xt g Z[Cu2/(d2q2b)] (112)
for all roots of unity 7. Recall | X|* = ¢**. Result 2.13 and (112) imply

X = iQ/de(X)Z (113)

for some integer j, where x is a multiplicative character of Fy, Z € Z[(,2/(4242)], and
|Z)? = ¢*1. Note that x cannot be the trivial character. Otherwise, x(z) = 1 for all
z € F,\ {0}, which implies G(x) = —1 and thus |Z|? = | X|?/|G(x)|? = ¢, contradicting
|Z|2 — q4b—1'

Let x denote the order of x. Note that x divides ¢ — 1. Furthermore, as  is nontrivial,
we have x > 2. Let § be a primitive element of F, with x(8) = (,. Note G(x) € Z[(4)-
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Let a be the automorphism of Q((y,) defined by (¢ = ¢/ and (¢ = (. Then

«

GO = | D x(@)¢

z€el,

- (Z x(ﬁ@dcf")

=1

ik i+1
= g e (114)
q—1 '
= Z ¢

q—1 ,
=y G
i=1
= (G-
As G(x) € Z[Cu2/a2] and thus G(x)* € Z[Cy2/42), we have
G =G)/GX)* € Z[Gu/a2]- (115)

by (114).

Now suppose x > 2. Note that z is not divisible by 4 by (115), since u?/d? is odd.
Thus z has an odd prime divisor, say xo. Note that zy divides u?/d* by (115). Recall
that x divides ¢ — 1. Thus z( also divides ¢ — 1. If zy = p, then ord,(¢) = 1 and (109)
trivially holds. If zy # p, then xy € S\ S’, as ord,,(¢) = 1 and, moreover, f,, = 1. Hence
the maximum on the right hand side of (109) equals 1 and (109) follows from Theorem

6.1 (note that the maximum in (103) is at most 1 in any case).

So we may assume x = 2. We claim
Zn & LGz pazg>v)) (116)
for all roots of unity n. As x = 2, we have
Glx) € ZIC,). (117)

Suppose Zn € Z[(y2 /(pazq2r)) for some root of unity 1. Then

G(X)Zn € Z[Cu2/(pa2)] (118)

by (117), since ¢ divides u/d by assumption. Recall X € Z[(,2/42]. Combining (113) and
(118), we get

XCENW = G(X)Zn € Z[Cu/(pa))-
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But this contradicts (110). This proves (116).

Next, we claim
Zn & 7|2 (119)

for all roots of unity 7. Recall that N denotes the norm of Q((yz2/42) relative to Q(Cu2/(pa2))-
By (111) and (113), we have

¢*" = N(X) = N(2 2 )N(G(x))N(Z). (120)
Note that
N(G(x)) = G(x)", (121)
as G(x) € Z[(] C Q(Cuz/(pa2))-

Now suppose Zn € Z[(y2a] for some root of unity 7. Note that we can assume that 7
has odd order, since Z € Z[(,2/42] and u?/d? is odd. Thus 7 := C;rf'/ 27 is a root of unity
of odd order. By (120) and (121), we have

¢*"N(7) = G(x)"N(Zn). (122)

Let z be a primitive root modulo ¢* and let o € Gal(Q((u2/42)/Q) be given by

Coov = Gooo AN CT5 ) o ony = Guzj(azqer)- As & = 2, we have

G(x)” = —G(x) (123)
by (114). Furthermore, note N(Zn)? = N(Zn), as Zn € Z[(,2] by assumption and p**
divides u?/(d?q?"). Thus

N(7)7 = =N(7) (124)

by (122) and (123), as p is odd. But (124) is impossible, since N(y) is a root of unity of
odd order. This proves (119).

In summary, we have shown

Z € Lz yaegmy), 121 =" Zn & Loz ypazgee), and Zn & Z[(ea)
for all roots of unity n. Hence

¢**' > ord,(g) min {fs(S——lfs) 15 € T} (125)

S j—
by Theorem 5.4, where T is the set of prime divisors s of u/d which are different from p
and ¢ and do not satisfy v»(ords(q)) = ve(ord,(g)) > 1. Since T'= S\ (5" U {q}), where
S and S’ are the sets defined in the statement of Theorem 6.3, we see that (125) implies

. 1s completes the proof.
(109). Thi pl he proof O

39



Theorem 6.4. There is no Barker sequence of length ¢ with 13 < ¢ < 4 -10%3,

Proof. Suppose a Barker sequence of length ¢ with 13 < ¢ < 4-10% exists. Then [ = 4u?
with u = 5-13-29-41-2953- 138200401 by [3, Thm. 1]. But this is impossible by Theorem
6.3 (see Table 1 below for the details). O

Finally, we present some computational results which illustrate the application of the
results in this section. In [3], a total of 19 open cases of Barker sequences of length ¢ = 4u?
with 13 < ¢ < 10°° was identified. All these 19 cases can be ruled out using Theorem
6.3. Table 1 contains relevant numerical data. The columns for p, ¢*, d, ¢**, and ord,(q)
contain the values used in Theorem 6.3 to rule out the corresponding case. The column
“max” gives the value of the maximum on the right hand side of (109). The column
“LHS/RHS” contains the quotient of the left hand side and the right hand side in (109).
By Theorem 6.3, the fact that this quotient is larger than 1 implies that in all these cases
there is no circulant Hadmard matrix of order 4u? and thus no Barker sequence of length
4u?. The values in the last three columns of Table 1 are rounded to two significant decimal

digits and given in scientific notation.

019 was identified

A total of 237,807 open cases of Barker sequences with length ¢ < 1
in [3]. Theorem 6.3 rules out 229,682 of these 237,807 cases. The computational data
(similar to Table 1) for this search are available from the authors upon request. The
smallest of the 237,807 cases given in [3] which is not ruled out by Theorem 6.3 is u =

30109 - 1128713 - 2167849 - 268813277

Concerning circulant Hadamard matrices, 1371 open cases with u < 10'® were found
in [3]. Theorem 6.3 rules out 423 of these cases. Table 2 contains relevant numerical data
for the 20 smallest u’s for which circulant Hadamard matrices of order 4u? are ruled out
by Theorem 6.3. The format of Table 2 is the same as that of Table 1. The data for
the remaining cases are available from the authors upon request. The smallest case of

circulant Hadamard matrices which has not been ruled out still is «w = 11715 = 3-5-11-71.

Acknowledgement The second author is grateful to Dieter Jungnickel for his hospi-
tality during a visit at the Universitdt Augsburg from August 2014 to March 2015, when

most of this research was done.
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T0+99°T | 20°T'C | S0+99°6 | 90+98°C | GC0T | 1V T0700¢8SET | TOVOOCSET-TITTLYES-€S6C-E61 TG G
G0+9L°C | €020'8 | LOH+9ET | TO+9C'9 G9¢ | G T9TTLVES | T9TTLVES E6EVI6C LLSY-E6T-L6-ES G
80+9%°C | €008 | OT+9C'T | ¢0+9C'9 | G999 | & | TOSIVISTLSSI TORIVISVLERT 674V ICT9-€EES-G
80+9%°C | 0208 | OT+9C'T | TO+9C'9 GO | G| TOSIVIRVLRST | TORIVISVLSRT-CGEVLOT-LO6EECT-E€T1-G
PO+9T'T | €0-9C°¢ | LO+9C'T | GO+96'¢ | GCSV | G T9TTLVES €G09ERCTV TITTLYES LO6IVC-€61-G-G
90+°0°C | VOOT'C | OT+98°¢C | L0+96'8 | TVIG | L6 | €T€E0TV0L9L E1E€E0TV0LIL LETVI00V6.LTY-L6-€G
TO+9%'T | CO9F'C | G0+29°6 | 90+98°C | G88T | IV T0Y00¢8ET | TOV00C8ET-T9TTLYES-€G6C 17-6C-€T1-G
T0+99°T | 20-9T'C | G0+99°6 | 90+98°C S0c | 1I¥ T0700CSET T0V00C8ET-T9TTLYES €S6C-€6T 174
TO+97'T | C09F'C | S099°6 | 90+98°C | G8]T | I¥ T0700¢8ET | TOVOOTRET-E€LCSCOT €56 176C-€1-G
80+9%°C | €008 | OT+9C'T | CO+9C'9 | GOTTS | S | TORIVISTLSST TOS9VISVLRST-€GEVLOT-CT9-LT-G
TO+9F'T | 209F'C | G0+99°6 | 90+98°C LLE | TV T0700CSET T0700C8ET-€LCSTC0T-€96C TV-6C-€C1
C0+9G°C | €09F'T | G0+99°6 | 90+9°8°C | <V6S | 1¥ T0700C8¢ET T0V00¢8ET-€LCSCO0T-€56¢ 1V-6¢-G
¢0+99°F | €0°F'L | LOHOE'T | GO+96°€ Gce | ¢ T9TTLVES T9TTLYES - LLRYV-C61-L6-€G-€T GG
GO+OLT | €008 | LOH9E'T | €0+9C9 | SPPE | G T19TTLVES T9TTLYES LLRYV-C61-L6-€G-CT G
¢0t29% | €09V L | LOH9CT | G0+96°¢C | STl | ¢ 19TTLVES T9TTLYES-LLRY-E61-L6-€4G-G-G
GO+9L°C | €020'] | LOHOE'T | 20+9C'9 G9¢ | ¢ 19TTLYES T9TTLYES-LLRY-E6T-L6-€G-G
¢0t29% | €09V L | LOH9ET | G0+96°¢ ¢ce | ¢ T9TT.LVES T9TTLVES LL8Y-E€6T-€G-€1-G-G
¢0+9T'6 | ¢0OLE | LOHICT | G0+96°¢ | STeT | ¢ T9TT.LVES T9TTLVES LL8Y-E€6T-€G- GG
TO+97'T | C0®F'C | S099°6 | 90+98°C | G8]T | I¥ T0700CSET T0700C8ET-€S6C 17-6C-€1-6
SHY/SH'T xew | (b)%pi1o P p| 4P d N JO UOIYRZLIOJDR]

L 9Iq®L
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¢0t9g’€ | 10°0°C | VO+20F | cO+9¢'9 | T€ | G | L8YOV | L8FO-€SG91¢-G-€
00199°C | ¢0°¢'T | ¢0+298 | YO+96'C | €T | €1 €98 €6€C-€98-1ET-€T
T10+9€'8 | T0°0C | ¥O+20'T | ¢c0+9¢'9 | €€ | G| TLLOC | TLLOC L9 LV TT-G-€
10+9L¥ | T0°9°¢ | ¥0+20'T | ¢0+°¢'9 | €| G| TLLOC | TLLOC 6L TE-€T-G-€
COt97'G | TO=6'T | G0+°GC | €CO+97'C | 9 | L | TEST6V | TEST6VE-€T L G
T0+9L'T | 00+20°T | ¥O+20°T | ¢0+92'9 | €€ | G| TLLOT | TLLOC TL-TETT-G€
T0+oLF | T0°9°€ | ¥O+20°T | ¢0+92'9 | €€ | G| TLLOT | TLLOC LI TETT-G-€
T10+9¢'8 | T0°0C | ¥O+°0°T | ¢0+92'9 | 1¢ | G| TLLOZ | TLLOT L9 LV L-G€
COO8'T | T0°9°¢ | O+20F | €O+9C°9 | €T | G| L8YOV | L8VOV 6L TE €T
T0+3LY | T0°9°€ | ¥O+°0°T | ¢0+9¢'9 | 1¢ | G| TLLOZ | TLLOT6L TELGE
T0+LY | T0°9°€ | ¥O+°0°T | ¢0+9¢'9 | 1¢ | G| TLLOZ | TLLOT L9 TEL-GE
¢0t9g’€ | 10°0°C | ¥O+20F | cO+9¢'9 | T€ | G | L8VOV L8Y0V-€99-T€-C
10+20°G¢ | T09¢¢ | ¥O+20'T | ¢0+9¢'9 | 1€ | G| TLL0C | TLLOT 6L 1E-€T-G
T0+9L¥ | T0°9°€ | ¥O+20°T | ¢0+92'9 | TT | S| TLLOZ | TLLOG LI TETT-G
Z0t90°C | T0=¢'8 | ¥O+20'T | 20+9¢'9 | € | G | TLLOT TLLOC-L9-LV-L-C
T10+9¢°¢ | T0°0°¢ | ¥O+20°T | ¢0+92'9 | €€ | G| TLLOZ | TLLOT L9 TT-L-G€
T10+9¢°¢ | T0°0°G | ¥O+20°T | ¢0+92'9 | €€ | G| TLLOZ | TLLOTTETT-LGE
T0+oLT | T0°9°€ | ¥O+20°T | ¢0+9¢'9 | €| G| TLLOT 1LL0C-L9-T€-G-€
T10+9€'8 | T0°0C | ¥O+20°T | ¢0+9¢'9 | LL| G| TLLOT TLL0C-L9-TT LS
T0+9€'8 | T10°0C | ¥O+20°T | ¢0+9¢'9 | €€ | G | TLLOT TLL0C-L9-TT-G-€
SHY/SH'T xew | (b)%p1o ab | P P d | n Jo uoryeZII0}OR]

¢ °l9eL
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