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Abstract

Let p = 7Tmod 16 be a prime. Then there are integers a,b,c,d with a = 15 mod 16,
b= 0mod4, p> = a®> + 2(b*> + ¢ + d?), and 2ab = ¢ — 2cd — d*. We show that there is a
regular Hadamard matrix of order 4p® provided that p = a+2b or p = a+ 61b+ 42¢ + 481 62d
with §; = %1.

*This research was done during a visit of the first two authors at the University of Augsburg



1 Introduction

A Hadamard matriz of order v is a v X v matrix H with entries £1 such HH® = vI where I is the
identity matrix. A Hadamard matrix is called regular if all of its rows contain the same number of
entries 1. It is conjectured that a Hadamard matrix of order v > 2 exists if v is divisible by 4.

While the construction of Hadamard matrices of order 4¢ for arbitrary ¢ seems out of reach at
the present time, there may be some hope to construct Hadamard matrices of order 4¢2 for all
prime powers q. For ¢ = 1 mod 4 and ¢ = 3 mod 8 this already has been accomplished by the
marvelous work of Mingyuan Xia and Gang Liu [7, 8]. The constructions of Xia and Liu are based
on cyclotomy, namely, the use of 4th, 8th and (¢ + 1)th cyclotomic classes in F . However, it
seems that the difficulty of implementing the approach using cyclotomy increases with the exact
power of 2 dividing ¢ + 1, c¢f. our Lemma 4 in Section 3. In fact, up to our knowledge, no general
constructions for Hadamard matrices of order 4¢? with ¢ = 7 mod 8 have been known.

In the present paper, we obtain two putative infinite families of Hadamard matrices of order
4¢% with ¢ = 7 mod 8 prime. We believe that, for any large enough n, our constructions yield at
least %ng primes ¢ < n, ¢ = 7 mod 16 such that a regular Hadamard matrices of order 4¢? exists.
Our approach is based on 16th and (¢ + 1)th cyclotomic classes. The necessary computations are
much more involved than those in [7, 8] and we need to use Jacobi sums as well as a computer. For
each value of ¢ for which our construction works, we obtain a “certificate” in terms of a quadruple
of integers a, b, ¢, d. Once this quadruple is known, the verification of the construction only involves
checking simple conditions on a, b, ¢,d which can be done by hand if ¢ is not exceedingly large.

The integers a, b, ¢, d are coefficients of the Jacobi sum

Ji= 3 x(@p(a)

me]qu

of order 16 (the order of a Jacobi sum is the least common multiple of the orders of the involved
characters). Here x is a multiplicative character of order 16 and p is the quadratic character of
Fg2. In Section 4 we will characterize a, b, ¢, d by the simple congruences and equations mentioned
in the abstract.

2 Preliminaries

Let G be an additively written abelian group of order v. We write @ respectively & for the
addition respectively subtraction in G in order to distinguish them from the group ring addition
and subtraction. A t— (v, k, \) difference family in G is a family (Dy, ..., Dy) of k-subsets of G such
that for each g € G\ {0} the set

{(l‘,y,l) 1g=TOVY, T,Y € Dia i€ {177t}}
has cardinality .

We will always identify a subset A of G with the element > gead of the integral group ring
Z[G]. For B =3_ 5 byg € Z[G] we write B = Y gec bg(©9) and |B| =3 by



In the group ring language, a family (Dq,..., D;) of k-subsets of G is a t — (v, k, A) difference
family in G if and only if

t
ST DD = (th - \) + AG. (1)
=1

The following result is well known [4, 9]. For the convenience of the reader, we provide a proof.

Proposition 1 If there is a 4-(v?, Jv(v — 1),v(v — 2)) difference family (D1, D2, D3, Dy) in an
abelian group G then there is a reqular Hadamard matriz of order 4v2.

Proof In view of (1) we have Z?Zl DiDz(fl) =% +v(v—2)G. Let h; = 2D; — G. Then each h;
has coefficients —1,1 only and we have E?Zl hihl(-fl) = 40%. Write h; = deG aiqg, 1 =1,...,4.
We define v? x v:-matrices H; indexed by the elements of G such that (H;),n = a;noy. Then
Z?:l hihz(»_l) = 4v? implies

4
> HH] = 40°T (2)
i=1
where I is the identity matrix of order v2. For g € G let e(g) be the vector indexed with the
elements of g such that e(g), = 1if g = h and e(g), = 0 otherwise. Let R be the v* x v? matrix
indexed by the elements of G whose g-column is e(Sg), g € G. Note that R is symmetric and
idempotent. We have (H;R)gn = > e Gikoge(h)r = ai, ogon. Hence, for each i, the matrix
H;R is symmetric, i.e.
H,R = RH. (3)

Furthermore, a straightforward computation shows
H;H; = H;H, (4)
for all ¢, j. Using (2), (3), (4), it can be checked that

—~H, H,R Hs3R H,R
H,R H, HIR —H!R
HsR —H!R H, HLR
H,R H'R —HLR H

is a Hadamard matrix of order 4v2. The regularity follows from the fact that each H; has exactly
1v(v — 1) entries 1. O

The following result will be useful. See [3, Section 2.3, Thm. 2] for a proof.
Result 2 An algebraic integer all of whose conjugates have absolute value 1 is a root of unity.

Note that Result 2 implies that any cyclotomic integer of absolute value 1 must be a root of unity
since the Galois group of a cyclotomic field is abelian.



3 General Results

Throughout the rest of this paper, we use the following notation. Let ¢ =3 mod 4 be a prime
power and let g be a generator of Fj2. We denote the additive group of Fg2 by G. As before, we use
@® and © for the addition respectively subtraction in G. The multiplication of Fg2 is denoted by *
to distinguish it from the group ring multiplication. Let e be a divisor of ¢> —1 and f = (¢ —1)/e.
We set

Cerr = {gF:t=0,..,f—1}, k=0,...,e—1,
LJ = Cq+1,j7 j = 0? -5 g,
Sj = LjU{O}, j :0,...,(],
Hi = CQ(q+1),’ia ’L:0772q+1

The sets C. i are called eth cyclotomic classes. Xiang [10] calls the L,’s lines and the H;’s half-
lines. The indices k, j, ¢ are taken modulo e, ¢ + 1, 2(¢ + 1) respectively. Note L§.71) = L, for all
j and H; + Hi(_l) = L; for all . Furthermore, we have S;5; = G for ¢ # j and 5]2- = ¢, for all j.

Lemma 3 Let A C {0,...,2¢ + 1}, B C {0, ...,q} with |A| + 2|B| = ¢ such that a £ bmod ¢ + 1

forallae A, be B. Let
H=>H; and L= L;
icA jEB
Then
(H+L)(H+ LY =HHEY —|B|(H+ H"Y) + 4 + 6G

for some vy, § € ZT.
Proof Write |A| = @ and |B| = . Let ¢ and j be distinct elements of AU B, not both in A. Then

S; and S are distinct lines since ¢ # j mod ¢+ 1 by assumption. Hence 5;5; = G. Using this fact,
we get

(H+L)(H + L)Y

SHAY L[S HTV Y 1

icA jeB i€A jeB

) < Hf‘”) + (Z {HH—Hi(_l)D S+ Y1

i€cA jeB jeB

icA jEB jeB

i€A
i€A

)(ZH U)—ﬁz& +R
€A

i€EA

(3
<7€A > ( H"(_l)> - <_a+25i> B+ S|+ | -B8+D.S;
(5



where

R = af—-a) Si+ Y. SS+62-28) S+q) Sj+8B-1)G

JjEB i€A,JEB jEB JjEB
= af-a) S;+aBG+B*-28) Si+q> S;+BB-1G
jEB jEB JjEB
= (@B+P)+(@B+BB-1)G+(—a—28+q) > 8;
jEB

= (af+ %)+ (ap + B(B —1))G.
This proves the assertion. [J

Lemma 4 Let e be the exact power of 2 dividing g+ 1 and let t > 1 be a divisor of e. Let a < e be
an odd number and set 3 = 3=[ge — a(q + 1)]. Let A C {0,...,2e — 1} and By, ..., Bi_1 C {0,...,q}

with |A] = «, |Bg| = -+ = |Bi—1| = 8 such that b%£ amod e for alla € A and b € Ui;%)BT, Set
H = ZCQE,iv
i€EA
M, = ZLj, T'ZO,...,t—l,
JEB,
D, = ¢g¥%«(H+M), r=0,.,t—1

Then |Dy| =q(q—1)/2 forr=0,..,t —1 and

t—1

Z DDV =~ 4+ R
r=0

with v € ZT where R is a linear combination of ($)th cyclotomic classes.

1
Proof Note that H is a union of half-lines since Cy ; = Zgo_l Hyejyi. Let r € {0,...,t — 1} be
arbitrary. If H is a half-line in H and L; is a line in M., then j # k mod e by assumption. In
particular, j # k mod ¢ + 1. Hence H and M, are disjoint and we get |H + M,| = a(q®> —1)/2e +
Blg—1)=¢q(qg—1)/2 and |D,| =q(¢—1)/2, 7 =0,....,t — 1. Using Lemma 3 we get

t—1 t—1
SO = S (g (H o+ M) (H + M) )
r=0 r=0
t—1
= n+6G+ <Zﬁ> « (HH"Y — B(H + HY))
r=0

for some 71, 01 € Z*. Note Cae; + 02(;3) = (. for all ¢. Since H is a union of (2e)th cyclotomic
classes, this implies that HH(-1 — 3 (H+H (_1)) is a linear combination of eth cyclotomic classes.
We conclude that (Zf;é g%) *(HH Y —p(H+H (")) is a linear combination of (£)th cyclotomic
classes. [

The following is a generalization of [10, Thm. 2.3].



Corollary 5 Let ¢ = 3 mod 4 be a prime power and let e be the exact power of 2 dividing q + 1.
Choose t = e and define Dy, ...,De._1 as in Lemma 4. Then (Dy,...,D._1) is a difference family
in the additive group of Fy2 with parameters e-(¢%, 3q(q — 1), $q(q — 2)).

Proof By Lemma 4 we have |D,| = ¢(¢g—1)/2,r=0,...,t — 1, and

t—1

> D, DY =y +R
r=0

with v € Z* where R is multiple of G — 0. This implies the assertion. .

The case e = 4 of Corollary 5 is the most interesting because it yields new Hadamard matrices
through Proposition 1.

Corollary 6 Let ¢ = 3 mod 8 be a prime power, e =t =4, and define H, My, My, Ms, Ms as in
Lemma 4 (here o € {1,3}). Set

D.=¢g"x(H+M,), r=0,..,3.
Then (Do, D1, Do, D3) is a 4-(¢?, %q(q —1),q(q—2)) difference family in the additive group of F .

Remark 7 The case a = 1 of Corollary 6 coincides with [10, Cor. 2.4] while the case a = 3 is
new.

The following Corollary addresses the case e = 8 and t = 4 of Lemma 4 which is the main
subject of this paper.

Corollary 8 Let ¢ = 7mod 16 be a prime power, e = 8, t = 4 and define H, My, My, My, Ms

as in Lemma 4. Set
D,=¢*"x(H+M,), r=0,..,3.

Then (Dy, D1, D2, D3) is a 4-(¢?, %q(q —1),q(q — 2)) difference family in G if and only if
p(HHTY = B(H + HD)) =0 (5)
where p is the quadratic character of Fge.
Proof By the proof of Lemma 4 we have Zi:o DTfol) =71 + 0G + T where
T = (" + g% +g% + %)« (HH"Y — B(H + H))

and the coefficients of T' are constant on the set of squares of Fj> and constant on the set of
nonsquares of F,2. Hence p(HH ™Y — 8(H + H(~1))) = 0 if and only if 7" has constant coefficients
on G\ {0}. O



4 Number theoretic preparations

Let ¢ = 7 mod 16 be a prime power and let p be the quadratic character of F,2. From now on, we
write C; instead of C6,; The following numbers play a crucial role in our construction.

Ji= > p(lowx), i=0,..,15. (6)

zeC;

We take the indices ¢ of J; modulo 16. The J;’s are multiples of Jacobsthal sums, cf. [2,6.1.1]. Let g
be a fixed generator of F,2 and let x be the multiplicative character of F2 with x(g) = exp(27i/16).

Lemma 9 We have

Jo+Js = (3¢—1)/4,
Ji+Jiyg = 0 fori=1,3,5,7, and
Ji+Jirs = —(¢g+1)/4 fori=2,4,6.

Proof Let S respectively N be the set of nonzero squares respectively nonsquares in Fg2. Then S =
S Ly and N = S0 Lyjyh. Furthermore, Cs; = 320707® Lgpgs. Let i € {1,...,7},
j€A{0,...,(¢—1)/2}, k €10,...,(¢ — 7)/8}. By viewing Lo; and 1 & Lgy; as lines without 0 and
1 respectively in F,2, we see that

B 0 ifj=0o0r2j=8k+1
[L2; V(16 Leeri)| = { 1 in all other cases,

0 if2+1=8k+i
[ L2j+1 N (1S Lagi)| { 1 in all other cases.

Let 7 be even, 2 < i < 14. We get

Ji+Jiys = Z p(lox)

’EECg i
(g=7)/8

= Z Z (lex)

=0 z€Lsgk+i
(q=7)/8
= Z (1SN (16 Lsk+i)| — [N N (16 Leki)|)

(¢=7)/8 (¢—1)/2
= (|IL2; N (1 © Lgk+i)| — |[L2j+1 N (1 © Lgk44)])

k=0 3=0
—-7)/8
_ N (a3 ar1y gt
N 2 2 ) 4
k=0
A similar computation shows J; + J;1g = 0 if ¢ odd. Since Zzo J; = =1, we get Jo + Jg =

~1+3(g+1)/4= (3¢ —1)/4. O



We write ¢ = exp(27i/16). Let p be the quadratic character of Fy2 and let x be the multiplica-
tive character of Fy2 with x(g) = ¢. Note that x depends on the choice of the generator g of F-.
Therefore, we write x = X, when it is necessary to indicate this dependency. We can derive the
values J; from the coefficients of the following Jacobi sum.

7= x@p(oa).
z€F 2

Note that J also depends on the choice of g.
Lemma 10 Write J = ZZ:O t:C* with t; € Z. Then

ti=J; — Jixs, 1=0,..,7. (7)
In particular, tg = 3 mod 4, t; # 0 and t = 0 mod 4.
Proof Using (& = —1 we get

J o= 3 x@pen)

z€F 2
15

= > > ¢atow)

=0 z€C;

7
= D (i Tivs).
i=0

This implies (7) since {1,¢,...,¢7} is an integral basis of Q[¢] over Q.

By Lemma 9, tg = 2Jy — (3¢ — 1)/4, t; = 2J; and t5 = 2J5 + (¢ + 1)/4. As ¢ = 7 mod 16, the
remaining assertions follow if we can show that Jy is even and that Ji, Jo are both odd. Recall
that C; = {g'%*": ¢t =0,...,[(¢* =1)/16] =1} and J; = X" ., p(1©x). As 1€ Cp and 1 ¢ C; for

i=1,2, weget Jo=L=1 —1mod2and J; = £=1 = 1 mod 2 for i = 1,2. Since (¢2 — 1)/16 is

odd, Jy is even and Ji, Jy are odd. [J

For j € {1,3,5,...,15} we define o; € Gal(Q(¢) : Q) by ¢°/ = ¢’. Since —1 is a square in F 2,
it follows from [2, Thms. 2.1.4, 2.1.6] that J°7 = J. Since {1,(,...,¢"} is an integral basis of Q[(]
over Q, this implies that there are integers a, b, ¢, d such that

J=a+b(¢* = (") +e(C+¢T) +d(¢*+ 7). (8)
By Lemma 9, a =ty and b = t5, so we obtain
a=3mod4 and b=0mod 4. (9)
Furthermore, by [2, Thm. 2.1.3] we have |J|* = ¢?. This implies
P o= a2+ 3+ dd), (10)
2ab = —2cd — d>. (11)

In order to gain more insights in the numbers a, b, ¢, d, we need to know how ¢ splits in Q(().
Let P; be a prime ideal of Q(¢) above ¢q. As ¢ =7 mod 16, P/" = P, and (q) = Py P3Py P;; where
Pj = P?, see [2, Section 11.1].



Lemma 11 Let a,b,c,d be integers and J' = a + b(¢? — ¢®) + (¢ + ¢7) +d(¢® + ¢). Suppose
b=0mod 4, |J'|*>=¢* and (J') # (q). Then

(i) (J') = P2(P7)? where P is a prime ideal that contains J' in Q(C).
(ii) there exist integers w,r,s,t such that G = w + r(¢* — (%) + s(¢C + ¢7) + t(¢3 + ¢°), and
J = +G*(G3)2.
Proof By assumption, .J'.J’ = ¢?. Hence we obtain
(J') = P{'Py P] P},
with o, 8,7,0 € Z* and a+ 3 = v+ = 2. Since (J') # (q), there exists j such that
(J'7)=PiP] or (J'7)=PiPP;.

First we assume (J'°7) = Py PyP?. Let K be the subfield of Q(¢) fixed by o7 and O be the
ring of algebraic integers in K. Since K has class number 1, the ideal P; N K is generated by
an element G;. Define G; := ij. Note that P3N K and Py N K are generated by G3 and Gy
respectively. Since J' %7 and G1G9G% generate the same ideal in O, we have J' 77 = nG1GoG3 for
some unit 1 in O . Moreover, as Py N K has norm ¢, we have G1G3G9G11 = q. Since |J' 77 |2 = ¢?,
we then have

¢* = 1m|G1GoG3[* = nif(G1GoG3)(GoG1GYy) = nifg*.

Hence |n| = 1. Result 2 implies that 7 is a root of unity. Since +1 are the only roots of unity in
Ok, we get J' 77 = +G1G9G3. Note that

g = G1G3GoG11 = w* + 2s* + 2t* mod 4.
Since ¢ = 3 mod 4, this implies
w=1mod2 and s+t=1mod?2. (12)
Moreover, a straightforward computation shows that the coefficient of (2 — (% in G1GoG3 is
by := 45212 — 4w’ st — 4r2t? — 20382 + 25%w? + 8s%rw + Swrt? — 8r¥st.

Hence, by = 2w?(s% — t2) = 2(s + t) = 2 mod 4 because of (12). Since J' = +£G1G9G%, this shows
that the coefficient of (2 —¢% in J’ is = 2 mod 4. But the coefficient of (> —(® in J’ is b = 0 mod 4,
a contradiction. Hence (J'77) = P, PyP? is impossible.

This shows (J'°/) = P2P. Now we get (i) by setting P = PIJ; . Finally, let G be a generator
of PN K. By applying a similar argument as before, we see that J' = £G?(G 3)2. [

Lemma 12 Let a,b, c,d be the integers with
J=a+b(¢* = %) +e(¢+¢T) +d(¢* + ).
Then

= 15 mod 16, (13)
b = 0mod4. (14)



Proof By Lemma 10, J # +¢, a = 3 mod 4 and b = 0 mod 4. So it follows from Lemma 11 that
J=2£G?*(G?)? for G = w+1r(¢* — (%) + s(¢+¢7) + (3 + ¢°) where w, r, s, ¢ are integers. Hence
a = +(w'+2s* —8r?t? — 8522 — 8s%wr — 8st + 2t* — 45%w?
+4rt + 16strw — 4w’t? — 4w’r? + 853t + 45%t? + Swrt?).

Thus a = +(w* + 2t* + 2s*) = +3 mod 4 by (12). Since a = 3 mod 4, we conclude J = G?(G 2)2.
Observe that

—8r2t% — 8s%r? — 8s2wr + 4rt — 4w?r? + Swrt? = —8r(t? + s?) — 8r(t? — %) + 4r?(r? — w?).

By (12) again, —8r2(#? + s2) — 8r(t? — s%) = 0 mod 16. Whereas for the term 472(r? — w?), either

r? is a multiple of 4 or 2 — w? is a multiple of 4 as w is odd. Hence,

a = w425t —8st? + 2t — 45%w? — 4wt + 853t + 4522
= wh +2(s* + 1) — 4 (12 + 5?)
1+2—-4 = 15 mod 16.

O
Now, we consider the converse of the above lemma.
Lemma 13 Let ¢ =7 mod 16 be a prime. If a,b,c,d are integers satisfying (10), (11) and
= 15 mod 16, (15)
b = 0modd4, (16)

then there is j € {1,3,9,11} with
J=[a+b(C* = ) +e(C+ ) +d(C+ )]

Proof Let J' = a+ b(¢? — (%) + (¢ +¢7) + d(¢3 + ¢°). By Lemma 11(i), there exist 4,7 such
that (J') = PZ(P%)% and (J) = P?(P,°%)%. Therefore, we may assume (J')% = (J) for some
j €1{1,3,9,11}. Using a similar argument as before, we conclude that J’°/ = 4-.J. The coefficients
of 1in J and J’ are both = 3 mod 4, so J' 7 = J. O

Lemma 14 Let a,b, c,d be the integers with
J=a+b(¢* = (") +e(¢+¢T) +d(¢P+ 7).
Then the values J; are given by Jr; = J; for alli (indices taken modulo 16) and the following table.
il o0 ] 2 |
Ji

3] 4 |
4‘_@‘_m_
2 8 8

D
co
Nej
—
-y

c
2

gt g‘
8+2

3q—1
et
Proof This follows from Lemmas 9 and 10. OJ

The terms CiCj(fl) will play a crucial role in the verification of our construction. We can
compute the quadratic character of these terms from the values J;.

10



Lemma 15 Write f = (¢> — 1)/16. We have
p(CiCSD) = (=) T

Proof We compute

Ju

f_
p(C'iC’j(-fl)) _ Zp(g16r+26916s+j)

-1 -1

5 Construction with three 16th power cyclotomic classes
Let ¢ = 7mod 16 be a prime. Recall that we write C; instead of Ci6;. Set
H=Cy+ Cq+ Cs.

Furthermore, let B be any subset of {0, ..., ¢} with § = (5¢ — 3)/16 elements such that no element
of Bis =0,1 or 2 mod 8 and let
L=>Y L,

JEB
Finally, set '
D;=g¢g*(H+1L), i=0,1,2,3.

We write D = (Dy, D1, D2, D3). Note that D depends on the choice of the generator g of F 2.

Theorem 16 Let a,b,c,d be any integers with

a = 15mod 16,
= 0 mod 4,
¢ = 4207+ +d),
2ab = ¢ —2cd—d?

(the existence of a,b,c,d is guaranteed by (10), (11) and Lemma 12). If ¢ = a £2b and g is chosen
suitably, then D is a 4-(¢, %q(q —1),q(q — 2)) difference family in the additive group of F.

Proof By Lemma 13 we can choose the generator g of F2 such that

J=a+bC*= ) +e(C+ ) +dC+ ).

11



Write f = (¢° — 1)/16. Using Lemmas 14 and 15 we get

2
p(HH(—l)) — Z C«icj(_*l)
i,j=0

2
= Y (=1
i,j=0
_ S 8b+4
= g( + 4a + q— 3)
Moreover, we have p(H + H(=1) = 2f since p(C;) = (—1)*f. We get

p(HHY — g(H + HY)) = %(16b+8a+2q—6—2(5q—3))
= 5

DN — =

2b+a—q).

Hence, if ¢ = a + 2b then D is a 4-(¢?, %q(q —1),q(q — 2)) difference family by Lemma 4.

Let s be an integer coprime to ¢ — 1 with s = 11 mod 16. Let x4+ be the multiplicative
character of F» defined by x4+(9°) = ¢. If we replace g by ¢g° then

J o= ) Xe(@)p()

z€F 2

= > xe(@)Pp(x)
zEqu

o3

= | D (@)

wEqu
= a—b(¢* = (%) —d(C+ )+ e+ ).

Hence, in this case the condition for D being a difference family becomes ¢ = a — 2b. [

Remark 17 As the proof of Theorem 16 shows, “if g is chosen suitably” only means that we have
to replace g by g° if necessary where s is any integer with s = 11 mod 16, (¢> — 1,s) = 1.

6 Construction with five 16th power cyclotomic classes

Let ¢ = 7 mod 16 be a prime. Set
H=Cy+Ci+Cy+Cs+ Cr.

Furthermore, let B be any subset of {0, ..., ¢} with 8 = (3¢ —5)/16 elements such that no element
of Bis=0,1,2,3 or 7mod 8 and let
L=)Y L,

jEB

12



Set ‘
D; =g¢*(H+1L), i=0,1,2,3.

Write D = (D07D17 DQ, Dg)

Theorem 18 Let a,b,c,d be any integers with

a = 15mod 16,
= 0 mod 4,
q2 — a/2+2(b2+02 +d2),
2ab = ¢ —2cd—d?

(the existence of a,b,c,d is guaranteed by (10), (11) and Lemma 12). If
q = a+51b+6240+51524d (17)

with 6; = +1 and g is chosen suitably, then D is a 4-(q¢?, %q(q —1),q(q — 2)) difference family in
the additive group of Fge.

Proof By Lemma 13 we can choose the generator g of F2 such that
J=a+b(¢* =) +e(C+ () +d(¢ + ).
Let T'={0,1,2,3,7}. Using Lemmas 14 and 15 we get

p(HHCY) = 3 ol
i,j€T
= Y (=)'
i,j€T

= %(—4a+8b+160+ 16d + g + 5).

Moreover, we have p(H + H(1) = —2f. We get

p(HHY — g(H + HY)) = 116(—8a + 16b + 32¢ + 32d + 2¢ + 10+ 2(3g — 5))

1
= 5(7a+2b+4c+4d+q).
Hence, if ¢ = a — 2b — 4c — 4d then D is a 4-(¢?, %q(q —1),q(g — 2)) difference family by Lemma
4. The theorem now follows by replacing g by ¢° if necessary where s = 3,9 or 11 mod 16 and

(s,¢*—1)=1.0

Remark 19 As the proof of Theorem 18 shows, “if g is chosen suitably” only means that we have
to replace g by g° if necessary where s is an integer with s = 3,9 or 11 mod 16 and (s,¢®> —1) = 1.
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7 Main Result

Combining Proposition 1, Lemma 12, Theorems 16 and 18 we get our main result.

Theorem 20 Let ¢ = 7 mod 16 be a prime. Then there are integers a, b, c,d with

a = 15mod 16,
= 0 mod 4,
¢ = d®+20* + A+ d?),
2ab = ¢* —2cd— d>.
If
= a=+2bor (18)
= a+ 01b+ 40s¢c + 461024d with §; = +1, (19)

then there is a reqular Hadamard matriz of order 4¢>.

We call the Hadamard matrices satisfying (18) respectively (19) the three-class family respec-
tively the five-class family. We believe that both families are infinite. In the following tables we
give all primes ¢ < 10° respectively ¢ < 50000 for which Theorem 20 yields a three-class respec-
tively a five-class Hadamard matrix of order 4¢2. We also list the corresponding values a, b, ¢, d
and the choice of the generator g which gives the corresponding difference family according to
Theorems 16 and 18. The values a,b,c,d were obtained with the help of Paul van Wamelen’s
PARI-implementation [5] for the computation of Jacobi sums.

We use the following representation of F,2. Let k be the smallest positive integer such that
h :=2* + z + k is a primitive polynomial over F,. Then F,» = F,[z]/(h) and z € Fy[z]/(h) is a
primitive element of F 2 (we write x instead of 2+ (h)). The value of & is provided in the following
tables. An entry 7 in the g-column has the following meaning: For the generator g we take x*®
where s =i mod 16 and (s,q? — 1) = 1.

14



Appendix 1: Table of parameters for the three-class family

q a b ¢ d k g
7 -1 4 2 2 3 1
199 127 36 102 6 6 1
727 527 -100 -250 -230 31 | 11
4327 799 -1764 2058 1302 10 | 11
4999 4607 -196 14 -1358 15 | 11

27239 -4513 -15876 -10206 2142 7111
34807 22639 6084 11778 -13182 | 26 | 1
43159 -4273 -23716 -18634 -3542 3 | 11
55399 7967 -23716 7546 -29722 6 | 11
92647 26399 -33124 8918 -52598 | 14 | 11
99527 11327 44100 -26670 47250 | 20 | 1
144967 | 31679 56644 -45458 68782 6 1
196247 | 192719 1764 18438 -18522 7 1
205879 | 64367 | -70756 96026 69958 12 | 11
226087 | 112799 | 56644 | -125902 | -11662 6 1
239831 | 151631 | 44100 82110 -92610 7 1
273719 | 247727 | 12996 81282 1026 19| 1
281959 | 277727 | -2116 -24334 | -24242 | 24 | 11
390727 | 387199 1764 -37002 -42 33| 1
390967 239 195364 | -180778 | -74698 | 10 | 1
431479 | -56593 | 244036 | -11362 178334 | 21 | 1
477767 | -42433 | -260100 | 114750 | -180030 | 10 | 11
517927 | 272927 | 122500 | -184450 | 218750 | 10 | 1
549719 | -46513 | 298116 | -56238 | 240786 | 11 | 1
606247 | 201247 | -202500 | -281250 | -208350 | 10 | 11
679127 | 393359 | 142884 | 238518 | -275562 | 5 1
694567 | -20641 | -357604 | 316342 | 114218 | 20 | 11
715639 | 119407 | 298116 | 389298 92274 11| 1
737719 | 677167 | 30276 143202 | -146334 | 6 1
830359 | 318287 | 256036 | -474122 | -61226 | 12 | 1

Remark 21 There are exactly 356 primes ¢ < 3.9 - 10® satisfying the conditions of Theorem 16.
Some further computational experiments suggest that for any n > 2 - 10% there are at least én%
primes ¢ satisfying the conditions of Theorem 16.
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Appendix 2: Table of parameters for the five-class family

q a b ¢ d k g

7 -1 4 2 2

23 -17 4 2 10

71 31 -28 10 34 11 | 11
151 47 28 46 -86 12 ] 1
263 -97 -36 -78 150 9
359 -1 252 -6 30 7|3
599 463 -92 -134 -214 3
631 527 -68 -134 -194 12| 3
919 -17 612 186 114 15 | 11
2087 1759 124 478 -622 13| 1
2423 -977 700 -190 1390 |14 | 9
2503 -97 1700 -230 -430 3 |11
4967 4639 -196 -782 -962 5 3

6311 -1889 3100 -790 -2810
7879 -1921 3332 -3374 -2590 | 12 | 11
8087 -3281 196 1918 -4858 1
10711 | -3793 4508 -434 -5446 1
11447 79 -8036 -238 -938 7 9

9

1

11831 | -5969 -4100 5230 -2830 | 21
12391 191 7100 -4810 | -1790 | 26
13399 | 8143 -3708 2766 5934 | 28 | 11
14071 -433 9212 3094 2114 14 | 11
19559 | -5921 -9212 7490 -5726 | 23

20743 | -10657 | 4700 -1390 11590 5

21767 | -4801 10044 | -8658 -7038 5 | 11
25463 -17 17444 4102 1750 5 | 11
30871 | -2449 19012 | -8050 -6874 6 3
31607 | 25199 | -4284 -6978 | -10722 | 7 3
32503 | 13423 5436 | -10050 | 17538 5 9
32839 | 31679 -508 4574 4030 12 | 3
35527 | -30721 -196 5138 | -11522 | 3 3
41927 | -16481 | -17444 | -17458 | 11578 1

Remark 22 There are exactly 1401 primes ¢ < 3.9 - 10® satisfying the conditions of Theorem 18.

. . 2
Some further computational experiments suggest that for any n > 2 - 10% there are at least %ng
primes of ¢ satisfying the conditions of Theorem 18.
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Appendix 3: Some sporadic examples

In the following, we chose g = x as the generator of F,» where we use the representation of IF
described at the end of Section 7. For the following primes ¢ we obtain 4-(q2, %q(q —1),q(q —2))
difference families and hence regular Hadamard matrices of order 4¢2. Note that when we use
Corollary 8, we only need to specify the half-line part H and verify (5) since My, My, My, and Ms
can always be chosen such that the remaining condition is satisfied.

q = 167: Set H = Cy+ C1 + C13 in Corollary 8. Then (5) can be verified using a = 31, b = 28,
¢ = —106, d = —38 (here k = 5).

q = 311: In this case, we set

Dy = Co+Ci+Cy+Cs+Cio+ L,
Dy = Co+Cs+Cr+Cio+Cis+ L,
Dy = 94*DOv
Ds = g*«D

such that L, L’ are unions of lines, |D;| = ¢(¢ — 1)/2 and each D; has coefficients 0,1 only. This
construction can be verified by direct computation.

g =439: Put H = Cy+ C1+ Cy + C3 4+ Cy + Cs + C7 in Corollary 8. Then (5) can be verified
using @ = —337, b = 28, ¢ = 166, d = 106 (here k = 23).

g = 1223: Put H = Cy + C; + Cy + Cs + C7 + C12 + C13 in Corollary 8. Then (5) can be
verified using a = 223, b = =700, ¢ = —110, d = —470 (here k = 15).

Appendix 4: Something negative

In [10], a 4-(q¢?, %q(q —1),q(q —2)) difference family is constructed for ¢ = 7 by using (¢ — 1)th
and 2(q — 1)th cyclotomic classes. We tried to extend this to further prime powers ¢ = 3 mod 4,
but we already failed for ¢ = 11. Note for ¢ = 11 a brute force search already is impossible on
a common PC within a reasonable amount of time. Hence we had to use a quite complicated
method using character sums. We conjecture that our search shows that for ¢ = 11 there is no
4-(q?, %q(q —1),q(q — 2)) difference family (Dy, D1, D2, D3) in the additive group of Fg2 of the
following form.

D; = {0} U Cao,j

JEA;

where 4; C {0,...,19}, |A;| =9, i =0,1,2,3.
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