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Abstract

We obtain several new number theoretic results which improve the

field descent method. We use these results to rule out many of the

known open cases of the circulant Hadamard matrix conjecture. In

particular, the only known open case of the Barker sequence conjecture

is settled.
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1 Introduction

A circulant Hadamard matrix of order v is a square matrix of the form

H =


a1 a2 · · · av

av a1 · · · av−1

· · · · · · · · · · · ·
a2 a3 · · · a1


with ai ∈ {−1, 1} for all i and HHT = vI. No circulant Hadamard matrix

of order larger than 4 has ever been found. This led Ryser [12, p. 134] to the

following.

Conjecture 1.1 No circulant Hadamard matrix of order larger than 4 ex-

ists.

Conjecture 1.1 is roughly half a century old, but still unresolved - despite

claims of the contrary which appear in the form of preprints or even published

papers on a regular basis. We will settle a number of open cases of Conjecture

1.1 in this paper.

The following is a classical result [17].

Result 1.2 (Turyn) If an Hadamard matrix of order v exists, then v = 4u2

for some odd integer u which is not a prime power.

A sequence a1, ..., av, ai = ±1, is called a Barker sequence of length

v if ∣∣∣∣∣
v−j∑
i=1

aiai+j

∣∣∣∣∣ ≤ 1 for j = 1, ..., v − 1.

The following is well known, see [2, Chapter VI, §14].

Result 1.3 If a Barker sequence of length l > 13 exists, then there is a

circulant Hadamard matrix of order l.

So, naturally there is also the following.

Conjecture 1.4 There are no Barker sequences of length exceeding 13.
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Storer and Turyn [16] proved that there is no Barker sequence of odd length

exceeding 13, but the case of even length is still open despite powerful partial

results [5, 6, 13, 14, 17].

Curiously, there is only one known open case of Conjecture 1.4: l = 4u2

with u = 217520382953549, see [8]. This case will be ruled out by our results

on circulant Hadamard matrices.

The most powerful known results on Conjectures 1.1 and 1.4 were ob-

tained by the so-called “field descent method”, see [6, 13, 14]. It is this

method we will improve upon in the present paper. To make full use of our

improvements, we will combine them with results of Turyn [17], McFarland

[10], and Chan [4].

2 Preliminaries

To state and prove our results on Conjecture 1.1, we will use the language

of groups rings and difference sets. We first fix some notation. Let G be

a finite group. We will always identify a subset A of G with the element∑
g∈A g of the integral group ring Z[G]. For B =

∑
g∈G bgg ∈ Z[G] we write

B(−1) :=
∑

g∈G bgg
−1 and |B| :=

∑
g∈G bg. A group homomorphism G → H

is always assumed to be extended to a homomorphism Z[G] → Z[H] by

linearity. For convenience, we write ζm = e2πi/m for any integer m.

A (v, k, λ, n)-difference set in a finite group G of order v is a k-subset

D of G such that every element g 6= 1 of G has exactly λ representations

g = d1d
−1
2 with d1, d2 ∈ D. The positive integer n = k−λ is called the order

of the difference set. For an introduction to difference sets, see [2, Chapter

VI].

In the group ring language, difference sets can be characterized as follows

[2, Chapter VI, Lemma 3.2].

Lemma 2.1 Let D be a k-subset of a group G of order v. Then D is a

(v, k, λ, n) difference set in G if and only if in the group ring Z[G] the fol-

lowing equation holds:

DD(−1) = n1G + λG.
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In this paper, we mainly deal with Hadamard difference sets, i.e.,

difference sets with parameters (v, k, λ, n) = (4u2, 2u2 − u, u2 − u, u2) where

u is a positive integer. The following is well known, see [2, Chapter VI, §14].

Result 2.2 If a circulant Hadamard matrix of order 4u2 exists, then there

is an Hadamard difference set in the cyclic group of order 4u2.

Next, we state a result concerning Hadamard difference sets, which es-

sentially is a consequence of [10, Thm. 3.1].

Result 2.3 (McFarland) Let G be an abelian group of order 4u2w2 where

u and w are odd and coprime, and assume the existence of an Hadamard

difference set D in G. Let H be the subgroup of G of order 4u2. If

χ(D) ≡ 0 (mod w)

for all characters χ of G of order dividing 4u2, then there is an Hadamard

difference set in H.

For convenience, we recall the following definition.

Definition 2.4 Let p be a prime, let m be a positive integer, and write m =

pam′ with (p,m′) = 1, a ≥ 0. If there is an integer j with pj ≡ −1 ( mod m′),

then p is called self-conjugate modulo m. A composite integer n is called self-

conjugate modulo m if every prime divisor of n has this property.

As we shall see, we need to deal with congruences of the form XX ≡
0 (mod u). The first result in this direction is due to Turyn [17] and based

on self-conjugacy.

Result 2.5 [17] Assume that A ∈ Z[ζm] satisfies

AA ≡ 0 (mod t2b)

where b, t are positive integers, and t is self-conjugate modulo m. Then

A ≡ 0 (mod tb).
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The next result concerns solving equation of the form XX = u2 in Z[ζp]

without using self-conjugacy. It is based on a method of Chan [4, Lemmas

2.3, 2.4].

Result 2.6 [14, Thm. 2.2.3] Let X ∈ Z[ζp] be a solution of XX = u2 where p

is an odd prime with (u, p) = 1 and u is a positive integer. Write u =
∏s

i=1 q
ai
i

where the qi’s are distinct primes. If

gcd(ordp(q1), ...., ordp(qs)) >
2u(p− 1)

p
,

then X ≡ 0 (mod u).

The following two results are essential tools for the methods in the present

paper. The first one is due to Kronecker. See [3, Section 2.3, Thm. 2] for a

proof.

Result 2.7 [Kronecker] An algebraic integer all of whose conjugates have

absolute value 1 is a root of unity.

Note that Result 2.7 implies that any cyclotomic integer of absolute value

1 must be a root of unity since the Galois group of a cyclotomic field is

abelian. A proof of the following result can be found in [14, Thm. 1.4.3], for

instance.

Result 2.8 Let p be a prime, and let m be a positive integer. Let P be

a prime ideal above p in Z[ζm], and write m = pam′ with (m′, p) = 1. If

σ ∈ Gal(Q(ζm)/Q) satisfies σ(ζm′) = ζp
j

m′ for some positive integer j, then

σ(P ) = P .

For later application, we record the following, which is a consequence of

[13, Lem. 2.5].

Result 2.9 Let m > 1 be an integer and X ∈ Z[ζm] such that X =
∑m−1

i=0 aiζ
i
m

with 0 ≤ ai ≤ C for some constant C. If X ≡ 0 (mod u) for some integer

u, then

u ≤ 2s−1C

where s is the number of distinct prime divisors of m.
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For a prime p and a positive integer t, let νp(t) be defined by pνp(t)|| t,
i.e. pνp(t) is the highest power of p dividing t. By D(t) we denote the set of

prime divisors of t. The following definition is required for the application of

the field descent method [13].

Definition 2.10 Let m, n be integers greater than 1. For q ∈ D(n) let

mq :=

{ ∏
p∈D(m)\{q} p if m is odd or q = 2,

4
∏

p∈D(m)\{2,q} p otherwise.

Set

b(2,m, n) = max
q∈D(n)\{2}

{
ν2(q2 − 1) + ν2(ordmq(q))− 1

}
and

b(r,m, n) = max
q∈D(n)\{r}

{
νr(q

r−1 − 1) + νr(ordmq(q))
}

for primes r > 2 with the convention that b(2,m, n) = 2 if D(n) = {2} and

b(r,m, n) = 1 if D(n) = {r}. We define

F (m,n) := gcd(m,
∏

p∈D(m)

pb(p,m,n)).

The following result was proved in [13].

Result 2.11 Assume XX = n for X ∈ Z[ζm] where n and m are positive

integers. Then

Xζjm ∈ Z[ζF (m,n)]

for some j.

The next result is [14, Thm. 2.3.2].

Result 2.12 (F-bound) Let X ∈ Z[ζm] be of the form

X =
m−1∑
i=0

aiζ
i
m

with 0 ≤ ai ≤ C for some constant C and assume that n := XX is an

integer. Then

n ≤ C2F (m,n)2

4ϕ(F (m,n))
.
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3 Results

Theorem 3.1 Assume the existence of a (v, k, λ, n) difference set in a cyclic

group G. Let m be a positive integer such that m2 divides n, and let w be a

divisor of v such that m is self-conjugate modulo v/w. Then

n ≤ w2F (v/w, n/m2)2

4ϕ(F (v/w, n/m2))
.

Proof Let χ be character of G of order v/w. Then χ(D) ≡ 0 (mod m)

by Result 2.5 since m is self-conjugate modulo v/w. Write X = χ(D)/m.

Then |X|2 = n/m2 and thus Xζjv/w ∈ Z[ζF ] for some integer j by Result 2.12

where F = F (v/w, n/m2). Hence Z = χ(D)ζjv/w = mXζjv/w ∈ Z[ζF ], too.

Note that Z =
∑v/w−1

i=0 aiζ
i
v/w with 0 ≤ ai ≤ w since χ has order v/w. Note

that |Z|2 = |χ(D)|2 = n. Hence the theorem follows by applying Theorem

2.12 to Z. �

Example 3.2 Let u = 2838407 = 11 · 13 · 23 · 863. This is the seventh

smallest value u such that the existence of a circulant Hadamard matrix of

order 4u2 is still open, see [8]. We take v = 4u2, n = u2, w = 2 · 232 and

m = 11 in Theorem 3.1. Then F (v/w, n/m2) = 2 · 11 · 132 · 863 and get

(11 · 13 · 23 · 863)2 ≤ (2 · 232)2(2 · 11 · 132 · 863)2

4 · 10 · 12 · 13 · 862
,

a contradiction. Thus no circulant Hadamard matrix of order 4u2 exists for

u = 2838407.

Remark 3.3 According to Mossinghoff [8], there are 1576 positive integers

u ≤ 1013 for which the existence of a circulant Hadamard matrix of order

4u2 is still open. Theorem 3.1 rules out 135 of these cases. The details are

provided in [15]. For each case, the triple [u,w,m] is given which is needed

for the application of Theorem 3.1 to rule out the existence of a circulant

Hadamard matrix of order 4u2.

Lemma 3.4 Let p be an odd prime and let a and u be positive integers.

Suppose X ∈ Z[ζpa ] satisfies |X|2 = u2. Let w be a divisor of u which is

self-conjugate modulo p. Let q1,...,qk be the prime divisors of u/w. If

f := gcd(ordp(q1), ..., ordp(qk)) >
u2

w2
,
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then X ≡ 0 (mod u).

Proof If f is even, then u is self-conjugate modulo p which implies X ≡
0 (mod u) by Result 2.5. Hence we can assume that f is odd.

Since w is self-conjugate modulo p, we can write X = wY for some

Y ∈ Z[ζpa ] by Lemma 2.5. If w = u, there is nothing to show, so we can

assume w < u. Note |Y |2 = u2/w2.

Let t be an integer with ordpa(t) = f . Note that t − 1 6≡ 0 (mod p)

since f > 1. Define σ ∈ Gal(Q(ζpa)/Q) by σ(ζpa) = ζtpa . Note that t ≡
qαi
i ( modpa) for some αi ∈ Z for all i by the definition of f . Hence, by Result

2.8, all prime ideals above (Y ) in Z[ζpa ] are invariant under σ. Hence

σ(Y ) = δκY (1)

where δ = ±1 and κ is some path root of unity. Since t − 1 6≡ 0 (mod p),

there is an integer r with r(t− 1) ≡ −1 (modpa). Write Z = Y κr. Then

σ(Z) = δκ1+rtY = δκrY = δZ.

Applying σ repeatedly to this equation, we get Z = σf (Z) = δfZ. Thus

δ = 1 as f is odd. Hence σ(Z) = Z. Write

Z =

pa−1∑
i=0

ζ ipaZi (2)

with Zi ∈ Z[ζp]. Since σ(Z) = Z, we have

pa−1−1∑
i=0

ζ ipaZi =

pa−1−1∑
i=0

ζ itpaσ(Zi). (3)

Note that σ(Zi) ∈ Z[ζp] and that {1, ζpa , ..., ζp
a−1−1
pa } is independent over

Z[ζp]. Hence (3) shows that Zi 6= 0 implies Zit 6= 0 for all i where the indices

are taken modulo pa−1. Note that, by the definition of t, all orbits 6= {0} of

multiplication by t on Z/pa−1Z have length f . Hence, if there is i > 0 with

Zi 6= 0, then there are at least f indices j with Zj 6= 0.
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Recall that |Z|2 = |Y |2 = u2/w2. Again, since {1, ζpa , ..., ζp
a−1−1
pa } is

independent over Z[ζp], this implies

pa−1−1∑
i=0

ZiZi =
u2

w2
. (4)

Now assume Zi 6= 0, and let Γ = Gal(Q(ζp/Q). Since
∏

τ∈Γ τ(ZiZi) =

NQ(ζp)/Q(ZiZi) ≥ 1, we have∑
τ∈Γ

τ(ZiZi) ≥ p− 1 (5)

by the inequality of arithmetic and geometric means. Now let N be the

number of indices i with Zi 6= 0. Then

N(p− 1) ≤
∑
τ∈Γ

pa−1−1∑
i=0

ZiZi =
u2(p− 1)

w2

by (4) and (5). Thus N ≤ u2/w2. Above we have seen that N ≥ f if Zi 6= 0

for some i > 0. Since f > u2/w2 by assumption, we infer Zi = 0 for all i > 0.

Hence Z = Z0 ∈ Z[ζp]. Note

f >
u2

w2
≥ 2u

w
>

2(p− 1)u

pw
(6)

since u/w ≥ 2. Because of |Z|2 = u2/w2 and (6), Result 2.6 implies Z ≡
0 (mod u/w). Hence X = wY = κ−rwZ ≡ 0 (mod u). �

Theorem 3.5 Let p be an odd prime, let a, m be positive integers with

(m, p) = 1, and write u = pam. Let r be any divisor of m which is self-

conjugate modulo p, and let q1, ..., qs be the prime divisors of m/r. If

f := gcd(ordp(q1), ..., ordp(qk)) >
u2

p2ar2
and pa > 2m, (7)

then there is no circulant Hadamard matrix of order 4u2.

Proof Suppose D is a Hadamard difference set in a cyclic group G corre-

sponding to a circulant Hadamard matrix of order 4u2. Let χ be a character

of G of order p2a or 2p2a. Then χ(D) ∈ Z[ζp2a ] and |χ(D)|2 = u2 by (2.1).
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Since w := par is self-conjugate modulo p by assumption, Lemma 3.4 implies

χ(D) ≡ 0 (mod u), i.e., χ(D) = ±ηu for some p2ath root of unity η.

Let W be the subgroup of order 2u2 of G, and write D = A+ Bg where

A,B ⊂ W , and g is an element of order 4 in G. Let χ1 be a character of G of

order p2a and let χ2 be the unique character of G defined by χ2(h) = χ1(h)

for all h ∈ W and χ2(g) = −1. Note that the order of χ2 is 2p2a. By what

we have shown above, χi(D) = δiηiu for some p2ath roots of unity ηi and

δi ∈ {−1, 1}, i = 1, 2. Replacing D by Dk for some k ∈ G, if necessary, we

can assume χ2(D) = u. Note that

χ1(D) = χ1(A) + χ1(B) and χ2(D) = χ1(A)− χ1(B).

Hence χ1(D) + χ2(D) = 2χ1(A) and thus δ1η1u + u ≡ 0 (mod 2). Since u

is odd, this implies δ1η1 + 1 ≡ 0 (mod 2) and thus η1 = 1. Hence we have

χ2(D) = χ1(D) or χ2(D) = −χ1(D). If χ2(D) = χ1(D), then 2χ1(A)χ1(D)+

χ2(D) = 2u, and if χ2(D) = −χ1(D), then 2χ1(B) = χ1(D)−χ2(D) = −2u.

In summary,

χ1(A) = u or χ1(B) = −u.

Since A,B ⊂ W the kernel of χ1 on W has order 2u2/p2a = 2m2, we can

write χ1(A) =
∑p2a−1

i=0 aiζp2a with 0 ≤ ai ≤ 2m2, and χ1(B) has a similar

representation. Hence u ≤ 2m2 by Result 2.9, i.e., pa ≤ 2m, contradicting

the assumptions. �

Example 3.6 Let u = 217520382953549 = 13 · 41 · 2953 · 138200401. This

corresponds to the only known open case of the Barker sequence conjecture,

see [8]. Assume a circulant Hadamard matrix of order 4u2 exists. We take

p = 138200401, a = 1, m = 13 · 41 · 2953, r = 2953 in Theorem 3.5. We find

f = gcd(ordp(13), ordp(41)) = 959725 > 284089 =
u2

p2ar2

and p = 138200401 > 3147898 = 2m. Hence (7) is satisfied and we get a

contradiction. Hence no circulant Hadamard matrix of order 4u2 exists.

Remark 3.7 Theorem 3.5 rules out 22 of the open cases of circulant Hadamard

matrices of order 4u2 with u ≤ 1013 in Mossinghoff’s list [8]. The details are

provided in [15]. For each case, the quadruple [u, p,m, r] is given which is

needed for the application of Theorem 3.10.
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Corollary 3.8 No Barker sequence of length L exists with 13 < L ≤ 2 ·1030.

Proof If there is a Barker sequence of length L with 13 < L ≤ 2 · 1030,

then L = 4u2 with u = 217520382953549 by the results in [5, 6, 17] and

a computer search described in [8]. But a Barker sequence of this length

cannot exist by Example 3.6 since the existence of a Barker sequence of even

length L implies the existence of a circulant Hadamard matrix of order L. �

Lemma 3.9 Let p ≡ 3 (mod 4) be a prime, and let u be an integer all of

whose prime divisors are ≡ 3 (mod 4). Let X ∈ Z[ζ4pa ] with |X|2 = u2.

Then

Xζj4 ∈ Z[ζpa ]

for some integer j.

Proof Suppose q is a prime divisor of u such that t := ordp(q) is even.

Then t ≡ 2 (mod 4) as p ≡ 3 (mod 4). Hence qt/2 ≡ −1 (mod p) and

thus qp
a−1t/2 ≡ −1 (mod pa). Moreover qp

a−1t/2 ≡ −1 (mod 4) since q ≡
3 (mod 4) and pa−1t/2 is odd. We conclude qp

a−1t/2 ≡ −1 (mod 4pa), i.e., q

is self-conjugate modulo 4pa. Using Result 2.5, we conclude X ≡ 0 ( mod q).

Repeating this argument, if necessary, we can write

X = wY with |Y |2 = u2/w2

where w is a positive integer dividing u, and all prime divisors of u/w are of

odd order modulo p.

Now let q be a prime divisor of u/w, so s := ordp(q) is odd. Then qtp
a−1 ≡

1 (mod pa) and qtp
a−1 ≡ 3 (mod 4) since q ≡ 3 (mod 4) and tpa−1 is odd.

Hence, by Result 2.8, the automorphism of Q(ζ4pa) defined by σ(ζpa) = ζpa

and σ(ζ4) = −ζ4 fixes all prime ideals of Z[ζ4pa ] above q. Since this holds

for all prime divisors of u/w and |Y |2 = u2/w2, we conclude that σ fixes the

ideal Y Z[ζ4pa ]. Hence σ(Y ) = δY for some unit δ of Z[ζ4pa ] with |δ| = 1. By

Result 2.7, we have δ = ζjpai
k for some integers j, k, i.e.,

σ(Y ) = ζjpaζ
k
4Y. (8)
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Applying σ to (8), we get

Y = σ2(Y ) = ζjpa(−ζ4)kσ(Y ) = ζ2j
paY.

This implies ζjpa = 1, i.e.,

σ(Y ) = ζk4Y. (9)

Now write Y = A+Bζ4 with A,B ∈ Z[ζpa ]. Then (9) implies

A−Bζ4 = ζk4 (A+Bζ4). (10)

If k = 0, then B = 0 by (10). If k = 1, then A = −B by (10) and thus

Y = A(1− ζ4). But then |Y |2 = 2|A|2, contradicting the assumption that u

is odd. The cases k = 2, 3 are treated similarly. In summary, we have A = 0

or B = 0 in all cases. This concludes the proof. �

Theorem 3.10 Let u be an integer all of whose prime divisors are congruent

to 3 modulo 4 and let p be one these prime divisors. Let w be a divisor of u

which is self-conjugate modulo p. Let q1,...,qk be the prime divisors 6= p of

u/w. If

gcd(ordp(q1), ..., ordp(qk)) >
u2

w2
, (11)

then no circulant Hadamard matrix of order 4u2 exists.

Proof Suppose D is a Hadamard difference set in a cyclic group G corre-

sponding to a circulant Hadamard matrix of order 4u2. If χ is a character

of G of order dividing 4, then χ(D) ≡ 0 (mod u) by Result 2.5 since u is

self-conjugate modulo 4.

Write u = pam with (p,m) = 1. Let χ be a character of G of order 2bpc

where 0 ≤ b ≤ 2, 1 ≤ c ≤ 2a. Then χ(D) ∈ Z[ζ4pc ] and |χ(D)| = u2 by

Result 2.1. Lemma 3.9 shows that χ(D)η ∈ Z[ζpc ]. In view of (11), Lemma

3.4 implies χ(D) ≡ 0 (mod u).

In summary, we have shown χ(D) ≡ 0 ( mod u) for all characters χ of G of

order dividing 4p2a. Thus, by McFarland’s Result 2.3, there is a Hadamard

difference set in the cyclic group of order 4p2a. This contradicts Turyn’s

Result 1.2. �
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Example 3.11 Let u = 16401 = 3·7·11·71 which corresponds to the second

smallest open case of circulant Hadamard matrices, see [8]. We take p = 71,

w = 7·11·71 in Theorem 3.10. Then u/w = 3 and ordp(3) = 35 > 9 = u2/w2.

Hence no circulant Hadamard matrix of order 4u2 exists by Theorem 3.10.

Remark 3.12 Theorem 3.10 rules out 63 cases of Mossinghoff’s list [8] of

open cases of the circulant Hadamard matrix conjecture. Please see [15] for

the details. For each case, the triple [u, p, r] is given where p and r are the

numbers needed for the application of Theorem 3.10.
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