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Abstract

If a Hadamard difference set exists in H×K, where H is an abelian

2-group and K is a cyclic 3-group, then |H| > 4|K|. Furthermore,

Lander’s conjecture holds for all Hadamard difference sets of order at

most 529.

1 Introduction

A (v, k, λ, n) difference set in a finite group G of order v is a k-subset D of

G, such that every nonidentity element g of G has exactly λ representations

g = d1d
−1
2 with d1, d2 ∈ D. As usual, we assume 1 < k < v/2. Then

n = k−λ is a positive integer which is called the order of the difference set.

For introductions to difference sets, see [1, 2, 7].

Lander [7, p. 224] proposed the following.

Conjecture 1.1 (Lander 1983) Let G be an abelian group of order v con-

taining a difference set of order n. If p is a prime dividing v and n, then the

Sylow p-subgroup of G cannot be cyclic.

In [8, Thm. 1.3], the following result was obtained.

Result 1.2 Lander’s conjecture is correct in the case where n is a power of

a prime p > 3.

In the case that n is not a prime power, there currently is not much reason

to believe that Lander’s conjecture holds. Promising candidates for putative

counterexamples seem to be Hadamard difference sets. A Hadamard dif-

ference set is a difference set with parameters (v, k, λ, n) = (4u2, 2u2 −
u, u2 − u, u2) for some positive integer u.

In this paper, we study Hadamard difference sets with u = 2a3b in abelian

groups with cyclic Sylow 3-subgroups. It is not known if any such differ-

ence sets exist, but the following necessary conditions for their existence are

known. Let Cm denote the cyclic group of order m.
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Result 1.3 Suppose there is a Hadamard difference set with u = 2a3b in an

abelian group C32b ×H, where H is an abelian 2-group. Then the following

hold.

(i) Let U be any subgroup of H such that exp(H/U) ≤ 4. Then |U | > 3b.

(ii) exp(H) ≤ 2a+2
√

2/3b−1.

The first part of Result 1.3 follows from [7, Thm. 4.3.3] and the second

part from [10, Thm. 3.3.2]. In Section 5, we will obtain the new necessary

condition 2a > 3b.

The main value of this paper lies in Section 6, in which we obtain substan-

tial information on some putative counterexamples to Lander’s conjecture.

This is used to rule out some sporadic cases, but the techniques will be useful,

in particular, for the further investigation of Hadamard difference sets with

u = 2a3b in abelian groups.

Suppose there is a Hadamard difference set of order u2 with u ≤ 20 in

an abelian group G which has a cyclic Sylow p-subgroup for some prime p

dividing u. Then, according to [4, Section 5], we have u = 12, p = 3, and G

is one of the following groups:

(a) C9 × C8 × C8,

(b) C9 × C16 × C4,

(c) C9 × C16 × C2 × C2.

We will rule out these three cases. To do this, we develop new methods to deal

with “sophisticated characters” (see Section 3 for their definition). Analogues

to sophisticated characters must occur for all putative counterexamples to

Lander’s conjecture (see Remark 5.2). Thus our methods are relevant to the

further investigation of this problem.

By [11, Thm. 6] and [9, Thm. 3.1], there are no Hadamard difference sets

of order u2 with 21 ≤ u ≤ 23 in abelian groups which have any cyclic Sylow

p-subgroup for a prime p dividing u. Thus we get the following.

Corollary 1.4 Lander’s conjecture holds for all Hadamard difference sets of

order at most 529.
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2 Preliminaries

We will need the following notation and standard facts. By ϕ we denote

the Euler totient function. Let G be a finite abelian group. A subset S of

G will be identified with the element
∑

g∈S g of the group ring Z[G]. For

B =
∑

g∈G bgg ∈ Z[G], we write |B| =
∑

g∈G bg and B(−1) =
∑

g∈G bgg
−1.

The integers bg are called the coefficients of B.

Write e = exp(G) and ζe = exp(2πi/e). We denote the group of complex

characters of G by Ĝ. We say that χ ∈ Ĝ is trivial on a subgroup H of

G if χ(g) = 1 for all g ∈ H. We call χ, τ ∈ Ĝ equivalent, if there is

σ ∈ Gal(Q(ζe)/Q) with τ(g) = χ(g)σ for all g ∈ G.

The following Results 2.1, 2.2, and 2.4 are standard, see [2, Vol. I, Chapter

VI].

Result 2.1 Let D be a k-subset of an abelian group G of order v. Then D

is a (v, k, λ, n) difference set in G if and only if DD(−1) = n + λG in Z[G].

This holds if and only if

|χ(D)|2 = n

for all nontrivial characters χ of G.

Result 2.2 Let G be a finite abelian group and D =
∑

g∈G dgg ∈ C[G]. Then

dg =
1

|G|
∑
χ∈Ĝ

χ(Dg−1)

for all g ∈ G.

Definition 2.3 Let p be a prime, let m be a positive integer, and write m =

pam′ with (p,m′) = 1, a ≥ 0. If there is an integer j with pj ≡ −1 ( mod m′),

then p is called self-conjugate modulo m. A composite integer n is called

self-conjugate modulo m if every prime divisor of n has this property.

Result 2.4 Suppose that A ∈ Z[ζm] satisfies |A|2 ≡ 0 mod t2b, where b, t

are positive integers, and t is self-conjugate modulo m. Then A ≡ 0 mod tb.

We will need the following result of Kronecker. See [3, Section 2.3, Thm. 2]

for a proof.
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Result 2.5 An algebraic integer all of whose conjugates have absolute value

1 is a root of unity.

Note that Result 2.5 implies that any cyclotomic integer of absolute value 1

must be a root of unity since the Galois group of a cyclotomic field is abelian.

The following is [10, Thm. 2.3.2].

Result 2.6 (F-bound) Let Y ∈ Z[ζm] be of the form

Y =
m−1∑
i=0

aiξ
i
m

with 0 ≤ ai ≤ C for some constant C and suppose that |Y |2 = n is an integer.

Then

n ≤ C2F (m,n)2

4ϕ(F (m,n))
.

The next result is a special case of [10, Thm. 2.2.2].

Result 2.7 Let m = pam′ where p is an odd prime prime, (p,m′) = 1,

and m ≡ 0 (mod 4). Let h be primitive element modulo p. Suppose that

Y ∈ Z[ζm] satisfies |Y |2 = pb for some b ≥ 1. Then there are an integer j, a

divisor u of p− 1, and Z ∈ Z[ξm′ ] such that

Y ζjm ∈ Z[ξm′ ] or X = ζjmZ

p−1∑
i=1

ζ iuζ
hi

p .

Furthermore, |Z|2 = pb−1.

We will need the following observation on character values of group ring

elements.

Lemma 2.8 Let W be an abelian group and let E =
∑

g∈W agg ∈ Z[W ]. Let

U be a subgroup of W and write U⊥ = {χ ∈ Ŵ : χ(g) = 1 for all g ∈ U}.
Then ∑

τ∈U⊥
χτ(E) = |U⊥|χ

(∑
g∈U

agg

)
for every χ ∈ Ŵ .
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Proof Note that
∑

τ∈U⊥ τ(g) = 0 for g ∈ W \ U . Hence∑
τ∈U⊥

χτ(E) =
∑
τ∈U⊥

∑
g∈W

agχ(g)τ(g)

=
∑
g∈W

agχ(g)

(∑
τ∈U⊥

τ(g)

)
= |U⊥|

∑
g∈U

agχ(g)

= |U⊥|χ

(∑
g∈U

agg

)
.

�

Let m and n be positive integers. We say that Y ∈ Z[ζm] is an n-Weil

number if |Y |2 = n. The following result classifies the Weil numbers which

play a role in this paper. For convenience, we categorize these numbers into

three types. The Weil numbers of “naive type” will be the those which are

equal to a root of unity times an integer. “Gauss type” Weil numbers are

those which are not naive, but divisible by the Gauss sum ζ3 − ζ23 . Finally,

Weil numbers of “sophisticated type” are those which are not divisible the

the Gauss sum ζ3 − ζ23 . As the further sections will show, it is exactly the

sophisticated Weil numbers which make the situation interesting and difficult

(thus their name).

For the proof of the classification of the relevant Weil numbers, we need

some standard facts from algebraic number theory, in particular, on prime

ideal factorization in cyclotomic fields. We refer the reader to [6] for the

necessary background.

Lemma 2.9 Let u = 2a3b and e = 2r3s, where a, b, r, s are positive integers.

Write X = 1 + ζ8 + ζ38 . Suppose that Y ∈ Z[ζe] satisfies the |Y |2 = u2. Then

there is an integer i such that Y ζ ie is one of the following.

(i) u (naive type),

(ii) 2a(ζ3 − ζ23 )cX2b−c or 2a(ζ3 − ζ23 )cX̄2b−c for some c with 1 ≤ c ≤ 2b− 1

(Gauss type),
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(iii) 2aX2b or 2aX̄2b (sophisticated type).

Proof Note that (Z/3sZ)∗ is cyclic of order 2 · 3s−1. It is straightforward

to verify that ord3s(2) = 2 · 3s−1 (alternatively, this follows from [10, Lem.

1.4.11]). Hence ord3s(2
3s−1

) = 2 = ord3s(−1). As (Z/3sZ)∗ is cyclic, this

implies

23s−1 ≡ −1 (mod 3s).

By Definition 2.3, this shows that 2 is self-conjugate modulo e. Hence Y ≡
0 (mod 2a) by Result 2.4. Write Y = 2aZ with Z ∈ Z[ζe]. Then |Z|2 = 32b.

Next, we show that we may assume r ≥ 3. If r ≤ 2, then 3 is self-

conjugate modulo e, as 3 ≡ −1 (mod 4). Hence Z ≡ 0 (mod 3b) by Result

2.4. Thus Y = uη for some η ∈ Z[ζe]. Since |Y |2 = u2, we conclude |η| = 1.

Hence η is a root of unity by Result 2.5. This implies Y = ζfe u for some

integer f and thus Y is of naive type. Hence we can assume r ≥ 3.

Recall that Z ∈ Z[ζe] and |Z|2 = 32b. By Result 2.7, there is an integer j

such that

Zζje ∈ Z[ζ2r ] or Z = ζje(ζ3 − ζ23 )T with T ∈ Z[ζ2r ]. (1)

We now need to consider the prime ideal factorization of 3Z[ζ2r ] in Z[ζ2r ].

By [10, Lem. 1.4.11], we have ord2r(3) = 2r−2. Thus the number of prime

ideals above 3Z[ζ2r ] is ϕ(2r)/ord2r(3) = 2. Write 3Z[ζ2r ] = p1p2, where p1

and p2 are prime ideals of Z[ζ2r ]. Recall that X = 1 + ζ8 + ζ38 . Note that

|X|2 = 3 and thus

(XZ[ζ2r ])(XZ[ζ2r ]) = 3Z[ζ2r ] = p1p2.

Hence we may assume

p1 = XZ[ζ2r ] and p2 = XZ[ζ2r ]. (2)

Recall that Zζje ∈ Z[ζ2r ] or Z = ζje(ζ3−ζ23 )T with T ∈ Z[ζ2r ] by (1). First

suppose that

Zζje ∈ Z[ζ2r ]. (3)
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Recall that and |Z|2 = 32b. As 3Z[ζ2r ] = p1p2, this implies

ZZ[ζ2r ] = pd11 pd22

for some nonnegative integers d1, d2 with d1+d2 = 2b. Using (2), we conclude

that Z = αXd1X̄d2 for some α ∈ Z[ζ2r ]. As |Z|2 = 32b and |X|2 = 3, we have

|α| = 1. Thus α is a root of unity by Result 2.5. Hence there is an integer k

such that

Y ζke = 2aZζke = 2aXd1X̄d2 . (4)

If d2 = 0, then d1 = 2b and Y is of sophisticated type. Similarly, if d2 = 0,

then Y is also of sophisticated type. Now suppose d := min(d1, d2) > 0. If

d = b, then Y ζke = 2a3b and thus Y is of naive type. Hence we may assume

d < b. Note that |ζ3 − ζ23 |2 = −(ζ3 − ζ23 )2. Thus

|X|2d = 3d = |ζ3 − ζ23 |2d = (−1)d(ζ3 − ζ23 )2d.

Using (4), we conclude

Y ζke = 2a|X|2dXd1−dX̄d2−d = 2a(−1)d(ζ3 − ζ23 )2dXd1−dX̄d2−d.

Note that d1 = d or d2 = d. First suppose that d1 = d. Then 2b = d1 + d2 =

d+ d2 and

Y ζke (−1)d = 2a(ζ3 − ζ23 )2dX̄d2−d = 2a(ζ3 − ζ23 )2dX̄2b−2d.

As d < b, we conclude that Y is of Gauss type. Similarly, if d2 = d, then Y

is also of Gauss type. In summary, we have shown that the assertion of the

Lemma is correct if (3) holds.

Now suppose that

Z = ζje(ζ3 − ζ23 )T with T ∈ Z[ζ2r ].

Then |T |2 = 32b−1 and a similar argument as above shows that T = ζk2rX
d1X̄d2

for some integer k and nonnegative integers d1, d2 with d1+d2 = 2b−1. Again,

by a similar argument as above,

Y = 2aZ = 2aζje(ζ3 − ζ23 )T = 2aζjeζ
k
2r(ζ3 − ζ23 )Xd1X̄d2

is of Gauss type. �
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3 Setup

Let u = 2a3b, where a and b are positive integers, and G = H × K, where

H is an abelian group of order 22a+2 and K ∼= C32b . Let z be a generator of

K and let P be the subgroup of order 3 of K. Suppose that G contains a

(4u2, 2u2 − u, u2 − u, u2) difference set D. We write

D =
32b−1−1∑
i=0

Diz
i,

Di = Di0 +Di1z
32b−1

+Di2z
2·32b−1

for i = 0, 1, 2 with Di ⊂ H × P and Dij ⊂ H.

Write e = exp(G). For any nontrivial character χ of G, we have χ(D) ∈
Z[ζe] and |χ(D)|2 = u2 by Result 2.1. Hence χ(D) is one of the Weil numbers

listed in Lemma 2.9.

Throughout this paper, we fix the putative difference set D. This allows

us to speak of naive, Gauss type, and sophisticated characters without ex-

plicit reference to D. For instance, by a “sophisticated character”, we mean

a character χ such that χ(D) is of sophisticated type.

4 Building Set Property

Let χ be a character of G which is nontrivial on H × P . We say that χ has

the “building set property” (c.f. [5]) if there is i ∈ {0, . . . , 32b−1 − 1} with

|χ(Di)| = u2 and χ(Dj) = 0 for all j 6= i.

Lemma 4.1 Let χ be a character of G whose order is divisible by 32b. Then

χ has the building set property.

Proof Write f = exp(H). Note that

χ(D) =
32b−1−1∑
i=0

χ(Di)χ(z)i
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with χ(Di) ∈ Z[ζ3f ]. Recall that we write e = exp(G) and that we have

X ∈ Z[ζ8] in Lemma 2.9 and thus X(ζ3 − ζ23 ) ∈ Z[ζ24]. Hence

χ(D)ζje ∈ Z[ζ3f ] (5)

for some integer j for Lemma 2.9. Note that χ(z) is a primitive 32bth root of

unity. Thus {χ(z)i : i = 0, . . . , 32b−1−1} is linearly independent over Q(ζ3f ).

Together with (5), this implies that there is at most one i with χ(Di) 6= 0.

�

Lemma 4.2 Let φ be a character of G which is trivial on K and let τ be a

character of G of order 32b. We have

(i) φ(Di) + φτ(Di) + φτ 2(Di) ≡ 0 (mod 3),

(ii) φ(Di) ≡ 0 (mod 2a)

for i = 0, . . . , 32b−1 − 1.

Proof Note that the restriction of τ to H × P is a character of H × P of

order 3. By Lemma 2.8 (with W = H × P and U = H), we have

3φ(Di0) = φ(Di) + φτ(Di) + φτ 2(Di).

This implies (i).

Let α be a character of G of order 32b−1. Note that 〈α〉 = (H × P )⊥. By

Lemma 2.8 (with W = G and U = H × P ), we have

32b−1φ(Di) =
32b−1−1∑
i=0

φαi(D).

But φαi(D) ≡ 0 (mod 2a) for all i by Lemma 2.9. This implies (ii). �

We now show that sophisticated characters have a property which is even

stronger than the building set property. In the proof, we use some stan-

dard facts from algebraic number theory. We refer the reader to [6] for the

necessary background.
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Lemma 4.3 Let χ be a character of order dividing f = exp(H) and assume

that χ is of sophisticated type. Then there are i ∈ {0, . . . , 32b−1 − 1} and

j ∈ {0, 1, 2} such that χ(Dij) 6= 0 and χ(Drs) = 0 for all pairs (r, s) 6= (i, j).

Proof If f divides 4, then there is no sophisticated character by Lemma 2.9.

Thus f is divisible by 8.

Replacing D by a translate, if necessary, we can assume χ(D00) 6= 0. Let

τ be a character of G of order 32b. By Lemma 2.8, we have

32bχ(D00) =
32b−1∑
k=0

χτ k(D). (6)

Note that χ(g) ≡ χτ k(g) (mod 1− ζ32b) for all g ∈ G and thus

χ(D) ≡ χτ k(D) (mod 1− ζ32b) (7)

for all k. Recall that e = exp(G) = 32bf .

As in the proof of Lemma 2.9, we see that 3Z[ζf ] = (XZ[ζf ])(X̄Z[ζf ])

and XZ[ζf ] and X̄Z[ζf ] are prime ideals of Z[ζf ]. Both of these prime ideals

are totally ramified in Q(ζe)/Q(ζf ). Hence there is a prime ideal p of Z[ζe]

with

XZ[ζe] = pϕ(3
2b) and X̄Z[ζe] = p̄ϕ(3

2b). (8)

Furthermore, we have pp̄ = (1 − ζ32b)Z[ζe], as XX̄Z[ζe] = 3Z[ζe] = (1 −
ζ32b)

ϕ(32b)Z[ζe]. Since χ is of sophisticated type, we have

χ(D)Z[ζe] = 2aX2bZ[ζe] or χ(D)Z[ζe] = 2aX̄2bZ[ζe] (9)

by Lemma 2.9. By (8) and (9), either p or p̄ does not divide χ(D)Z[ζe].

Hence we can assume that p does not divide χ(D)Z[ζe]. Note that p divides

(1 − ζ32b)Z[ζe], as pp̄ = (1 − ζ32b)Z[ζe]. By (7), we conclude χτ k(D) 6∈ p for

all k. Hence χτ k(D) is of sophisticated type, too, and

χτ k(D) = ζj(k)e χ(D)

for some integers j(k) by Lemma 2.9. If j(k) 6≡ 0 (mod f), then χ(D) −
χτ k(D) = (1 − ζ

j(k)
e )χ(D) 6∈ p. This contradicts (7) and hence there are

integers l(k) such that

χτ k(D) = ζ
l(k)

32b
χ(D) (10)
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for all k. Write

T =
32b−1∑
k=0

ζ
l(k)

32b
.

From (6) and (10), we get

χ(D)T ≡ 0 (mod 32b). (11)

As χ(D) is of sophisticated type, we may assume χ(D) = 2aX2b. Recall that

we have shown that XZ[ζf ] and X̄Z[ζf ] are distinct prime ideals of Z[ζf ].

Hence XZ[ζe] and X̄Z[ζe] are coprime. As XX̄ = 3, we conclude

T ≡ 0 (mod X̄2b) (12)

from (11). Define σ ∈ Gal(Q(ζe)/Q) by ζσ
32b

= ζ32b and ζσf = ζ̄f . Applying σ

to (12) shows T ≡ 0 (mod X2b) and thus

T ≡ 0 (mod 32b). (13)

Note that T 6= 0, since Tχ(D) = 32bχ(D00) by (6) and χ(D00) 6= 0. Let N

denote the absolute norm of Q(ζ32b). Note that T σ ≡ 0 (mod 32b) for all

σ ∈ Gal(Q(ζ32b)/Q) by (13). Thus

N(T ) ≡ 0 (mod
(
32b
)|Gal(Q(ζ

32b
)/Q)|

)

and N(T ) is a nonzero integer. Hence |N(T )| ≥
(
32b
)|Gal(Q(ζ

32b
)/Q)|

, and this

implies that there is κ ∈ Gal(Q(ζ32b)/Q) with |T κ| ≥ 32b. As T κ is a sum

of 32b roots of unity and |T κ| ≥ 32b, all these root of unity must be equal.

This means that l(k) = c for all k for some fixed integer c. Since T =

32bχ(D00)χ(D)−1 ∈ Q(ζf ), we conclude c = 0 and thus T = 32b. Hence

χ(D) = χ(D00) by (6).

Now let (r, s) 6= (0, 0). Recall that we have shown l(k) = 0 for all k. This

implies χτ k(D) = χ(D) for all k. By Lemma 2.8, we have

32bχ(Drs) =
32b−1∑
k=0

χτ k(Dz−r−3
2b−1s) = χ(D)

32b−1∑
k=0

τ k(z−r−3
2b−1s). (14)

But z−r−3
2b−1s 6= 1, since (r, s) 6= (0, 0). Thus

∑32b−1
k=0 τ k(z−r−3

2b−1s) = 0 and

hence χ(Drs) = 0. �
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Corollary 4.4 Let χ be a character of sophisticated type and let 2m be the

highest power of 2 dividing the order of χ. Then

2m ≤ 2a+3

3b
.

Proof By Lemma 4.3, we have |χ(Dij)| = |χ(D)| = u2 for some integers i, j.

Since the kernel of χ on H has order 22a+2−m, we can write

χ(Dij) =
2m−1∑
k=0

akζ
k
2m

for some integers ak with 0 ≤ ak ≤ 22a+2−m. Hence

u2 ≤ 24a+4−2m82

4 · 4
by Result 2.6. This implies the assertion. �

5 A Necessary Condition

We use the results of the previous sections to derive a necessary condition for

the existence of Hadamard difference sets with u = 2a3b in abelian groups

with cyclic Sylow 3-subgroups.

Theorem 5.1 Suppose that a Hadamard difference set with u = 2a3b exists

in an abelian group which has a cyclic Sylow 3-subgroup. Then 2a > 3b.

Proof We use the notation introduced in the previous sections. Suppose

that 2a < 3b. Let χ be a character of sophisticated type and let 2m be the

highest power of 2 dividing the order of χ. Then

2m ≤ 2a+3

3b
= 8

2a

3b
< 8

by Corollary 4.4 and the assumption 2a < 3b. But by Lemma 2.9 there is no

sophisticated character of order < 8, as X involves ζ8. Hence there are no

characters of sophisticated type.

Note that χ(D) ≡ 0 (mod 1− ζ3) for all characters χ of naive and Gauss

type. For characters of Gauss type this is clear from their definition, and
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for characters of naive type this follows from 3 ≡ 0 (mod 1− ζ3). Hence, as

there are no sophisticated characters, we have χ(D) ≡ 0 (mod 1− ζ3) for all

characters χ of G. Let ρ : Z[G] → Z[ζ32b ][H] be the homomorphism defined

by ρ(z) = ζ32b and ρ(h) = h for all h ∈ H. Note that

Ker(ρ) = {XP : X ∈ Z[G]},

where P is the subgroup of G of order 3. Since χ(D) ≡ 0 ( mod 1−ζ3) for all

characters χ of G, we have ρ(D) ≡ 0 (mod 1− ζ3) by the inversion formula.

Hence there is Y ∈ Z[G] with ρ(D) = ρ((1−w)Y ), where w is an element of

order 3 of G. This implies

D = (1− w)Y + ZP (15)

for some Z ∈ Z[G]. Let β : G → G/P be the canonical epimorphism. We

have β(D) ≡ 0 (mod 3) by (15). But since D has coefficients 0, 1 only, this

implies D = PZ for some Z ⊂ G. This is impossible by Result 2.1. �

Remark 5.2 In the proof of Theorem 5.1 we showed that there must be at

least one sophisticated character. This result can be extended to all putative

counterexamples to Lander’s conjecture as follows. Let G be an abelian group

of order v containing a difference D set of order n. Let p be a prime dividing

v and n, and suppose the Sylow p-subgroup of G is cyclic. Then there is a

nontrivial character χ of with χ(D) 6≡ 0 (mod 1− ζp). This observation will

be used in further publications (in preparation).

6 The Case b = 1

Throughout the rest of the paper, let b = 1. This is a particularly interesting

and difficult case, as the cyclic Sylow 3-subgroup is as small as possible. As

Theorem 5.1 indicates, groups with larger cyclic Sylow 3-subgroups seem to

be less likely to contain Hadamard difference sets.

Lemma 6.1 Let φ be a character of H × P which is trivial on P and non-

trivial on H. Then exactly one of the values φ(Di), i = 0, 1, 2, is nonzero.

14



Proof Let τ be a character of order 3 of H×P . Note that τ can be extended

to a character of order 9 of G and that 32b = 9, as we assume b = 1. Thus,

by Lemma 4.1, there is j ∈ {0, 1, 2} such that φτ(Dk) = 0 for k 6= j. As φτ 2

is equivalent to φτ , this implies φτ 2(Dk) = 0 for k 6= j. Hence

φ(Dk) ≡ 0 (mod 3 · 2a) (16)

for k 6= j by Lemma 4.2.

If φ(Dk) = 0 for all k 6= j, then the assertion of the Lemma holds. Thus

suppose φ(Dk) 6= 0 for some k 6= j. Recall that u = 3 ·2a. Note that φ(Dk) ∈
Z[ζf ]. As φ(Dk) ≡ 0 (mod u) by (16), we have φ(Dk)

σ ≡ 0 (mod u) for all

σ ∈ Gal(Q(ζf )/Q). Thus

N(φ(Dk)) ≡ 0 (mod uf/2),

where N denotes the absolute norm of Q(ζf ). Since N(φ(Dk)) is a nonzero

integer, it follows that |φ(Dk)
σ| ≥ u for some σ ∈ Gal(Q(ζf )/Q).

On the other hand, as D is a Hadamard difference set of order u2, we

have

D0D
(−1)
0 +D1D

(−1)
1 +D2D

(−1)
2 = u2 + (u2 − u)(H × P )

by Result 2.1. This implies

|φ(D0)
σ|2 + |φ(D1)

σ|2 + |φ(D2)
σ|2 = u2.

As |φ(Dk)
σ| ≥ u, it follows that |φ(Dk)

σ| = u and φ(Dr)
σ = 0 for r 6= k.

Hence φ(Dr) = 0 for r 6= k, too. �

Consider any character χ of G which is nontrivial on H ×P . If the order

of χ is divisible by 9, then χ has the building set property by Lemma 4.2. If

the order of χ is not divisible by 9, then χ|H×P is trivial on P and nontrivial

on H. Thus χ has the building set property by Lemma 6.1.

In summary, we have shown the following.

Lemma 6.2 For every character χ of G which is nontrivial on H×P , there

is i ∈ {0, 1, 2} with |χ(Di)| = u and χ(Dj) = 0 for j 6= i.
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Corollary 6.3 We have

{|D0|, |D1|, |D2|} = {(2a+1 − 1)u, 2a+1u, 2a+1u}

(viewed as an equality of multisets).

Proof Let χ be the character of G of order 3 with χ(z) = ζ3. Note that

χ(D) ≡ 0 (mod u), since u is self-conjugate mod 3. Replacing D by a

translate, if necessary, we can assume

|D0|+ ζ3|D1|+ ζ23 |D2| = χ(D) = ±u.

Hence, if χ(D) = u, then, as multisets, {|D0|, |D1|, |D2|} = {2a+1(u −
1), 2a+1(u − 1), 2a+1(u − 1) + u}. Let τ be a character of order 9 of G.

Lemma 6.2 implies that τ(Di) = 0 for some i ∈ {0, 1, 2}. But this implies

that |Di| is divisible by 3, a contradiction. Hence we conclude χ(D) = −u
and this implies {|D0|, |D1|, |D2|} = {(2a+1− 1)u, 2a+1u, 2a+1u} as multisets.

�

6.1 The Homomorphic Images of the Di in Z[H]

Recall that we assume b = 1 and write

D = D0 + zD1 + z2D2

with Di ⊂ H×P . In view of Corollary 6.3, we may assume |D0| = (2a+1−1)u,

|D1| = |D2| = 2a+1u.

Corollary 6.4 Write f = exp(H) and X = 1 + ζ8 + ζ38 . Let i ∈ {0, 1, 2}
and let χ be character of G which is nontrivial on H and trivial on K. Then

there is an integer k, depending on χ, such that

ζkfχ(Di) ∈ {0, u, 2aX2, 2aX̄2}. (17)

Furthermore, if the order of χ divides 4, there is an integer s with

ζs4χ(Di) ∈ {0, u}. (18)
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Proof Lemma 6.2 implies

χ(Di) = ζjfχ(D) (19)

for some integer j. Note that χ(D) cannot be of Gauss type, since χ is of

order dividing f . Moreover, if the order of χ divides 4, then χ(D) cannot

be of sophisticated type either. Hence (17) and (18) follow from (19) and

Lemma 2.9. �

Lemma 6.5 Let ρ : H × P → H be the canonical epimorphism and write

D̄i = ρ(Di), i = 0, 1, 2. Let xi be the number of nontrivial characters χ of

H with |χ(D̄i)| = u and let yi be the number of coefficients of D̄i which are

divisible by 3. Then

8y0 = 9x0 − 22a+2 + 9 and

8yi = 9xi − 22a+2 for i = 1, 2.
(20)

Furthermore,
2∑
i=0

xi = 22a+2 − 1 and
2∑
i=0

yi = 3 · 22a. (21)

Proof Write Di =
∑

g∈H aigg with aig ∈ {0, 1, 2, 3}, and let Ei = 3H − 2D̄i.

Note that 3 − 2aig = ±1 if aig = 1 or 2; and 3 − 2aig = ±3 if aig = 0 or 3.

Hence the coefficient of of 1 in EiE
(−1)
i is∑

g∈H

(3− 2aig)
2 = 9yi + (22a+2 − yi) = 8yi + 22a+2. (22)

On the other hand, by Lemma 6.4, we have χ(D̄i) = 0 for each nontrivial

character χ of H with |χ(D̄i)| 6= 12. Thus, by Result 2.2, the coefficient of

of 1 in EiE
(−1)
i is

1

22a+2
((3 · 22a+2 − 2|Di|)2 + 9 · 22a+2xi). (23)

From (22) and (23), we get

8yi + 22a+2 =
1

22a+2
((3 · 22a+2 − 2|Di|)2 + 9 · 22a+2xi).

Since |D0| = (2a+1 − 1)u and |D1| = |D2| = 2a+1u, we get (20).

Lemma 3.2 shows that every nontrivial character of H contributes to

exactly one of the numbers xi. Thus
∑
xi = 22a+2 − 1. Finally, the second

equation in (21) follows from the first and (20). �
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6.2 The case b = 1 and a = 2

From now on, let b = 1 and a = 2. We view characters χ of H also as

characters of G = H ×K by setting χ(g) = 1 for all g ∈ K. For i = 0, 1, 2,

let Ni, respectively Si, be the set of nontrivial characters of H of naive,

respectively sophisticated, type. Recall that characters of H cannot be of

Gauss type. Thus χ(Di) = 0 for all nontrivial characters χ of H with χ /∈
Ni ∪ Si. Thus Result 2.2 implies

64D̄i = |Di|H +
∑
g∈H

[∑
χ∈Si

χ(Di)χ(g−1) +
∑
χ∈Ni

χ(Di)χ(g−1)

]
g. (24)

Note that Ni and Si are unions of equivalence classes of characters. Further-

more, by Lemma 2.9 and Corollary 4.4, every character in Si has order 8.

Suppose there are exactly ri inequivalent characters in Si, say τ1, τ2, . . . , τri .

Let Tr denote the absolute trace of Q(ζ8) and write D̄i =
∑

g∈H agg. Then

64D̄i =
∑
g∈H

64agg = |Di|H +
∑
g∈H

[
ri∑
j=1

Tr(τj(Dig
−1)) +

∑
χ∈N

χ(Di)χ(g−1)

]
g.

Recall that |Di| ≡ 0 (mod 3) for all i by Corollary 6.3. As χ(Di) ≡ 0 mod 3

for all χ ∈ Ni, we conclude that

ag ≡ 0 mod 3 if and only if

ri∑
j=1

Tr(τj(Dig
−1)) ≡ 0 mod 3. (25)

It turns out that (25) gives enough information on the values yi defined in

Lemma 6.5 to show that no Hadamard difference sets exist in C9×C16×C4,

C9×C16×C2×C2, and C9×C8×C8. The last of these groups is by far the

most difficult case, since we have to deal with a larger number of equivalence

classes of sophisticated characters than in the first two cases.

6.3 The Groups C9 ×C16 ×C4 and C9 ×C16 ×C2 ×C2

Suppose that H = C16 × C4 or H = C16 × C2 × C2. We continue to use

the notation introduced above. Recall that all sophisticated characters of H

have order 8. Note that there are exactly 4 equivalence classes of characters
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of order 8 of H. Hence there is i ∈ {0, 1, 2}, such that the set Si consists of

at most 1 equivalence class, i.e., ri ≤ 1.

Recall that yj ≡ 1 ( mod 9) for j = 0, 1, 2 by Lemma 6.5 and y0+y1+y2 =

48. If ri = 0, then yi = 64 by (25), which is impossible. Hence ri = 1 and we

can assume

τ1(Di) = 4(−1 + 2ζ8 + 2ζ38 ) (26)

by Lemma 2.9. Recall that τ1 is a character of H of order 8. It is straightfor-

ward to check that (26) implies that Tr(τ1(Dig
−1)) takes each of the values

0 and ±32 exactly 16 times and each of the values ±16 exactly 8 times when

g ranges over H. This implies yi = 16, contradicting yi ≡ 1 (mod 9). Hence

no Hadamard difference sets exist in C9 ×C16 ×C4 and C9 ×C16 ×C2 ×C2.

6.4 The Group C9 × C8 × C8

Suppose that H = C8 × C8. Recall that yi ≡ 1 mod 9 for i = 0, 1, 2. As

y0 +y1 +y2 = 48, we have yi ∈ {1, 10} for at least one i. From now on, we fix

such an i with yi ∈ {1, 10} and write N = Ni, S = Si, r = ri for convenience.

Note that xi ≤ 16 by Lemma 6.5.

For each j = 1, . . . , r, there exists a unique involution hj in H with

τj(hj) = 1. We claim that the hj’s are not all equal. Otherwise, we

have τ1(h) = · · · = τr(h) = ±1 for every involution h ∈ H. Therefore,∑r
j=1 Tr(τj(Dig

−1)) = ±
∑r

j=1 Tr(τj(Di(gh)−1)) for all g ∈ H and all involu-

tions h in H. Thus (25) shows that ag ≡ 0 mod 3 if and only if agh ≡ 0 mod 3,

for all involutions h ∈ H. This implies yi ≡ 0 (mod 4), which contradicts

yi ∈ {1, 10}. Thus we may assume r ≥ 2 and h1 6= h2.

Let g1, g2, g3 denote the involutions in H.

Lemma 6.6 Write Xj = {χ ∈ N ∪ S : χ(gj) = −1} for j = 1, 2, 3. Then∑
χ∈Xj

χ(Di)χ(g−1) ≡ 0 mod 32

for all g ∈ G.
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Proof Note that (24) implies

64|ag − aggj | = 2

∣∣∣∣∣∣
∑
χ∈Xj

χ(Di)χ(g−1)

∣∣∣∣∣∣ .
�

Next, recall that all τj’s are sophisticated. It is straightforward to verify

the following.

Lemma 6.7 Let 〈x〉 be a cyclic subgroup of order 8 in H.

(i) Suppose the restriction of τj to 〈x〉 has order 8. Then Tr(τj(Di(gx
k)−1)

takes each of the values 0, 32,−32 exactly twice and each of the values ±16

exactly once for k = 0, . . . , 7.

(ii) Suppose the restriction of τj to 〈x〉 has order 4. Then

{Tr(τj(Di(gx
k)−1)) : k = 0, . . . , 3} = {0, 16,−16} or {32,−32}.

We are now ready to prove that no such Di exists. Recall that we assume

h1 6= h2 and r ≥ 2. Let H1 = Ker τ1. Then τ2|H1 is of order 8. We write

H =
⋃7
j=0H1h

j for some h ∈ H. Note that Tr(τ1(Di(g
−1)) remains constant

when g ranges over H1h
j. On the other hand, Tr(τ2(Di(g

−1)) takes each of

the values 0,±32 twice and each value ±16 once when g varies over H1h
j.

By (24), this implies that yi ≥ 16 if r = 2, contradicting yi ∈ {1, 10}. Thus

r ≥ 3.

Now suppose |{h1, . . . , hr}| = 3. Without loss of generality, we may

assume that h1, h2, h3 are distinct and h3 = g3. As |xi| ≤ 16, there exists at

most one equivalence class of characters of order 8 in S ∪ N different from

the equivalence classes of τ1, τ2, and τ3. We may therefore assume that all

characters in S ∪N which are not equivalent to τ1 or τ2 map g3 to 1. Thus,

by Lemma 6.6, we have∑
χ∈X3

χ(Di)χ(g−1) = Tr(τ1(Dig
−1)) + Tr(τ2(Dig

−1)) ≡ 0 mod 32 (27)
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for all g ∈ H. This is impossible as Tr(τ1(Di(g
−1)) remains constant and

Tr(τ2(Di(g
−1)) takes values 0,±16,±32 when g varies over H1h

j. Thus

|{h1, . . . , hr}| = 2 and we may assume h3 = h2. Hence τ2 6∈ X3. We have

τ1 ∈ X3, since h1 6= h3, and τ3 6∈ X3 by the definition of X3.

Note that X3 only contains characters of order 8. As Tr(τ1(Dig
−1)) takes

values ±16 for some g ∈ H, Lemma 6.6 implies that X3 contains a character

τ inequivalent to τ1. Since xi ≤ 16, we conclude that S ∪N consists exactly

of the characters equivalent to one of τ, τ1, τ2 or τ3 and that xi = 16. This

implies |Di| = 96. Furthermore,∑
χ∈X3

χ(Di)χ(g−1) = Tr(τ1(Dig
−1)) + Tr(τ(Dig

−1)) ≡ 0 mod 32 (28)

for all g ∈ H by Lemma 6.6.

We first consider the case τ ∈ N . Let H ′ = Ker τ . It follows from

the definition of N that there exists h ∈ H with Tr(τ(Dig
−1)) = 48 for all

g ∈ H ′h. By Lemma 24 and (28), we conclude that Tr(τ1(Dig
−1)) = ±16 for

all g ∈ H ′h. However, as τ is not equivalent to τ1, Lemma 6.7 shows that the

order of τ1 on H ′ is 2. Let F = Ker τ1 6= H ′. We can write H ′h = Ff1 ∪Ff2
such that

Tr(τ1(Dig
−1)) =

{
16 if g ∈ Ff1
−16 if g ∈ Ff2.

Recall that

96 + Tr(τ(Dig
−1)) +

3∑
j=1

Tr(τj(Dig
−1)) ≡ 0 mod 64

by (24). We therefore have

Tr(τ2(Dig
−1)) + Tr(τ3(Dig

−1)) ≡

{
32 mod 64 if g ∈ Ff1,
0 mod 64 if g ∈ Ff2.

(29)

As both τ2, τ3 are of order 8 on H ′, it is easy to see that for j = 1, 2, we have

{{Tr(τj(Dig
−1)) : g ∈ Ff1}, {Tr(τj(Dig

−1)) : g ∈ Ff2}}
= {{0, 16,−16}, {32,−32}}.
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Observe that∑
χ∈X1

χ(Di)χ(g−1) = Tr(τ2(Dig
−1)) + Tr(τ3(Dig

−1)) ≡ 0 mod 32

by Lemma 6.6. This forces

{Tr(τ2(Dig
−1)) : g ∈ Ffk} = {Tr(τ3(Dig

−1)) : g ∈ Ffk}.

for k = 1, 2. By (29), it follows that {Tr(τ2(Dig
−1)) : g ∈ Ff1} 6= {32,−32}.

But hence both Tr(τ2(Dig
−1)) and Tr(τ3(Dig

−1)) take the value 0 twice and

the values 16,−16 once, when g ranges over Ff1. But this contradicts (29).

Finally, we deal with the case τ ∈ S with a similar argument. We just

need to take h such that Tr(τ(Dig
−1)) = 16 for all g ∈ H ′h. Hence no

Hadamard difference set exists in C9 × C8 × C8. �

Together with previously known results (see [4]), our results imply that

there is no Hadamard difference set in any group C9 × H, where H is an

abelian 2-group of order at most 64. We believe the following problem de-

serves further study.

Question 6.8 Does there exist a Hadamard difference set in any group C9×
H, where H is an abelian group of order 22a, a ≥ 4?
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