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Abstract. Abelian relative difference sets of parameters (m, n, k, ~) = (pa, p, pa, pa-l) are studied in this 
paper. In particular, we show that for an abelian group G of order p2C+1 and a subgroup N of G of order p, a 
(p2C, p, p2C p2C-1)_relative difference set exists in G relative to N if and only ifexp(G) < pC+1 Furthermore, 
we have some structural results on (p2C, p, p2C, p2C- l)_relative difference sets in abelian groups of exponent pC+ l 
We also show that for an abelian group G of order 22C+2 and a subgroup N of G of order 2, a (22c+1, 2, 22c+l, 22c). 
relative difference set exists in G relative to N if and only ifexp(G) < 2 c+2 and N is contained in a cyclic subgroup 
of G of order 4. New constructions of (p2c+1, p, p2C+1 p2C)_relative difference sets, where p is an odd prime, 
are given. However, we cannot find the necessary and sufficient condition for this case. 

1. Introduct ion 

Let G be a group of order mn which has a subgroup N of order n. An (m, n, k, )O-relative 
difference set (RDS) R in G relative to N is a k-element subset of G such that the expressions 
r lr~  l, with rl, r2 E R and rt # r2, represent each element in G \ N  exactly )~ times and 
represent no nonidentity element in N. The concept of RDSs was introduced by Butson 
[4], [5] and Elliott and Butson [13] as a generalization of difference sets. For general 
descriptions of RDSs and their relation with designs, please consult [ 14]. 

Using the notation of the group ring 5[G] ,  where 5 r is either the ring of rational integers 
or the field of complex numbers, a subset R of G is an (m, n, k, )0-RDS in G relative to N 
if and only if 

R R  (-1) = keg + )v(G - N)  (1) 

where we identify a subset A of G with the element ~g~a  g in f ' [G]  and write R (-1) = 

{r -a : r ~ R}. Furthermore, if G is abel• then R is an (m, n, k, ~.)-RDS in G relative to 
N if and only if for every character X of G 

k i fx  ~ G \ N  • 
k - ) ~ n  i f x  ~ Ni\{Xo} 

x ( R ) x ( R )  = k 2 i f x  = Z0 
(2) 

where N • = {X E G* : X is principal on N} and Xo is the principal character of G. 
Recently, RDSs with parameters (m, n, k, L) = (pa, pb, pa, p~-~), where p is a prime, 

have been studied intensively, for examples, see [3], [7], [8], [12], [19]. RDSs with these 
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parameters have a lot of important applications. For example, some of these RDSs can 
be used to construct sequences with ideal auto-correlation and cross-correlation properties, 
see [ 12]. 

In this paper, we continue the work of Davis [8] on (pa, p, p a  pa-I)_RDSs" For a 
given abelian group G of order pa and a subgroup N of G of order p, we shall study 
the conditions under which a (pa, p, pa, pa-1).RD S exists in G relative to N. Complete 
answers for (m, n, k, ~) = (p2% p, p2~, p2~-1) and (22~+1 , 2, 22c+l, 22c) will be given. 

In the following, we list some theorems on the exponent bounds of groups containing 
these RDSs. 

THEOREM 1.1 (Pott [23]). Let p be a prime, G an abelian group of order pa+l and N a 
subgroup of G of order p. If there exists a (pa, p, pa, pa-1)_RD S in G relative to N, then 
exp(G) < pra/2q+l where Ix] denote the smallest integer greater than x. 

THEOREM 1.2 (Ma and Pott [19]). Let p be an odd prime, G an abelian group of order 
p2~+2 and N a subgroup of G of order p. If there exists a (pZC+l, p, p2c+l, p2C)_RD S in G 
relative to N, then exp(G) < pC+l. 

2. The Constructions of (p2C, p, p2~, p2c-1).RDSs 

By Theorem 1.1, an abelian group of order p2C+1 containing a (p2C, p, p2C, p2c-I)_RDS 
must have exponent not exceeding p~+~. In the following, we shall study three construction 
methods of these RDSs. Theorem 2.1 is a slightly improved version of a result by Davis [8]. 
Theorem 2.2 is based on the K-matrix construction developed by Davis [6] and Kraemer 
[16]. Finally, Theorem 2.3 is an inductive construction. 

For convenience, throughout this paper, the cross product of groups will be regarded as 
the internal direct product. 

THEOREM 2.1 Let p be a prime. Let G be an abelian group of order p2c+l which contains 
a subgroup E = (~) x H where IHI = pC andexp(H) ---- o(t~) -- pe <_ pC+l. Then there 
exists a (p2C, p, p2C, p2~-I)_RD S in G relative to N = (ctP"-~). 

Proof Let H = @}=l(flJ) whereo(fl]) = pbj andbl = maxl<_j<_tbj = e. For0  < ij < 
phi _ 1, 1 < j < t, define 

t 

Dit.i2.....i, -'= ~ ( ~ j  c~if-bJ ) C E 
j=l 

and choose gi~.i2.....i, E G so that 

{gi~,i2.....i, :0  < ik <_ pb~ _ 1 for2 < k < t and0 < il <__ p - 1} 

is a system of distinct coset representatives of E in G and 

gi i , i2 , . . . .6  -~ Ot gn,i2., . . , t t  
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for i l  = p m + n w h e r e 0 < n < p -  1. Let 

p~1-1 pt~2-1 pbt--I 

R=U U... U 
il=O i2=0 it=O 

Dil,i2,...,itgibi2.....il. 

We claim that R is a (p2~, p, p2C, p2C-1)_RD S in G relative to N. 
If  X r N L ,  it is obvious that X is principal on exactly one Di~ .i~.....i, and hence IX (R)I = pC. 

It remains to show IR f3 Nh[ = 1 for all h c G. To prove this, it suffices to show 

( Di,  .i2.....i, gi~ .&.....i, N) N ( Di, t .i'z.._ .i'tgi, 1 .ii._..i~ ) : fJ 

for all (il, i2 . . . . .  it) ~ (i~1, i~ . . . . .  i;). Suppose 

[ j=~l ( f l )o t i jPe- '~J) ' J lg i , . i2 . . . . . i t f fwPe- l :~:~ l ( f l jOl '~P~-OJ)~]g i~ i '2 . . . . , i [  

'~ pro' + n'  where for some (il, i2, . . . ,  it) and ( i ; , t2 , . . . ,"  i;). Let il = p m  + n and q = 
0 < m, m ~ <_ pe-1 _ 1 and 0 <_ n, n' _< p - 1. The equation above can be possible only 
if gi~ .i2.....it and gi'~.i2,...,i; are in the same coset of E. But by the definition of gi~,i2,....it, we 
haveij  = i } f o r 2 < j _ < t , n = n ' a n d  

CI. - t l z l  ., .r .j o~-m gil'i2-'"'it = gq.'2.....'," 

Then kj - k~ rood pbj for 1 _< j < t which imply 

i lkl  -[- cop e-1 q- m -- i~lkl + m' mod pe. 

Hence (m - m ' ) (pk l  + 1) -- 0 mod pe-1 and m ~ m ' mod pe-1. It forces m = m t and so 
"/ 

i~ = ~1" 1 

We remark that the construction described in the proof of  Theorem 2.1 can be generalized 
to nonabelian groups by the method of Dillon [11] and Davis [8]. For example, if G is a 
group of  order pZc+l and the center of G contains a subgroup E = (o~) x H where H is an 
abelian group of  order pC and exp(H) = o(o0 = pe, then there exists a (p2C, p, pZc, p2C-! )_ 
RDS in G relative to N = (of-~).  Using the same construction as above, we only need to 
prove that the subsets Qi~.i2.....it, where 0 _< il < p - 1 and 0 < ij <_ pbj-1 for 2 < j < t, 
of  E defined by 

Qibi2.....it = 

satisfy 

pe 1_i 

U ~ 
t t l = [  

p - 1 p#2 - I pot _ 1 

Z Z  E 
i I = 0  i 2 = 0  i t = 0  

O(-1) p2C-~ E -- p2C-I N Qil.i2.....it ~i~,i2,...,it = P 2ceE -1- (3) 
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and for (il, i2 . . . . .  it) ~ (i' 1, i~ . . . . .  i;), 

O. . . O{Tp = pC+e-2 E 
tl,[2.....// ~ i l . i 2 , . . . , i ;  . (4) 

Let X be a character of  E. t f  X ~ N • it is obvious that X is principal on exactly one 
Dil.iz.....ir and hence exactly o n e  [x(Qil,i>....it)I has the value pC while all the others are 
zero. If  X ~ N•  then x(Qi,.i>....i,) = P~-1)~(H). Hence Equations (3) and (4) follow. 
Finally, we want to point out that similar generalizations can also be applied to other 
constructions in this paper. 

THEOREM 2.2 Let p be a prime. Let G be an abelian group of order p2C+1, which contains 
a subgroup E = (or} • H where [HI = pC+l andexp(H)  = o(ot) < pC, and let N be any 
subgroup of H of order p. Then there exists a (p2C, p, p2r p2C-1).RD S in G relative to N. 

Proof Define an equivalence relation on G* by 

X ~ X r if and only if k e r x l u  = kerx ' lH.  

Let IX1], [X2] . . . . .  [Xn] be the equivalence classes with Xi ~ N • Let Kt = ker Xt [H. 
For each t 6 {1, 2 . . . . .  n}, let ht, Yt, zt be elements with ht c H \ K t  and Yt, zt ~ G \ H ,  

(t) let pS, = pC/[Kt [ (=  o(x t ln ) /P)  and define a pS, • pS, matrix Mt = (m~.)) by mij = 

ytz/hl  -(ei+l)j for i, j = 0, 1 . . . . .  pS~ _ 1. Suppose the matrices MF satisfy the following 
conditions: 

(A) If  X ~ (Kt l fq N• where X0 is the principal character of G, then the sum of the 
values of  X on any column of  Mt is 0. 

(B) If  X 6 [Xt], then the sum of the values of  X on any row of Mt is 0 except for one row, 
which depends on X, where the sum has absolute value pS,. 

(C) The set {YtZ[ : 0 _< j < pS, _ 1 and 1 < t < n} forms a complete system of distinct 
coset representatives of H in G. 

Let 

n pSt _ 1 

= lnij Kt. 
t=l i , j = O  

Then  IRI --  ~,"=~pZS'lK, l = pC~7=~ P" = p2C since I{y,z[ : 0  <_ j _< p "  - 1 and 1 _< 
t < n}[ = pC. Let X be a nonprincipal character of  G. If  X 6 H • then X (R) = 0 because 
of  (C). If  X 6 N •  • then x (R)  = 0 because of (A). If  X ~ N • then Ix(R)I = pC 
because of  (A) and (B). Hence R is a (pec, p, p2C, pZc-I)_RDS in G relative to N. 

Now, it remains to show that ht, Yt, zt can be chosen in the way that the matrices Mt 
satisfy the conditions (A), (B) and (C): 
(i) ht 6 H \ K t  is chosen so that H / K t  = (htKt}. 
(ii) zt = htete ..... where pe = o(ot). 
(iii) Let ?'b ?'2 . . . . .  ?'f be distinct coset representatives of E in G where f = p~-e. Also, 
assume sl, s2 . . . . .  s,, are in descending order. Choose Yt by the following algorithm: 
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Stepl .  Let s be an f • pe matrix of integers, each row of which contains the integers from 
0 to p~ - 1 in order, all initially unmarked. 

Step2. Let t = 1. 

Step3. Let dt be an unmarked entry of/2. Mark out all entries in that row of the form 
dt + kp ~-s' rood p~ for 0 < k < pS, _ l. Call the row where dt lies rt. 

Step4. Let Yt : Yh Otd'. 

Step5. Increase the value of t by 1. Stop if t > n; otherwise, go to step 3. 

Following the same argument as [16], it is not hard to see that these ht, Yt, zt satisfy our 
requirements. [] 

THEOREM 2.3 Let p be a prime. Let G = (~) x B be an abelian group of  order p2C+l, 
where B contains a subgroup H of  order pC with exp(H) < o(a) <_ pC+l, and let N be 
a subgroup of  H o f  order p. I f  there exists a (p2C-2 p, p2C-2, p2C-3).RD S in (ap2) x B 
relative to N, then there exists a (p2~, p, p2C, p2~-I).RD S in G relative to N. 

Proof Let Ro be a (p2C-2, p,  p2C-2, p2~-B)_RD S in (~p2) x B relative to N. Let o(00 = p~. 
Define 

R1 = {otipy " 0 <___ i < pe-2, Y E B andotip2y ~ R0}. 

Let H t pbl-I  = ~)j=l  (/3j) where o(flj) = pbj and N = (/31 ). Suppose bs = maxl<j_<t bj. For 

O < ij < p h i - l ,  1 < j < t, and (il, p) = l, define 

t 

Di,.i2.....i, ~- (~(f l ]oE ijp~-~'j) C (o~ p~-hs) x H 
j = l  

and choose gil.i2.....it E G so that 

{gi,.iz,...,it : 0 ___ ik < phk _ 1 for 1 < k < t, (ii, p) = 1 and 0 _< is < p - 1} 

is a system of distinct coset representatives of (ol pe-bs) x H in G \ ( ( o t  p) • B )  and 

g i l  .i2.....i~ "~- Olmpe b~ gil .i2.....is-i .n.is+t .....it 

for i s = p m + n w h e r e O < n  < p - l .  Then 

y,z _ 1 pat _ 1 

R= U U--.U 
O<_il<_p Iq -1 .  ( i l ,p )=i  i2 ~0 it =0 

Dil.i2.. . , , i ,  gil.i2,.. . .i ,  U (o~P~-I) R 1 

is a (p2C, p, p2C, p2C-1)_RD S in G relative to N. The proof is similar to Theorem 2.1. 
[] 
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Combining Theorems 2.1, 2.2 and 2.3, we have a necessary and sufficient conditions for 
the existence of (p2~, p, p2~, p2~-I)_RDSs" 

THEOREM 2.4 Let p be a prime. Let G be an abelian group of order p2C+ l and N a subgroup 
of G of order p. Then there exists a (p2~, p, p2C, p2c-~)_RDS in G relative to N if and only 
ifexp(G) < pC+l. 

Proof The necessary part follows by Theorem 1.1. For the sufficient part, Theorems 2.1 
and 2.2 provide the constructions of all the required RDSs except when G ~- (a) x B where 
o(ot) = p~+t and N < B. But the existence of these RDSs can be shown inductively by 
applying Theorem 2.3. �9 

3. (p2C, p, p2C, p2C-1).RDSs in Abelian Groups of Exponent pC+l 

In Section 2, we have studied the constructions of (p2C, p, p2C, p2C-1)_RDSs" In this 
section, we shall work on the special case that the abelian groups have exponent pC+l. For 
this case, we have detailed knowledge of the structure of the RDSs. We remark that this is 
of particular interest for the study of the much more difficult case of (p2C, pb  p2C, p2C-b). 
RDSs with b > 1. As an example, we shall discuss the existence problem of abelian 
(16, 4, 16, 4)-RDSs at the end of this section. 

Before we state our main results, we list some useful lemmas. 

LEMMA 3.1 (Ma [18]). Let p be a prime. Let Z be an element in Z[G] where G is an 
abelian group with a cyclic Sylow p-subgroup. Let P denote the unique subgroup of G of 
order p. If )~ (Z) =-0 mod pa for all nonprincipal characters X of G, then 

Z = paX + PY 

where X, Y ~ Z[G]. Furthermore, if the coefficients of Z are nonnegative, then X and Y 
can be chosen to have nonnegative coefficients. 

LEMMA 3.2 Let p be a prime. Let G = A x B x H be an abelian group such that 
A ~ (Zeo) "~, B = ~)~=1(/3)), o(~j) = pbl <_ p~for 1 < j < t, and (p, ]HI) = 1. Define 

e = a(s - 1) + Y~rj= 1 bj and 

' ) = {W • ~))=l(/~jfj : W isasubgroupofA oforderp a(~-l) 
such that A / W  is cyclic; and ?~i ~ A, o(yi) < phi}. 

(Note that every element in ~ is a subgroup of A x B of order pe.) Suppose there exists a 
subset D of G such that )~ (D) =-- 0 rood pe for all nonprincipal characters of G. Then 

D =  ~ UXu + KY 
Ue7~ 

where Xu, Y C G and K is the maximal elementary abelian p-subgroup of A. 
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Proof. Write D = Y ~ u ~  UXu + L where Xu,  L C G such that gU r L for all g e G 
and U 6 7~. We have to show L ------- 0 mod K. For any U e R,, let Pu : G --+ G~ U be the 
canonical epimorphism. Note that the Sylow p-subgroup of G~ U is cyclic and 

z ( L )  = z ( D )  - ~ ]  x ( U ) z ( X u )  =- 0 mod pe 
U~7~ 

for all nonprincipal characters of  G. By Lemma 3.1, 

pv(L)  = peyu + PuZ~ 

where Yv, Zu c Z[G/U]  with nonnegative coefficients and Pu is the unique subgroup of 
G / U  of order p. By the definition of L, we have Yu = 0. Thus we get 

U L =- 0 rood K 

for all U e "R,. Since every element of T = {cr 6 Aut(A x B) : cr(A) = A} permutes T4 
and all orbits :~ {1}, K\{1} of T on A x B are multiples of K, we have 

1 

UET~ UcTr 

1 
[KI - 1 Z ]U n (K\{1}[eG ~ neo mod K 

UeT~ 

for some positive integer n. Since ~ u ~ e  UL =- 0 rood K, we conclude that L __. 0 rood K. 
[ ]  

We want to point out that in this paper, we only need the particular version of Lemma 3.2 
when s = 1 and H = {ec}. Since we believe that this lemma is useful in the study of  other 
difference sets, we state it in the most general form. As an example, we give a corollary 
which provides a generalization of aresult  of  difference sets by Arasu and Sehgal [2]. Since 
in this paper we are not mainly interested in this subject, we omit the proof. The readers 
are referred to [15], [ 17] for the terminology of difference sets used in the corollary. 

COROLLARY 3.3 Let p be a prime. Let G = A x B x H be an abelian group where A is 
a cyclic p-group, IB[ = pb, exp(B) < exp(A) and ([HI, p) = 1. Furthermore, assume 
that D is a (v, k, k)-difference set in G, pZb [ n = k - X and p is self-conjugate modulo 
exp(H).  Let K be the maximal elementary abelian p-subgroup of  G and p : G --+ G / K  
the canonical epimorphism. Then p( D) -- 0 rood p. 

EXAMPLE 3.4 Corollary 3.3 can be applied together with the sub-difference set argument 
developed by McFarland [20]. The condition p(D) -~ 0 rood p often forces p(D)  to be 
two-valued, i.e. the coefficients of p(D) take only two integer values. I f  for  example, p 
is odd, [A[ = pb and D is a Menon difference set, then by a result of Arasu, Davis and 
Jedwab [1], B must be cyclic and by Corollary 3.3 and McFarland's argument, every group 
G' ~ Zp, x Zp,, x H with c 5 b also must have a Menon difference set. This result has 
also been obtained by Davis and Jedwab [9] independently. 
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The following is a well-known result of RDSs, e.g. see [ 19]. 

LEMMA 3.5 Let p be a prime. I f  R is a (p2C, p, p2C, p2C-1)_RD S in an abelian group G, 
then x ( R )  - 0 mod pC for  all characters X of  G. 

Now, we are ready to state and prove our theorems on the characterization of (p2C, p, p2~, 
p2C-1)-RDSs in abelian groups of exponent pC+l. 

THEOREM 3.6 Let p be a prime. Let G = (c~) • ( ~ = t  (flJ} be an abelian group where 
o(ot ) = pC+l, o(~j ) = pbj, and }-~= 1 bj = c. Then a subset R of  G is a (p2C, p, p2C, p2C-1)_ 

RDS in G relative to N = (or p~ ) if  and only if  

pb1-1 pb2--1 pt't--I t 

it=0 i2=0 it=O j=l  

for  some integers gil.i2.....it, and IR N NyJ = l for  aIl y C G. 

Proof. Let R be a (p2C, p, p2~, p2C-1).RD S in G relative to N. By Lemmas 3.2 and 3.5, 
we can write 

p1'I-1 pb2--1 p1,1_i t 

R = E " E + 
i1=0 12=0 it=0 j= l  

for s o m e  Xil,i2,,...it, Y C G. Since [R (7 Ny[  = 1 for all y 6 G, it is obvious that 
Y = ]9. Applying suitable characters that are nonprincipal on N to the equation above 
yields ]Xi~.i2.....i,[ ~ 0 for all il, i2 . . . . .  it. Since IR[ = p2C, we have [Xil.i~....,i,[ = 1. 
Hence without loss of generality, we can assume Xi~.i2,...,i, = {t~ ~qi2''~r } for all il, i2 . . . . .  it. 

EXAMPLE 3.7 Let R be a (16, 2, 16, 8 )-RDS in Z8 • relative to ((4, 0)). Then by Theorem 
3.6, it is not difficult to see that, up to equivalence, 

R = ((0, 1)} + ((2, 1)}(sl, 0) + ((4, 1)}(2, 0) + ((6, 1)}($2, 0) 

where (sl, $2) E {(1, 3), (1,7),  (3, 1), (3, 5)}. 

The following lemma is needed for studying the case when N is not contained in the 
biggest exponent piece of G. 

LEMMA 3.8 (Ma and Pott [ 19]). Let p be a prime and G a cyclic group of  order pa. Suppose 
Z 6 ZIG] such that ]x(Z)I = l f o r a  character X of  G of  order pa. Then 

Z = - 4 - g + p y  

for  some g ~ G and Y ~ Z[G] where P is the unique subgroup o f  G of  order p. 
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THEOREM 3.9 Let p be a prime. Let G = (o~) • @,~=1(15j) be an abelian group where 

o(o0 = pC+l, o(~j) = pbj, and ~tj= 1 bj = c. If  a subset R of  G is a (p2C, p, p2C, p2C-I)_ 

RDS in G relative to N = (/Sf '~-1 }, then 

pl'2 -- 1 p~ t 

= Z Z Z ....... + 
O<_it<pt~l--l.(il,p)=l i2=0 it=0 j = l  

for  some integers eil.i2._..i, and R, C G with ]R,] = p2~-2. 

Proof. Let R be a (p2r p, p2C, pZc-,)_RD S in G relative to N. By Lemmas 3.2 and 3.5, 
we can write 

p hI --1 pb2--I pl~t-1 t 

il=0 i2=0 i~=0 j = l  

for s o m e  Xil,i2.....it , R l C G. Since [R N N),] = 1 for all y ~ G, it is obvious that 
Xil.i2.....i t =~J if (i,, p)  r 1. 

For any il, i 2 , . . . ,  it with (il, p) = 1, let p : G --+ G / U  be the canonical epimorphism 

where U = (~j=,(~jc~iJ+'-bJ). Let X be any character of  G / U  of order pC+l. Since 

[X(p(R))] = pC and X(((~P~)) = 0, we have IX(p(Xil,i2.....i,))l = I. By Lemma 3.8, we 
have 

P ( X i , , i 2 _ _ . i , )  = ~ g  + P Y  

where g ~ G / U ,  Y ~ Z[G/U]  and P is the unique subgroup of G / U  of order p. Taking 
the inverse image of p, we have 

t l 
~ i.pC+t-t,j @(~j,',,"'-"~)x,.~.....,, •  )g, +Mr, 

j = l  j = l  

where gl 6 G, Y, c Z[G]  and M = p - i  ( p )  = N @~=, (fijotiJ +l-bj ). Since [R f3 NV] = 1 
for all y 6 G, we have Y, = 0un less  p = 2 a n d M Y ,  = Mgl .  Both cases imply 
[Xil,i2..,..it I = l .  Without loss of  generality, we can a s s u m e  Xit. i2, . . , i  t = {o[eii-i2 ,-.,it }. [] 

EXAMPLE 3.10 Let R be a (16, 2, 16, 8)-RDS in Z8 x ~;~,4 relative to N = ((0, 2)). Then 
by Theorem 3.9, up to equivalence, R = ((2, 1))(1, 0) + ((6, l ) ) ( j ,  0) + ((4, 0))Rr where 
j ~ (2, 3}. 

First, we show that j = 2 is impossible: I f  j = 2, then R1/ ((O, 2)) = hl + t~2 ~- ]/3 -J- ]/4 
where hl = (3, 0), h 2 ----- (0, 0), h 3 = (1, 1) andh4 = (2, 1). We define ei = 1 i fhl  ~ R1 
and ei = - 1/fhi  (0,  2) C R l. Let X1, X2 be the characters defined by X, (0, 1) = X2 (0,  l ) = 
VrL-l, XI(1, 0) ---- V'-Z-l and xz(1, O) = -1 .  Then 

Xl (R) /2  ----- - g t ~ - - ' T  + g2 - -  e3 - -  8 4 N / ~  and 
xe (R ) /2  = - e l  + e2 - e3~L-1 + e4~L--(. 
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Since IXI(R)[ = [x2(R)I = 4, this implies 

[(61 = 64) A (62 = 63) ] ~/ [(e 1 = --64) A (62 = --63) 1 attd 
[(61 ---~ 82) A (63 = --64) ] V [(81 ~--- --82) A (83 = 64) ] 

which is impossible. 
Hence without loss of generality, R = ((2, 1))(1, 0) + ((6, 1))(3, 0) + ((4, 0))R1. Let 

Z3 be the character defined by X3(1,0) = - 1  and X3(0, 1) = 1. Then x3(R) = - 8  + 
2x3(Rl)  = 0. Thus R1 C ker;(3 = ( (2 ,0) , (1 ,0) ) .  Hence R~/((4,0)) is a RDS in 
((2, 0), (1 ,0) ) / ( (4 ,  0)) --- g2 x Z4 relative to {(0, 2)). By Theorem 3.6, 

R1/((4, 0)) = ((2, 0))(0, sl) + ((2, 2))(0, s2) 

where (sl, s2) 6 {(0, 1), (0, 3), (l ,  0), (1,2),  (2, 1), (2, 3), (3, 0), (3, 2)}. So up to equiva- 
lence, 

R = ((2, 1))(1, 0) + ((6, 1))(3, 0) + ((4, 0))[(0, sl) + (2, s~) + (0, $2) q- (2, s2 + 2)]. 

Finally, we show that using our Theorems 3.6 and 3.9 and a lemma by Ma and Pott [ 19], it is 
possible to settle the existence problem of abelian (16, 4, 16, 4)-RDSs in G ~ Zs x Z4 x Z2. 

Result 3.11. A (16, 4, 16, 4)-RDS in an abelian group G ~g Zs x Z4 x Z 2 exists if and 
only if exp(G) ___ 4 or G = Zs x (Z2) 3 with N G Z2 x Z2. 

The case G ~- Z8 x 7/~ 4 X Z 2 is not more difficult but it involves too many cases (there 
are a lot of possibilities for the forbidden subgroup). By some ad hoc calculations, we have 
the following result (it is clear from our calculations that all the other cases can be treated 
similarly): 

Result3.12. L e t G  = Z8 x Z 4 X ~2. 

(a) There is a (16, 4, 16, 4)-RDS in G relative to ((4, 0, 0), (0, 2, 0)}. 
(b) There is no ( 16, 4, 16, 4) -RDS in G relative to ((2, 0, 0)), ( (0, 1,0)), ((4, 0, 0), (0, 0, 1)) 
or ((0, 2, 0), (0, 0, 1)). 

For the existence parts of Results 3.11 and 3.12, the (16, 4, 16, 4)-RDS in (•4) 3 relative 
to N ----- Z2 x Z2 is due to Davis and Seghal [10]; and other RDSs whose existence is not 
previously known are all constructed by lifting suitable (16, 2, 16, 8)-RDSs (Result 3.12(a) 
has also been obtained independently by Davis and Seghal [10]). For the nonexistence 
parts, it is known that there is no abelian (16, 4, 16, 4)-RDS in G if exp(G) > 32, see [24]. 
The nonexistence in the case exp(G) = 16 follows from a theorem by Schmidt [21]. If 
exp(G) = 8 and there is a cyclic subgroup of order 8 which does not contain the forbidden 
subgroup, then we can project the RDS to a (16, 2, 16, 8)-RDS R' in an abelian group G' 
with exp(G')  = 8. The structure of R ~ has been determined by Theorems 3.6 and 3.9 and 
we can use this together with some character arguments to obtain the results mentioned 
above. If the forbidden subgroup is contained in every cyclic subgroup of order 8, then we 
use Lemma 4.7 of [19] together with some character arguments. For the details, please see 
[22]. 
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4. (22c+1, 2, 22c+1, 22C)-RDSs 

Let us consider (22c§ 2, 22c+1, 22~)-RDSs. It is interesting that these RDSs are quite 
different from the RDSs that we have seen in the previous sections. For example, no 
such RDSs exist in elementary abelian groups. Using the method of Davis [8] and the 
constructions in Section 2, we have the following three existence theorems. The first one 
is also an improved version of a result by Davis. 

THEOREM 4.1 Let G be an abelian group of  order 2 2c+2 which contains a subgroup E = 
(~) x H where ]HI = 2 c and max{4, exp(H)} = o(o0 = 2 e _< 2 ~+2. Then there exists a 
(22c+1 , 2, 22c+l , 22C)-RDS in G relative to N = {o~ 2~-~ ). 

Proof  Let H = @~=1(/5J} where 0(/5]) = 2 hI andb l  = max,s)_<,bj = 1 o re .  For 

0_<i j  < 2  I'j - l, l _< j _< t, define 

t t 
Oil,i2.....it = @(/5jOli)2e bj ) U O/2e-2 @(/s jOd i'2e '9} C E 

j = l  j = l  

and choose gil.i2.....it E G so that 
(i) if bl = 1 (and e = 2), then 

{gi,.G.....i, : 0 5 ik _< 1 for 1 < k < t} 

is a system of distinct coset representatives of E in G; and 
(ii) if bl = e > 2, then 

{gi,.i2.....it " 0 ~ ik _5 < 2 ~k -- 1 for 1 < k < t and 0 < il ~ 3} 

is a system of distinct coset representatives of  E in G and 

m gil.i2.....i, = Og gn.i2.....ir 

for i l  = 4 m + n w h e r e 0 < n < 3 .  
Then 

2 hi --1 2h2-1  2 t~r - 1  

U �9 �9 U 
i1=0 i2=0  it=O 

is a (22c+1 , 2, 22c+1, 22C)-RDS in G relative to N. [] 

THEOREM 4.2 Let G be an abelian group of  order 2 2c+2, which contains a subgroup E = 
(o~) x H where IH] = 2 c+2 and4  < exp(H) = o(c0 _< 2 C, and let N '  = (/5) be any cyclic 
subgroup of  H o f  order 4. Then there exists a (22C+1 , 2, 22c+1 , 22C)-RDS in G relative to 
N = (f12}. 



68 S.L. MA AND BERNHARD SCHMIDT 

Proof  Define an equivalence relation on G* by 

X ~ X' if and only if kerxlH = kerx'lt4. 

Let [X1], [X2] . . . . .  [X~] be the equivalence classes with Xi ~ N • Let K: ----- kerxtl,q. 
Following the same argument as Theorem 2.2, there exist ht ~ H \ K t  and Yt, zt ~ G \ H ,  
1 < t < n, such that the 2 '~ x 2" matrices Mt = (m}~)), where T '  = U/IKt l  (=  o(xt In)/4),  

(t) _ j~ i - - (4 i+l ) j  
defined by mij = Yrzt nt , for i, j = 0, 1 . . . . .  2 s' - 1, satisfy the conditions (B) and 
(C) of  the proof of  Theorem 2.2 and the following condition: 

(A') If  ;( ~ (Kt ~ n N'• where X0 is the principal character of G, then the sum of 
the values of  X on any column of Mt is 0. 

Then 

n 2 s t - - I  

R = U  U ~(t)frg" ,,~q ~,,t U ~ )_Kt_ 
t=l i.j=O 

is a (22c+1 , 2, 22c+l, 22C)-RDS in G relative to N. 

THEOREM 4.3 Let G ----- lot) x B be an abelian group of  order 22c+2, where B contains a 
subgroup H o f  order 2 c with 4 < exp(H) < o(oe) < 2 c+2, and let N '  = (~} be a cyclic 
subgroup of  H o f  order 4. I f  there exists a (22~-1 , 2, 22c-I , 22c-2)-RDS in (~4} x B relative 
to N = {f12), then there exists a (22c+1 , 2, 22c+1 , 22C)-RDS in G relative to N. 

Proof  Let Ro be a (22c-1 , 2, 22c-1 , 22c-2)-RDS in (or 4) x B relative to N. Let o(oe) = 2 e. 

Define 

R1 = {ot2iV : 0 < i < 2 e-2, y E B a n d  0t4i V C R0}. 

Let H = @}=l (& ) where o(~j) = 2+ and ~ = fl~b,-2. Suppose bs = maxl~j<_tbj. For 

O <_ ij < 2  bj - l , 1  < j <_ t, and (i~, 2) = l, define 

t t 
lq2bl 2 @(~ jOt f f j 2e -b j )  C ( Ol2e-bs } X H Di.i .. .i, = ij2e-~ I U ,'1 

j=l j=l 

and choose gi~.i2,....i, ~ G so that 

{gi,.i2.....i, : 0 < ik < 2 bk - 1 for 1 < k < t, ( i l ,  2) ---- 1 and 0 < is < 3} 

is a system of distinct coset representatives of  (or 2'-I" ) x H in G\((ot 2) x B) and 

gi~ ,i2....,it ~ olm2e-bs giz .i2,....is_l ,n.is+ t ..,..it 
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for is = 4m + n where O < n < 3. Then 

R = 
2 b2 - 1 

U U 
0<il  _<2hi - 1 .  ( i i .2)=1 i 2 : 0  

2 bt -- 1 

U Dit'i2"""irgil'i2"""i, U (olZe-1)R 1 
i t=0  

is a (22c+I, 2, 22c+1, 22C)-RDS in G relative to N. [] 

Combining Theorems 4.1, 4.2 and 4.3, we have a necessary and sufficient condition for 
the existence of (22c+I , 2, 22c+1 , 22~)-RDSs. 

THEOREM 4.4 Let G be an abelian group o f  order 2 2c+2 and N a subgroup o f  G o f  order 2. 
Then there exists a (22c+1 , 2, 22c+1 , 22C)-RDS in G relative to N if  andonly i fexp(G) <__ 2 c+2 
and N is contained in a cyclic subgroup of  G of  order 4. 

Proof  The sufficient part follows by Theorems 4.1, 4.2 and 4.3. For the necessary part, 
exp(G) < 2 c+2 follows by Theorem 1.1. Also, by Lemma 3.1 of [8], N must be contained 
in a larger cyclic subgroup of G. [] 

5. (p2~+l, p, p2~+~, p2~).RDSs when p is an  O d d  Prime 

The constructions of (p2C+l, p, p2c+l, peC)_RDSs are more difficult than the other cases. 
By Theorem 1.2, we know that the exponent of an abelian group containing such a RDS 
cannot exceed pC+l. 

The following lemma is a variation of the product construction of Davis [7]. 

LEMMA 5.1 Let G be an abelian group, K and N subgroups o f  G such that K f3 N = {e G }, 
and p : G -4  G /  K the canonical epimorphism. I f  R1 is a subset o f  G o f  size ml such that 
p ( R1) is an ( m l , n, m l , m l / n )-RDS in G / K relative to p ( N ) and ]Z (Rl)[ 2 = m l for  every 
character g E G * \ N  • and R2 is an (m2, n, m2, m2/n) -RDS in K • N relative to N, then 
R1 R2 is an (mlm2, n, mlm2, m lm2 /n ) -RDS  in G relative to N. 

Proof  It follows by the character argument. [] 

THEOREM 5.2 Let p be an odd prime. Let G be an abelian group of  order p2C+2 which 
contains a subgroup E = (al) • (~2) • H where IHI = pc, exp(H) = o(oq) = pe < pC+l 

pe-I 
ando(~2) = p. Then there existsa (p2C+1, p, p2C+l, p2C)_RD Sin G relative to N = (% ). 

Proof  Apply Lemma 5.1 where K = (~2), R1 is a subset of G of size p2C such that/9 (R1) 
is a (p2C, p, p2C, p2c-l)_RD S constructed in the proof of Theorem 2.1 (using the same H 
and ~ = t~), and R2 is a (p, p, p, 1)-RDS in N • K relative to N. [] 

Similarly, the following theorem is obtained by applying Lemma 5.1 to the construction 
of Theorem 2.2. 
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THEOREM 5.3 Let p be an odd prime. Let G be an abelian group o f  order p2C+2, which 
contains a subgroup E = (c~l} x (~2) x H where IH[ = pC+~ and exp(H)  = o(oq) < 
pC and o(~2) = p, and let N be any subgroup of  H of  order p. Then there exists a 
(p2C+1, p, p2C+l, p2C)_RD S in G relative to N. 

Finally, similar to Theorem 2.3, we have an inductive construction. 

THEOREM 5.4 Let p be an odd prime. Let G = (oq) • B be an abelian group o f  or- 
der p2~+z, where B contains a subgroup {or2} • H such that IHI = pq  exp(H)  < 
o ( ~ )  < pC+l and o(~2) = p, and let N be a subgroup o f  H o f  order p. I f  there 

exists a (p2C-t, p,  p2C-1, p2C-2)_RD S in (ot~ 2) • B relative to N, then there exists a 
(p2C+1, p, p2C+1, p2C)_RD S in G relative to N. 

pZ 
Proof  Let Ro be the (p2C-1, p, p2C-~, p2C-2)_RD S in ( oq )  • B relative to N. Let 
o(otl) = pe. Define 

ip _ pe-2, a n d  Olil p2 y E R l = { a l  Y ' 0 < i <  y 6 B  R0}. 
pt, t -t 

Let H = (~)~'=l (~J) where o(~i) = p~J and N = (/~1 ). Suppose bs = maxl_<j_<t by. Let 

R2 be a (p, p, p, 1)-RDS in (~2) • N relative to N. For 0 < ij < pbj _ 1, 1 < j < t, and 
(il, p) = 1, define 

t ;';) pe-b~ 

j = l  

a n d  c h o o s e  gh.i2..,..it c G s o  t h a t  

{g6.i2.....i, ' 0 < & < pb~ _ 1 for 1 < k < t, (it, p) = 1 and 0 < is < p - 1} 

is a system of distinct coset representatives of (c~ p' 0,) • (c~2) • H in G \ ( ( ~ )  • B) and 

gil.i2.....it ~" Ol~ lpe ;"s gil.i2,...,is-l.nds+b...,it 

for is = pm + n  w h e r e O <  n < p -  1. Then 

p;;2 - I pbt _ l pe-I 

O<it<p I~1 --1. (i l .p)=l i2 =0 it=O 

is a (p2C+1, p, p2C+1, p2C)_RD S in G relative to N. �9 

It is unfortunate that Theorems 5.2, 5.3 and 5.4 cannot cover all the abelian groups 
of  order p2C+2 and exponent not exceeding pC+~ For examples, we cannot construct 
(p2C+l, p, p2C+1, p2C)_RDSs in the following groups: 

(a) Zpc+l x A where IAI = pC+l and A does not contain any maximal cyclic subgroup of 

order p. 

(b) Zp~ x B where IB[ = pC+2 and B does not contain any maximal cyclic subgroup of 
order p or p2. 
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