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Abstract

This survey concerns the following closely related concepts.

• Group invariant Butson matrices,

• generalized bent functions,

• cyclic n-roots,

• generalized Hadamard matrices,

• abelian splitting semiregular difference sets.

We explain the connections between these notions and show that group

invariant Butson matrices can be viewed as their “common denomina-

tor”. We also review the most relevant known results on these objects,

some of which are quite recent.
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1 Introduction

The notions of group invariant Butson and generalized Hadamard matrices,

bent functions, cyclic n-roots, and abelian semiregular relative difference sets

are closely related. In fact, they have a “common denominator”, which is

group invariant Butson matrices. Bent functions, group invariant generalized

Hadamard matrices, and abelian semiregular relative difference sets are all

either equivalent to group invariant Butson matrices or to group invariant

Butson matrices with additional properties. The first purpose of this survey is

to explain these connections and to provide a general framework and notation

for their discussion. The second purpose is to review some “old” results in

the light of this framework. The final purpose is to survey some more recent

results on generalized Bent functions and group and group invariant Butson

matrices, which seems appropriate, as this area has been quite active over

the last decade.

We will start our discussion with the definition of group invariant Butson

matrices in the following section and deal with their relations to the other

notions subsequently.

We first fix some notation and basics we will use throughout this paper.

For a positive integer a, write ζa = exp(2πi/a) and let Ua denote the set of

ath roots of unity in C, i.e.,

Ua = {ζja : j = 0, . . . , a− 1}.

The cyclic group of order a is denoted by Za and we identify Za with

{0, . . . , a− 1}, the group operation being addition of integers modulo a.

For a prime p and an integer t, let νp(t) denote the p-adic valuation of t,

that is, pνp(t) is the largest power of p dividing t. For groups K and W , we

say that K has a direct factor W if K ∼= W × V for some group V .

Let G be a multiplicatively written finite abelian group (we use multi-

plicative notation in this section, as this is standard when group rings are

used, but we will switch to additive notation in the remaining sections). Let

exp(G) denote the least common multiple of the orders the elements of G.
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A |G| × |G| matrix A = (ag,k)g,k∈G is called G-invariant (or just group

invariant) if agl,kl = ag,k for all g, k, l ∈ G.

Let R be a ring and let R[G] denote the group ring of G over R. The

elements of R[G] have the form X =
∑

g∈G agg with ag ∈ R. The ag’s

are called the coefficients of X. Two elements X =
∑

g∈G agg and Y =∑
g∈G bgg in R[G] are equal if and only if ag = bg for all g ∈ G. A subset

S of G is identified with the group ring element
∑

g∈S g. For the identity

element 1G of G and λ ∈ R, we write λ for the group ring element λ1G. For

R = Z[ζh] and X =
∑

g∈G agg ∈ Z[ζh][G], we write

X(−1) =
∑
g∈G

agg
−1,

where ag denotes the complex conjugate of ag.

The group of complex characters of G is denoted by Ĝ. The trivial

character χ0 is defined by χ0(g) = 1 for all g ∈ G. The order of a character

χ is the smallest positive integer e such that χ(g)e = 1 for all g ∈ G. For

D =
∑

g∈G agg ∈ R[G] and χ ∈ Ĝ, write χ(D) =
∑

g∈G agχ(g). The following

is a standard result and a proof can be found [3, Ch. VI], for instance.

Result 1.1. Let G be a finite abelian group and D =
∑

g∈G agg ∈ C[G].

Then

ag =
1

|G|
∑
χ∈Ĝ

χ(Dg−1)

for all g ∈ G. Consequently, if D,E ∈ C[G] and χ(D) = χ(E) for all

nontrivial characters χ of G, then D = E+αG for some α ∈ C. Furthermore,

χ(G) = 0 for every nontrivial character χ of G.

2 Connection Between Group Invariant But-

son Matrices and Other Notions

In this section, we clarify the connection between group invariant Butson

matrices and the other objects mentioned in the introduction. We start with

the definition and characterization of group invariant Butson matrices.
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2.1 Group Invariant Butson Matrices

Let h be a positive integer. An n × n-matrix H with entries from Uh is

called a Butson matrix if HH∗ = nI, where H∗ is the complex conjugate

transpose of H and I is the identity matrix of order n. We say that H is a

BH(n, h) matrix. If H is a G-invariant BH(|G|, h) matrix for some group

G, then H is said to be a BH(G, h) matrix.

The next result is from [8]. We include a proof for the convenience of the

reader.

Lemma 2.1. Let G be a finite abelian group, let h be a positive integer,

and let ag, g ∈ G, be complex hth root of unity. Consider the element D =∑
g∈G agg of Z[ζh][G] and the G-invariant matrix H = (Hg,k), g, k ∈ G given

by Hg,k = ag−k. Then H is a BH(G, h) matrix if and only if

DD(−1) = |G|. (1)

Moreover, (1) holds if and only if

|χ(D)|2 = |G| for all χ ∈ Ĝ. (2)

Proof. Let g ∈ G be arbitrary. The coefficient of g in DD(−1) is∑
k,l∈G
k−l=g

akal =
∑
l∈G

al+gal.

On the other hand, the inner product of row x+ g and row x of H is∑
k∈G

Hx+g,kHx,k =
∑
k∈G

ax+g−kax−k =
∑
l∈G

al+gal

Hence (1) holds if and only if any two distinct rows of H have inner product

0, that is, if and only if H is a BH(G, h) matrix. Finally, the equivalence of

(1) and (2) follows from Result 1.1.

2.2 Generalized Bent Functions

The term “bent function” has been used with various meanings in the liter-

ature. We use the most general natural extension of the original version of
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“bent functions” studied by Rothaus [22, 23]. Let q,m, h be positive integers.

A function f : Zmq → Zh is called a generalized bent function (GBF) if∣∣∣∣∣∣
∑
x∈Zm

q

ζ
f(x)
h ζ−vx

T

q

∣∣∣∣∣∣
2

= qm for all v ∈ Zmq . (3)

Here vxT denotes the usual dot product, that is, vxT =
∑m

i=1 vixi for v =

(v1, . . . , vm) and x = (x1, . . . , xm).

Remark 2.2. Suppose that a GBF f : Zmq → Zh exists and that k is a

multiple of h. Then there is a GBF Zmq → Zk.

Indeed, the function g given by g(x) = (k/h)f(x) for all x ∈ Zmq is a

GBF.

The following shows that GBFs are a special kind of group invariant

Butson matrices.

Proposition 2.3. Let q,m, h be positive integers, and let f : Zmq → Zh be a

function. Then f is a GBF if and only if the element

D :=
∑
x∈Zm

q

ζ
f(x)
h x

of Z[ζh][Zmq ] defines a BH(Zmq , h) matrix via Lemma 2.1.

Proof. Write G = Zmq . Let v ∈ G and consider the map

χv : G→ C, x 7→ ζ−vx
T

q .

Note that χv(x+ y) = χv(x)χv(y) for all x, y ∈ G. Thus χv is a character of

G. Moreover, it is easy to check that χv 6= χw whenever v 6= w. As |Ĝ| = |G|,
we conclude

Ĝ = {χv : v ∈ G} (4)

Note that

χv(D) =
∑
x∈G

ζ
f(x)
h χv(x) =

∑
x∈G

ζ
f(x)
h ζ−vx

T

q . (5)

By (2), (4), and (5), we indeed have that f is a GBF if and only if D defines

a BH(Zmq , h) matrix.
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2.3 Cyclic n-Roots

Cyclic n-roots were introduced by Björck [4] in 1989 and provide an alterna-

tive approach to Butson matrices invariant under cyclic groups. The main

construction of cyclic n-roots was obtained by Backelin [2] in the same year,

but it seems that later quite a number of researchers working on equiva-

lent problems were not aware of Backelin’s result, with the effect that his

construction or special cases of it were rediscovered in some publications.

Let n be a positive integer. A vector (z0, . . . , zn−1)
T ∈ Cn is called a

cyclic n-root if it satisfies the following system of equations

z0 + z1 + · · ·+ zn−1 = 0

z0z1 + z1z2 + · · ·+ zn−1z0 = 0

z0z1z2 + z1z2z2 + · · ·+ zn−1z0z1 = 0

...
...

z0z1 · · · zn−2 + z1z2 · · · zn−1 + · · ·+ zn−1z0 · · · zn−3 = 0

z0z1 · · · zn−1 = 1.

(6)

For (x0, . . . , xn−1)
T ∈ Cn with xi 6= 0 for all i, we define a corresponding

vector (z0, . . . , zn−1)
T ∈ Cn by

zi =
xi
xi+1

for i = 1, . . . , n− 1, (7)

where the indices are taken modulo n. Note that z0z1 · · · zn−1 = (x0/x1) · · · (xn−1/x0) =

1. Using (7), we see that (6) holds if and only if

x1
x0

+
x2
x1

+ · · ·+ x0
xn−1

= 0

x2
x0

+
x3
x1

+ · · ·+ x1
xn−1

= 0

x3
x0

+
x4
x1

+ · · ·+ x2
xn−1

= 0

...
...

xn−1
x0

+
x0
x1

+ · · ·+ xn−2
xn−1

= 0.

(8)

Recall that Uh denotes the set of complex hth roots of unity. The following

clarifies the connection between cyclic n-roots and Butson matrices.
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Proposition 2.4. Let n and h be a positive integers and let x0, . . . , xn−1 ∈
Uh. Let g be a generator of Zn. Then D =

∑n−1
i=0 xig

i defines a BH(Zn, h)

matrix if and only if the vector (z0, . . . , zn−1)
T given by (7) is a cyclic n-root.

Proof. Note the x = 1/x for all x ∈ Un. The coefficient of gi in DD(−1) is

n−1∑
j,k=0
j−k=i

xjxk =
k−1∑
j=0

xi+kxk =
n−1∑
j=0

xi+k
xk

,

where the indices are take modulo n. Hence DD(−1) = n if and only if∑k−1
j=0 xi+k/xk = 0 for i = 1, . . . , n − 1, that is, if and only if (8) holds.

Moreover, by Lemma 2.1, we have DD(−1) = n if and only if D defines a

BH(Zn, h) matrix. This completes the proof, since (8) holds if and and only

if the vector (z0, . . . , zn−1)
T given by (7) is a cyclic n-root.

2.4 Generalized Hadamard Matrices

Let K be a finite abelian group and let n be a positive integer. An n × n
matrix H = (Hij) with entries from K is called a generalized Hadamard

matrix if there is a positive integer λ such that

n∑
j=1

HijHkj
−1 = λK (9)

in Z[K] for all i, k with i 6= k. We also say that H is a GH(n,K) matrix.

Proposition 2.5. Let K be a finite abelian group and let n be a positive

integer. Write h = exp(K). Suppose that H = (Hij) is a matrix with entries

from K. Then H is a GH(n,K) matrix if and only if (χ(Hij)) is a BH(n, h)

matrix for all nontrivial characters χ of K.

Proof. Suppose that (χ(Hij)) is a BH(n, h) matrix for all nontrivial charac-

ters χ of K. We have to show that H is a GH(n,K) matrix. Let i, k be

arbitrary with 1 ≤ i, k ≤ n and i 6= k. We have to prove that (9) holds. For

every nontrivial character χ of K, we have

χ

(
n∑
j=1

HijHkj
−1

)
=

n∑
j=1

χ(Hij)χ(Hkj) = 0, (10)
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since (χ(Hij)) is a BH(n, h) matrix by assumption. By Result 1.1 and (10),

we have
n∑
j=1

HijHkj
−1 = λK

for some λ ∈ C. Applying the trivial character of K to this equation, we

conclude that |K| divides n and that λ = n/|K|. This shows that H is a

GH(n,K) matrix.

Conversely, if H is a GH(n,K) matrix and χ is a nontrivial character of

K, then

n∑
j=1

χ(Hij)χ(Hkj) = χ

(
n∑
j=1

HijHkj
−1

)
= λχ(K) = 0

by (9) and Result 1.1. Hence (χ(Hij)) is a BH(n, h) matrix.

Corollary 2.6. Let p be a prime and let n be a positive integer. Every

GH(n,Zp) matrix B uniquely corresponds to a BH(n, p) matrix A. Moreover,

A is G-invariant for an abelian group G if and only if B is G-invariant.

Proof. If a GH(n,Zp) matrix exists, then there is a BH(n, p) matrix by Propo-

sition 2.5. To prove the converse, suppose that a BH(n, p) matrix A = (Aij)

exists. Write Aij = ζ
aij
p with aij ∈ Z. Let g be a generator of Zp and

set Bij = gaij . Obviously, B = (Bij) is G-invariant if and only if A is G-

invariant. Let χ be the character of Zp with χ(g) = ζp. Then (χ(Bij)) = A

is a BH(n, p) matrix. Let τ be any nontrivial character of Zp. Then there

is automorphism σ of Q(ζp) with τ(g) = σ(χ(g)) for all g ∈ G. Since the

property of being a BH(n, p) matrix is preserved under such automorphisms,

this shows that (τ(Bij)) is a BH(n, p) matrix for all nontrivial characters τ

of Zp. Hence (Bij) is a GH(n,Zp) matrix by Proposition 2.5.

2.5 Abelian Splitting Semiregular Relative Difference

Sets

Let M and N be finite abelian groups, write m = |M |, n = |N |, and assume

that n dividesm. Anm-subset R ofG = M×N is called an (m,n,m,m/n)
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relative difference set if

RR(−1) = m+
m

n
(G−N), (11)

that is, if each element of G\N has exactly m/n representations as a quotient

of two elements of R and no nonidentity element of N has such a representa-

tion. Alternatively, we say that R is a difference set in G relative to N .

Such a relative difference set is called abelian (as G is abelian), splitting

(as N is a direct factor of G), and semiregular (this refers the fact that

|R| = |G|/|N |).

Note that no coset of N in G contains more than one element of R by

(11). Hence R meets every coset of N in G in exactly one element and we

can write

R =
∑
g∈M

ngg (12)

with ng ∈ N . Set e = exp(N). For every character χ of N , we define a map

ρχ : Z[G]→ Z[ζe][M ]

by ρχ(h) = χ(h) for h ∈ N , ρχ(g) = g for g ∈ M , and extension to Z[G] by

linearity. Note that ρχ(R) =
∑

g∈M χ(ng)g.

Proposition 2.7. Let M and N be finite abelian groups, write m = |M |,
n = |N |, and assume that n divides m. Let R be a subset of G that meets

every coset of N in G in exactly one element and write R =
∑

g∈M ngg as in

(12). Then R is an (m,n,m,m/n) relative difference set in G if and only if,

for every nontrivial character χ of N , the element

ρχ(R) =
∑
g∈M

χ(ng)g

of Z[ζe][M ] defines a BH(M, e) matrix via Lemma 2.1.

Proof. Suppose that R is an (m,n,m,m/n) relative difference set. Then

|τ(R)|2 = m (13)

for every character τ of G which in nontrivial on N by (11). Let χ be any

fixed nontrivial character of N , and let ψ be any character of M . Define a
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corresponding character ψ ⊗ χ of G by ψ ⊗ χ(gh) = ψ(g)χ(h) for all g ∈M
and h ∈ N . Then ψ ⊗ χ is nontrivial on N and thus

|ψ (ρχ(R))|2 =

∣∣∣∣∣∑
g∈M

χ(ng)ψ(g)

∣∣∣∣∣
2

= |ψ ⊗ χ(R)|2 = m

by (13). By Lemma 2.1, this shows that ρχ(R) is a BH(M, e) matrix.

Conversely, if ρχ(R) defines a BH(M, e) matrix for every nontrivial char-

acter χ of N , we similarly can use Lemma 2.1 to show that |τ(R)|2 = m

for all characters τ of G that are nontrivial on N . Moreover, we have

τ(R) =
∑

g∈M τ(g) for all characters τ of G that are trivial on N , but non-

trivial on G. Finally, we have χ0(R) = |R| = m for the trivial character χ0

of G. In summary, we have shown that

τ(RR(−1)) = τ (m+ (m/n)(G−N))

for all characters τ of G. By Lemma 1.1, we conclude that (11) holds, i.e.,

R is an (m,n,m,m/n) relative difference set, as required.

3 Review of Some “Old” Results

In this section, we review some “old” results from the perspective presented

in the previous section. In the corollaries, we describe what these results

mean in terms of group invariant Butson matrices.

Result 3.1 (Rothaus [22, 23]). A GBF Zm2 → Z2 exists if and only if m is

even.

Corollary 3.2. There is a BH(Zm2 , 2) matrix if and only if m is even.

Proof. This follows from Proposition 2.3 and Result 3.1.

Result 3.3 (Jungnickel [15]). Let p be an odd prime and let G be an el-

ementary abelian group of order pa+b, where a and b are positive integers

with b ≤ a. For every subgroup N of G order order pb, there exists a

(pa, pb, pa, pa−b) difference set in G relative to N .

10



Corollary 3.4. Let p be an odd prime and let G be an elementary abelian

p-group G. Then there exists a BH(G, p) matrix.

Proof. This follows from Proposition 2.7 and Result 3.3.

In particular, there exists a circulant BH(p, p) matrix for every odd prime

p (this special case of Result 3.3 already was obtained by Butson [6]).

In fact, there are many other groups of prime power order that contain

abelian splitting relative difference sets and thus provide group invariant

Butson matrices. The work of Davis and Jedwab [7] contains a complete list

of such groups known to contain relative difference sets.

Result 3.5 (Kumar, Scholtz, Welch [16]). Let q and m be positive integers.

A generalized bent function from Zmq to Zq exists whenever m is even or

q 6≡ 2 (mod 4).

Corollary 3.6. Let q and m be positive integers. A BH(Zmq , q) matrix exists

whenever m is even or q 6≡ 2 (mod 4).

Proof. This follows from Proposition 2.3 and Result 3.5.

In particular, a circulant BH(q, q) exists for all positive integers q with

q 6≡ 2 (mod 4).

Result 3.7 (Backelin [2]). Let n 6≡ 2 (mod 4) be a positive integer and

assume that n is divisible by r2 for some integer r > 1. Then there is a

cyclic n-root (z0, . . . , zn−1)
T with zi ∈ Un/r for all i.

We remark that the condition n 6≡ 2 (mod 4) is necessary for Backelin’s

result to hold, but is missing in his paper.

Corollary 3.8. Let n 6≡ 2 ( mod 4) be a positive integer which is divisible by

r2 for some integer r > 1. Then there is a (circulant) BH(Zn, n/r) matrix.

Proof. This follows from Proposition 2.4 and Result 3.7.

By Corollary 3.8, there is a BH(Zp2 , p) matrix for every prime p. Hence,

by Corollary 2.6, there is a circulant GH(p2, p) for all primes p. This special

case of Backelin’s result was rediscovered in [9].
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Result 3.9 (Brock [5], Winterhof [29]). Suppose that n is a positive integer

and p is a prime divisor of n such that

(i) νp(n) is odd,

(ii) p does not divide h,

(iii) pj ≡ −1 (mod n) for some positive integer j.

Then there is no BH(n, h) matrix.

4 Survey of Some Recent Results

4.1 Constructions

Result 4.1 (K.-U. Schmidt [25]). A GBF Zm2 → Z4 exists for all positive

integers m.

We remark that a proof of Result 4.1 is also contained in [27].

Next, we describe a construction of group invariant Butson matrices based

on bilinear forms on finite abelian groups. Let G be a finite abelian group

and let e be a positive integer. We say that a map f : G × G → Ze is a

bilinear form if

f(g + h, k) = f(g, k) + f(h, k) and

f(g, h+ k) = f(g, h) + f(g, k)
(14)

for all g, h, k ∈ G. Note that (14) implies

f(αg, k) = αf(g, h) and

f(g, αh) = αf(g, h)

for all g, h ∈ G and α ∈ Z. If f(g, h) = f(h, g) for all g, h ∈ G, then f is

symmetric. If f(g, h) = 0, then g and h are said to be orthogonal. We

say that f is nondegenerate if there is no g ∈ G\{0} such that f(g, h) = 0

for all h ∈ G. In the following, the elementary abelian group of order 2c is

identified with {(g1, . . . , g2c) : gi ∈ {0, 1}}.

For an abelian group G and g ∈ G, we say that h ∈ G is a square root

of g if g = 2h and we write h = g/2.
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Result 4.2 (Duc, Schmidt [8]). Let K be a finite abelian group and write

e = exp(G) and K = G × L, where either L = {0} or L is an elementary

abelian 2-group. Let a, d be any nonnegative integers such that |L| = 22a+d

and write c = 2a+ d. Let F : (Z2)
2a → Z2 be a GBF and set

sL(g1, . . . , gc) = 2F (g1, . . . , g2a) +
c∑

i=2a+1

gi

for (g1, . . . , gc) ∈ L.

Let U be a subgroup of G such that every element of U has a square root in

G. Suppose that f : G×G→ Ze is bilinear, symmetric, and nondegenerate,

and that no element of G\U is orthogonal to all elements of U . Let R ⊂ G be

a complete system of coset representatives of U in G with 0 ∈ R. For every

x ∈ K, there are unique x1 ∈ U , x2 ∈ R, and x3 ∈ L with x = x1 + x2 + x3.

Let β be any integer coprime to |G|. Define a matrix H = (Hy,x)y,x∈K by

Hy,x = ζf((x−y)1/2,(x−y)1)+βf((x−y)1,(x−y)2)e ζ
sL(x3+y3)
4 . (15)

Then H is a BH(K, e1) matrix, where

e1 =


exp(U) if L = {0},
lcm(2, exp(U)) if L is of square order,

lcm(4, exp(U)) otherwise.

Result 4.2 can be used to prove the following.

Corollary 4.3 (Duc, Schmidt [8]). Let K be a finite abelian group and let h

be a positive integer such that

vp(h) ≥ dvp(exp(K))/2e for every prime divisor p of |K|, (16)

ν2(h) ≥ 2 if ν2(|K|) is odd and K has a direct factor Z2. (17)

Then there exists a BH(K,h) matrix.

Applied to circulant Butson matrices, Corollary 4.3 gives the next result.

Corollary 4.4 (Duc, Schmidt [8]). If v and h are positive integers with

(i) vp(h) ≥ dvp(v)/2e for every prime divisor p of v and

(ii) ν2(h) ≥ 2 if v ≡ 2 (mod 4),

then a (circulant) BH(Zv, h) matrix exists.
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4.2 Necessary Conditions

Recently, necessary conditions for the existence of generalized bent functions

(GBFs) have been studied quite intensively [1, 10, 11, 13, 14, 18, 19, 20, 21].

We provide an (incomplete) overview of this work here. Recall that GBFs

Zmq → Zq exist whenever m is even or q 6≡ 2 (mod 4). Hence all necessary

conditions for the existence of GBFs concern the case where m is odd and

q ≡ 2 (mod 4).

Definition 4.5. Let p be a prime, let m be a positive integer, and write m =

pam′ with (p,m′) = 1, a ≥ 0. If there is an integer j with pj ≡ −1 ( mod m′),

then p is called self-conjugate modulo m. A composite integer n is called self-

conjugate modulo m if every prime divisor of n has this property.

Result 4.6 ([1, 13, 16, 21]). Suppose that there is a GBF from Zmq to Zq,
where q = 2r and r is an odd integer. Then 2 is not self-conjugate modulo

r. Moreover, if m = 1, then r is not self-conjugate modulo r. In particular,

if m = 1, then r is not a prime power.

There are quite a number of further necessary conditions known for the

existence of GBFs, most of which concern GBFs from Zm2r to Z2r where r is

the product of two prime powers. We do not state them here, however, since

a nice overview of these results is given in [14].

Result 4.7 (Liu, Feng, Feng [19]). Let m and h be odd positive integers, let

a be a positive integer, and let p be an odd prime.

• There is no GBF Zm2 → Zpa.

• If

(i) p ≡ 3 or 5 (mod 8) or

(ii) p ≡ 1 (mod 8) and ordp(2) is even,

then there is no GBF Zm2 → Z2pa.

• If 2 is self-conjugate modulo h, then there is no GBF Zm2 → Zh and no

GBF Zm2 → Z2h.
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We note that [19] contains further, more technical, necessary conditions

for existence of GBFs.

Coming back to the construction of Butson matrices using bilinear forms,

it turns out that, for prime powers v, the conditions in Corollary 4.4 are in

fact necessary for the existence of a BH(Zv, h) matrix:

Theorem 4.8 (Duc, Schmidt [8]). Let v be a power of a prime p and let h

be a positive integer. A (circulant) BH(Zv, h) matrix exists if and only if

vp(h) ≥ dvp(v)/2e and (v, h) 6= (2, 2). (18)

Finally, we list the main results of [18].

Result 4.9 (Leung, Schmidt [18]). Let m be an odd positive integer, let p be

an odd prime, and suppose that a GBF from Zm2pa to Z2pa exists. Then the

following hold.

• p ≤ 22m + 2m + 1.

• ordp(2) is even and ordp(2) ≤ 2m−1.

• If m ≥ 7, then p ≤ 22m/9 or ordp(2) ≤ (2m + 3)/5.

• If m = 3, then p = 7.

• If m = 5, then p ∈ {7, 23, 31, 73, 89}.

• If m = 7, then

p ∈ {7, 23, 31, 47, 71, 73, 79, 89, 103, 223, 233, 337, 431, 601, 631, 881, 1103, 1801}.
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