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Abstract

We consider a class of symmetric divisible designs D which are
almost projective planes in the following sense: Given any point p,
there is a unique point p’ such that p and p’ are on two lines, whereas
any other point is joined to p by exactly one line; and dually. We note
that either the block size k or k — 2 is a perfect square, and exhibit
examples for £k = 3 and £k = 4. Then we add the condition that
D should admit an abelian Singer group, so that we may study the
associated divisible difference sets. Under this additional assumption,
we show that k is a square (unless k¥ = 3) and that the only possible
prime divisors of k£ are 2 and 3.



1 Preliminaries

About 15 years ago, Zoltan Fiiredi suggested to consider a class of symmetric
divisible designs D which are in some sense as close to projective planes
as possible. More precisely, D should be a square 1-design satisfying the
following two axioms:

(A1) Given any point p, there is a unique point p' such that p and p' are on
two lines, whereas any other point is joined to p by exactly one line.

(A2) Given any line L, there is a unique line L' such that L and L' intersect
in two points, whereas any other line intersects L uniquely.

For the purposes of this paper, we shall denote such a structure as an APP(k)
(for “almost projective plane”) if it has line size k.

Example 1.1 Developing the start block {0, 1, 3} modulo 6 gives an APP(3);
similarly, an APP(4) arises from the start block {0,1,6,10} C Z1s.

In the language of design theory, an APP(k) is just a symmetric divisible
design with parameters

m=k(k—1)/2, n=2, k, Ay =2and A\, =1, (1)

cf. [2] or [8]. In view of the fact that the axioms (A1) and (A2) are so close to
those for projective planes, we prefer to speak of “lines” instead of “blocks”.
We shall also call the point 2’ in axiom (A1) the mate of the point z, and
similarly for lines.

Of course, we hoped to find some more interesting examples than the ones
given above, maybe even for values of £ where £k —1 is not a power of a prime.
Unfortunately, we did not succeed with this, so our results will all be about
non-existence. We begin with the following necessary condition which is a
special case of the Bose-Connor theorem [3].

Proposition 1.2 An APP(k) can only exist if either k or k — 2 is a perfect
square. More precisely, k has to be a square if k = 0 or 1 mod 4; if addition-
allym = k(k—1)/2 = 2 mod 4, then k — 2 has to be the sum of two squares.
For k=2 or 3 mod 4, k — 2 must be a square, and the equation

ka? 4 (—1)mm=D/2 g2 — 52 (2)

has a non-trivial solution in integers.



Proof. For the convenience of the reader, we shall sketch a proof for the
fact that either k£ or k — 2 is a square, as this will be the part that we will
mainly require in what follows. To this end, let A be an incidence matrix
for an APP(k), where points and lines are arranged into consecutive pairs of
mates. Then, by (Al) and (A2),

(k211 11\
2 k1 1 11
1 1 k 2 11
AAT — ATA = 11 2 k 11
1 11 ... 1 k 2
\1 11 ... 1 2Fk)

= (k=1)I+J+E,

1
where E denotes the direct sum of (g) copies of the matrix ( (1) 0 ) )

It is a bit tedious but routine to calculate the determinant of this matrix,
either directly or by determining its eigenvalues. The result is

(det A)? = det AAT = (k — 2)%" F)/2g (K> —k+2)/2. 3)

which implies the assertion, as the two exponents appearing in (3) always
have opposite parity. O

Let us give the following sample application of Proposition 1.2 which will be
useful later:

Corollary 1.3 An APP(3%) with a # 1 can only exist if a is even or a = 3.

Proof. let a be odd, so that 3* — 2 is a perfect square. By a result of
Ljunggren [5] (rediscovered by Nagell [6]), the only solution of the Diophan-
tine equation 3% — 2 = y? indeed occurs for z = 3. |

In the next section, we add the condition that D should admit an abelian
Singer group G, so that we may study the associated divisible difference sets
with parameters (k(k — 1)/2,2,k,2,1). Recall that a k-element subset D of
a group G of order v = mn is called a divisible difference set with parameters
(m,n, k, A, Xo), if the list of differences (d — d' : d,d'" € D,d # d') covers
every element in G\ NV exactly Ao-times, and the elements in N\{0} exactly



A1 times, where N is a specified subgroup of G' of order n. We provided
two small cyclic examples above; see [4] or [8] for background on divisible
difference sets. Under this additional assumption, we will prove that the only
possible prime divisors of k£ are 2 and 3. The proof will involve a novel trick
which is of independent interest and might turn out to be useful in other
situations, too. Finally, we shall also obtain some further restrictions using
standard tools like the Mann test [1]; in particular, it turns out that £ has
to be a square provided that k # 3.

2 Divisible difference sets for APP’s

We now consider an APP(k) D admitting a Singer group G, that is, a group
of automorphisms which acts regularly on points and thus also on lines,
as D has full rank over Q by equation (3). Note that we exhibited cyclic
examples for the cases k = 3 and k = 4 is Section 1. Our results will provide
strong evidence for the conjecture that only these two cases can occur if we
assume G to be abelian; parts of these results would carry over to non-abelian
groups, but we will not bother stating this explicitly. As usual, we proceed
by studying the group ring equation characterizing the associated divisible
difference set D, as summarized in the following lemma; see [4] or [8] for
background and details. In particular, we write G multiplicatively from now
on and make use of the standard convention of identifying subsets of G with
the corresponding formal sums of their elements in ZG. We also require the

notation
AW = Zaggt, where A = Zagg,

9eG 9€eqG

and where t is some integer.

Lemma 2.1 Let D be an APP(k) admitting a Singer group G. Then D is
the development of a divisible difference set with parameters (1) in G; in
particular, G has a unique subgroup N of order 2. Moreover, D may be any
subset of G for which the associated group ring element D = 3 ., € ZG
satisfies the equation

DDY = (k—2)4+ G+ N. (4)

Proof. The assertions are merely special cases of well-known results on
divisible difference sets; the only part which might need some comment is
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the bit concerning N. This is an easy consequence of (Al) which shows
that the point classes (which are just the cosets of the special subgroup N
appearing in the divisible difference set condition) have size 2. Hence only
one group ring element, can appear as a “difference” twice, and thus G has a
unique involution, as the number of “difference” representations g = d(d')™*
of an element g € G always agrees with that of the inverse element ¢ . O

The following theorem gives a strong restriction on the possible values of
k. Tt is our major result, and its proof should be of special interest as it
contains a novel trick. First, it seems to be only the second example where
a group ring of a characteristic p dividing the order of G is applied to study
difference sets (the first case being work of Pott [7] concerning extraneous
multipliers of planar difference sets, see also [2]). More importantly, the trick
of computing intersection numbers of a certain auxiliary subset mod p and
then using square counting in characteristic 0 to obtain a contradiction is
certainly new and might well have other interesting applications.

Theorem 2.2 Let D be a divisible difference set with parameters (1) in an
abelian group G. Then k = 2°3° for some non-negative integers a and b.

Proof. By Lemma 2.1, G has a unique subgroup N of order 2. We apply
the canonical epimorphism 7 from G onto H = G/N to equation (4) and
obtain the following identity in the group ring ZH:

DD = k+2H, (5)

where we write X for the image of X € ZG under the canonical extension
of m to an epimorphism from ZG to ZH. We now select a prime divisor p of
k and consider equation (5) as an identity in the group algebra Z,H. Using
this in conjunction with the well-known fact X? = X® we get the validity
of the following computation in Z,H:

D® DY — prp-bl ﬁp—l(ﬁﬁ(—l))
DP Y(k+2H) = kD" ' 4+ 2k* 'H = 0,
as p divides k. This shows that all coefficients appearing in the group ring
element L
A = DWDEY = N auh e ZH
heH
are divisible by p. We will now use square counting for the a;. Trivially,

> an = k. (6)

heH



Next note that ), _, a; equals the coefficient of 1 in the group ring element
AACD | But

AACY = pWDENDDER = DWDEP) (k4 2H)

(»

- [f)f)(—”}(m (k+2H) = k |[DDCY] ' ok?H

= k(k+2H®) 4 2kH.

Thus the coefficient of 1 in AACY is at most k(k + 2k) + 2k2, depending on
the number of elements of order p in H which can be at most £ — 1, as the
Sylow p-subgroup of H has order at most k. This gives us the estimate

> ap < 5k (7)

heH

Using (6) and (7) and the fact that all coefficients aj, are divisible by p, we
get, the following inequality:

0 < ) anlan—p) < 5k* — pk”. (8)

heH

Clearly the preceding inequality gives a contradiction for p > 7. Now assume
p = 5 and that (8) holds so that we have equality throughout. In particular,
ap € {0,5} for all h € H. Moreover, equality in (8) also requires equality in
(7). As pointed out above, this implies that &k is a power of 5 and that the
Sylow 5-subgroup of H is elementary abelian. But then D®) C H® which
is a group of order (k — 1)/2. Hence at least one coefficient of D® must be
> 3, as D was a k-subset. But D has one coefficient 2 (namely that of
the element dN = d'N of H = G/N, where d and d' are the two elements of
D appearing in the “difference” representation of the unique involution in G
from D), and so A = D® D1 contains at least one coefficient aj, > 6. This
contradiction rules out the case p = 5, too, and finishes the proof. O

3 Some further restrictions

In this final section, we provide some further restrictions on divisible differ-
ence sets associated with APP’s, mainly using a standard tool, namely the
Mann test; cf. [1] and [8].

Theorem 3.1 Let D be a divisible difference set with parameters (1) in an

abelian group G, and assume k # 3. Then k is a square of the form k = 22032
for some non-negative integers a and b.
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Proof. By Proposition 1.2, either k or k — 2 is a square. It suffices to show
that the latter case cannot arise; assume otherwise. By Theorem 2.2, 2 and
3 are the only primes that can divide k; hence either £k = 2- 3% or k = 3¢,
where b is odd.

In the first case, we apply the Mann test by selecting a subgroup U of GG
for which H = G/U has order v = 3; then N C U. As 2 divides £ and is
selfconjugate modulo u (note 2 = —1 mod 3), the Mann test implies that 2
should divide £ to an even power, a contradiction.

In the second case, Corollary 1.3 gives k = 27. We will rule out this possibility
by an ad hoc argument involving the Mann test and intersection numbers.
To this end, we select a subgroup U of G of order 13 and hence of index
u = 54; thus N ¢ U. As 5 divides k — 2 and is selfconjugate modulo u (note
5% = —1 mod 54), the Mann test implies that 5 has to divide k¥ — 2 to an
even power, which is, of course, true. Let us write H = G /U, and denote the
image of our hypothetical divisible difference set in the group ring ZH by D.
By the proof of the extension of the standard Mann test given by Pott in [8,
Theorem 2.4.6], the coeflicients of D= > hen anh are constant modulo 5 on
the cosets of the image N of N. (Note that the conclusion of Pott’s result is
satisfied; thus we do not get an immediate contradiction but have to analyse
the situation more closely.) The image of equation (4) in ZH in our special
case is given by L B

DDY = 25 4 13H + N. (9)

Now lj cannot be absolutely constant on on the cosets of N since otherwise
D = NX for some X € ZH, contradicting equation (9). Thus D has at least
one coefficient > 5. Equating the coefficient of 1 in equation (9), we obtain

> ap = 39. (10)
heH
But Y~ a, = 27 and the minimum of Y a? under the conditions a; > 5 for
at least one h and Y ap = 27 is 5% + 22 = 47, contradicting (10). O

We conclude with the following further restriction:
Proposition 3.2 Let D be a divisible difference set with parameters (1) in

an abelian group G, where k # 3 is a power of 3. Then k = 3% for some
positive integer a.

Proof. We once again use the Mann test. By Proposition 1.2, k is a square;
hence it suffices to rule out the possibility ¥ = 3%9*2. In this case, k =
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9 mod 16 and hence kK —2 = 7 mod 16. In particular, there has to exist some
prime p = 3 mod 4 dividing the square-free part of £ — 2. As k is a square,
we see that 2 is a square modulo p, and thus in fact p = 7 mod 8, by a well-
known result from number theory. Now select a subgroup U of G for which
H = G/U has order u = 8; then N € U, as v = k(k — 1) = 8 mod 16. As p
divides k£ — 2 and is selfconjugate modulo u (note p = 7 = —1 mod 8), the
Mann test implies that p has to divide k—2 to an even power, a contradiction.
|
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