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Abstract

Let p be an odd prime, let a be a positive integer, let m be an odd positive
integer, and suppose that a generalized bent function from Zj,. to Zgpa exists. We
show that this implies m # 1, p < 22™ + 2™ 4+ 1, and ord,(2) < 2™~ 1. We obtain
further necessary conditions and prove that p = 7if m = 3 and p € {7,23,31, 73,89}
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if m = 5. Our results are based on new tools for the investigation of cyclotomic
integers of prescribed complex modulus, including “minimal aliases” invariant under
automorphisms, and bounds on the fs-norms of their coefficient vectors. These
methods have further applications, for instance, to relative difference sets, circulant

Butson matrices, and other kinds of bent functions.

1 Introduction

The term “bent function” has been used with various different meanings in the literature
(an account of which can be found in [25]). So we first need to clarify in what setting we

are exactly interested in.

Let g and m be positive integers and let (, be a primitive complex gth root of unity.
A function f : Z]' — Z, is called a generalized bent function (GBF) if

2

Z Cg(f‘)_”'w = q" for allv € Z". (1)

TELY
Here z - v denotes the usual dot product.

Research on GBF's started with the work of Rothaus [19, 20] and Dillon [6], initially
focussing on the case ¢ = 2. Significant further results on GBFs can be found in [7, 9,

11, 18], for instance. A survey of GBF's and related objects is given in [25].

Bent functions are a highly active research field due to their numerous applications
in information theory, cryptography and coding theory. In fact, the defining condition
(1) ensures that bent functions are “maximally nonlinear”, which is desirable property
for cryptographic purposes. The importance of nonlinear functions in cryptography is
emphasized in the recent survey [3]. The relevance of bent functions in coding theoretic

applications is apparent from work such as [23, 24].

The main existence result for GBFs was obtained by Kumar, Scholtz, and Welch [11].
They proved that GBFs from Z* to Z, exist whenever m is even or ¢ #Z 2 (mod 4). On
the other hand, not a single GBF from Z' to Z, with m odd and ¢ = 2 (mod 4) is



known. In fact, several nonexistence results for GBFs from Z;" to Z, with m odd and
¢ = 2 (mod 4) have been obtained in the literature, cf. [7, 9, 11, 18]. The aim of this
paper is to strengthen these nonexistence results. More precisely, we study the case where

m is odd and ¢ = 2p® for an odd prime p and positive integer a.

Since the structure of this paper is quite complicated, we give an overview of our
strategy here. Let p® be an odd prime power, let m be an odd positive integer, and
suppose that a GBF from Zj. to Zgy exists. This implies (see Corollary 37) that there
is a cyclotomic integer X € Z[(,] with

| X[* =2 (2)
Now there are two important observations concerning equation (2):

(a) 2™ is relatively small compared to p in most cases we are interested in.

(b) 2™ is a nonsquare.

A highly useful consequence of (a) is that the length of X (the smallest positive integer
¢(X) such that X is an integer linear combination of £(X) roots of unity) also is relatively
small (Theorem 22). We quantify this correspondence between the modulus of X and its
length in Section 4. These results heavily make use of ideas we describe in Section 3: On
the one hand, Cassels” M-function [5] gives us a basic connection between the modulus
and length of X. On the other hand, we introduce the new notion of minimal aliases,
that enables us to use Galois automorphisms to significantly improve the results based on
the M-function. In fact, the crucial Proposition 19 shows that there are minimal aliases

that are invariant under maps induced by suitable Galois automorphisms.

Curiously, (b) (2™ is a nonsquare) allows us to considerably strengthen the necessary
conditions for the existence of solutions of (2). This is the subject of Section 5. The
main idea of this work is to switch from | X |*> = n (n nonsquare) to a group ring equation
YYD = n + K, where K is a “kernel contribution” that arises from this switching. If
n is small compared to p, we can show that K vanishes and thus get a contradiction by

applying the trivial character YY (=1 = n. At the end of Section 5, we will indicate how



this idea can be used to study other structures such as relative difference sets, circulant

Butson matrices, and other kinds of bent functions.

In Section 6, we strengthen the results of Section 5 in the case n = 2. The strategy
is to use the Galois automorphisms that leave the prime ideals containing 2 invariant to
obtain lower and upper bounds on the ¢, norm of coefficient vector of X. This, in turn,
provides additional information on what happens when we switch from (2) to a group
ring equation (see Lemma 30). This group ring equation is the basis for the results in

Section 6 following Lemma 30.

Finally, in Section 7, we apply our results on equation (2) to GBFs. Of course, if
(2) has no solution, then there does not exist any GBF from Zj . to Zgy. This is the
straightforward consequence of the results of the previous sections. In turns out, however,
that there is a more powerful way to make use of our results on equation (2): Even if there
are solutions, we can prove nonexistence of corresponding GBF's as long as these solutions
satisfy a certain intriguing parity condition (see (35)). This enables us to further improve

our nonexistence results by providing sufficient conditions for (35) to be satisfied.

2 Group Rings and Characters

It turns out that group rings and characters of abelian groups provide a convenient setting
for the study of GBFs. Let G be a finite (multiplicatively written) group of order v, let
R be a ring, and let R[G] denote group ring of G over R. Every X € R[G] can be written
as X = dec agg with a, € R. The a,’s are called the coefficients of X. We identify a
subset S of G with the group ring element ) ges 9. Let 1g denote the identity element
of G and let r be an integer. To simplify notation, we write r for the group ring element

rlg. The support of X = )" _.a,g is defined as

geG

supp(X) ={g € G : a, # 0}.

Some additional notation for the case R = Z[(,| is needed. Let ¢ be an integer coprime
toq. For X =3 o a,9 € Z[(,][G], we write X® =3%"aZg" where o is the automorphism
of Q(¢,) determined by ¢7 = (!



The group of complex characters of GG is denoted by G. The trivial character of
G is the character xo with xo(g) = 1 for all ¢ € G. It is well known that G is a group
isomorphic to G, with multiplication in G defined by x7(g) = x(¢)7(g) for x7 € G,
g €G. For X =3 a,g9 € C[G] and x € G, we write y(X) = > gec Agx(g). For a
subgroup U of G, we write U+ = {x € G x(g) =1forall g € U}. If x € Ut, we say
that y is trivial on U. We have |U*| = |G|/|U|. The following is a standard result, see
[2, Chapter VI, Lemma 3.5], for instance.

Result 1 (Fourier inversion formula). Let G be a finite abelian group and X =)
C[G]. Then

geG agg S

1
ay = @ Zx(Xg_l) for all g € G.

xe@

We now describe how bent functions can be characterized in terms of group ring
equations. Let G = Z;" and let f : G — Z, be any function. Then [ corresponds to an
element Dy of the group ring Z[(,][G] via

Dy=> (f@a.
zeCG

Moreover, every v € G determines a character x, of G by
Xo(r) = (7" forall v € G,

It well known and straightforward to verify that every complex character of G is equal

to some x,, v € G. Note that
Xo(Dy) = Z ¢ (z) = ch(x)_”'x = F(v) for allv € G, (3)
zeG zelG

where F'(v) is defined as in Result 3. From (1) and (3), we see that f is a GBF if and
only if
IX(Df)]? = ¢™ for all x € G. (4)

Thus we get the following.



Proposition 2. Let m and q be positive integers, let [ : Z7' — Z, be a function, and set
Dy =3 cmm C,{(x)x. Then f is a GBF if and only if
q

DyD\Y =g (5)

Proof. We have shown that f is a GBF if and only if (4) holds. Note that |x(Dj)|* =
x(D fD;_l)) for all characters x of Z;*. Using Result 1, we conclude that (4) holds if and
only if (5) is satisfied. O

The following is well known, cf. [9, p. 376], and straightforward to verify.

Result 3. Suppose f is a GBF from Z}! to Z,. Write F(v) = cm d(m)fm forv ez
We have
Z F)F(v+w) =0 for all w € Z;" \ {0}.

veLy
In view of (3), Result 3 can be reformulated as follows.

Proposition 4. Let m and q be positive integers, G = Zj', let [ : G — Zq be a bent
function, and set Dy = . Q{(x)x. Then

> 7(Dy)7X(Dy) =0 for all x € G\ {xo}-

€@
3 Number Theoretic Preliminaries

To study group ring equations, a powerful technique we often use is number theory.
We first record some well known results that we will use later. As before, write ¢, =

exp(2mi/n). Elements of the ring Z[(,] are called cyclotomic integers.

Notation 5. Throughout the rest of this paper, we assume that p is odd prime, that a

is a positive integer, and we write ¢ = (,«. Moreover, “~” denotes complex conjugation.
See [4, Section 2.3, Thm. 2] for a proof of the following result of Kronecker.

Result 6. Any nonzero algebraic integer all of whose conjugates have absolute value at

most 1 is a root of unity.



Part (a) of the next result is proved in [16, p. 76] and part (b) in [10, pp. 196-197].

Result 7. Write R = Z[(].

a e 1deal pR factors as pR = — p=bPT " an — 15 a prime tdeal of R.
The ideal pR f R=(1-OR)® " gnd (1-COR deal of R
Moreover, (1 — ()R = (1—-()R.

(b) Let q be a prime different from p. The ideal qR factors as qR = py---ps where
s = (p—1)/ord,(q) and the p;’s are distinct prime ideals. Moreover, p; = p; if and only

if ord,(q) is even.

Corollary 8. Write © = Zi;ll (%)Cg where (%) 1s the Legendre symbol. Suppose that
X € Z[(] satisfies | X|* = p*m where b and m are positive integers. Then X = YA for

some A € R with |A]*> = m.

a—1

Proof. Write R = Z[¢] and p = (1 —¢)R. Then p is a prime ideal of R and pR = p®~ 1P
by Result 7. Moreover, p = p by Result 7 (a). As |X|?> = p’m, we have XXR =
pt®=1P"" (mR). Since p = p, this implies X € p?®=Dr"""/2 We have ©0 = p (see [10,
Prop. 8.2.2]) and thus OR = p@ DP""/2_ Ag X € pb@-Dr"""/2 = @R, we conclude that
X = 6%A for some A € R. Note that |A]> = | X|?/|0]** = pm/p® = m. O

The next result is a special case of [14, Thm. 4.7].

Result 9. Suppose that X € Z[(] satisfies | X|* = 22" for some positive integer n. If
ord,(2) > 2", then X is trivial, that is, X = 2™ for some root of unity .

The following is a consequence of [21, Thm. 3.5].

Result 10. Suppose that X € Z|[(] satisfies | X|* = ¢°, where q # p is a prime and b is a
positive integer. If @%@ £ 1 (mod p?), then X (7 € Z[(,] for some integer j.

Note that Result 10 indeed follows from [21, Thm. 3.5], as ¢”%@ % 1 (mod p?)
implies F(p®, ¢*) = p, where the function F is defined in [21].

Cassels [5] introduced the following useful notion.



Definition 11 (M-function). For X € Z[(,], let

1 V\Oo
MX)=— >  (XX),
o€Gal(Q(¢n)/Q)

where ¢ denotes the Euler totient function.

Note that M(X) > 1 for all nonzero X € Z|[(,] by the inequality of geometric and
arithmetic means, since [ ], cqaio(c./0) (X X)? > 1. The following is a consequence of [5,
(3.4), (3.16)].

Result 12. Let X € Z[C,], let q be a prime divisor of n, and write n = ¢°n' with
(Q7n/) = 1. Ifb =1, then X = Z;:& qu with X; € Z[Cn/] and

ME) = S M- X)), (6)

1~ 1,45
On the other hand, if b> 1, then X = 30 "~ X,Ci with X; € Z[(yw] and

b71—1

MX) = Y M(X)). (7)

Proposition 13. Let U ={{] :j=0,...,p— 1} be the subgroup of order p of ().

(a) Let N be a set of integers with |N| = p®~ 1 such that the elements of N are pairwise
incongruent modulo p®~*. Then B = {(":i € N} is an integral basis of Q(¢) over Q(¢,).

(b) A subset T of {1,(,...,CP" 1} is linearly independent over Q if and only if T does

not contain a coset of U.

Proof.

(a) Note that |B| = p*~!. As the degree of Q(¢) over Q((,), is ¢(p*)/¢(p) = p*~* = |B|, it
suffices to show span(B) = Z[(], where span(B) denotes the set of all linear combinations
of elements of B with coefficients from Z[(,]. Let j € Z be arbitrary. By the definition
of N, there is i € N with ¢ = j (mod p*!), that is, j = i + kp®~! for some k € Z.
Thus ¢/ = C’C;f € span(B). Hence we have {1,¢,...,¢?" "'} C span(B). This implies
span(B) = Z[¢].



(b) If T' contains a coset of U, then T is linearly dependent, as Z?;é ¢J = 0. Write
T ={¢:j¢e A} with A C {0,...,p* — 1}. If T is linearly dependent, then there are

integers a;, not all zero, such that > jeA a;¢? = 0. As the minimal polynomial of ¢ over

Qis 1+ + -+ 2@ VP this implies
>’ = gl@)(L 4+ 4 (8)
jeEA

for some nonzero polynomial g(z) € Z[z]| of degree less than p®~'. Let k = min{j €
A :a; # 0} Then A contains {k,kp*~' ... k(p — 1)p*~'} by (8) and thus T contains
Uck. 0
Definition 14. Let n be a positive integer, let G be a cyclic group of order n, and let g
be a fixed generator of G. For Z = 3.1 a;g" € Z[G), write Z((,) = Y20y ai¢h. We say

that Z is minimal if

|supp(Z)| = min {[supp(Y)| : Y € Z[G], Y(¢n) = Z(Ca)}-

If X € Z[(,] and Z((,) = X, then Z is called an alias of X. The length of X is
|supp(Z)|, where Z is a minimal alias of X. We denote the length of X by ¢(X).

Remark 15. If H is a subgroup of G = (g) of order m, we consider the group ring
Z[H] as imbedded in Z[G]. In particular, every A € Z[H] can be written in the form
A= agm/™ with a; € Z and we have A(G,) = S0 aiCh’™ € Z[Cw).

1=0

Lemma 16. Let G be a cyclic group of order p* and let P be its subgroup of order p.

(a) The map Z|G] — Z[(],Y — Y (C) is a ring homomorphism with kernel {PY Y €
Z[Gl}-

(b) Let S be subset of G\ {1} and let ¢, d be integers. If Y = c+ dS € Z|G] is minimal,
then |SN Ph| < (p—1)/2 for all h € G.

Proof.
(a) This follows from that fact that the minimal polynomial of ¢ over Q is 1 + AT

9



cee x(pfl)pa_l‘

(b) Suppose |S N Ph| > (p+1)/2. Set Z = ¢+ d(S — Ph). Then Z(¢) = Y((), as
P(¢) = 0. However, |supp(Z)| < |supp(Y)|, contradicting the minimality of Y. ]

Lemma 17. Let t be a positive integer with ged(t,p) = 1 and let G be a cyclic group
of order p. Let o be the automorphism of Q((,) determined by (7 = ¢t If X° = X for
X € Z[¢), then ZW = Z for every alias Z € Z|G] of X.

Proof. Let g be a generator of G' and suppose that Z = Zf;& a;g° is an alias of X. Then
Z(¢) = X and thus Z®W(¢,) = Z((,)° = Z((,), since X° = X by assumption. Using
Lemma 16, we conclude Z® = Z + aG with a € Z. As the sum of the coefficients of Z)

is the same as the sum of the coefficients of Z, we have a = 0 and thus Z® = Z. O

Lemma 18. Let G = (g) be a cyclic group of order p®, and let P = (g*" ") be the subgroup
of order p of G. Let N be a set of integers with |[N| = p*~! such that the elements of N
are pairwise incongruent modulo p®~!.

(a) Every Z € Z|G) can be written in the form Z =3\ Z;g’ with Z; € Z[P], and Z is
minimal if and only if each Z; is minimal.

(b) Every X € Z[(] can be written in the form X =37\ X;¢7 with X; € Z[(,], and we
have ((X) = 3o n U(Xi).

Proof. (a) Since the elements g7, j € N, represent every coset of P in G, we see that
Z indeed can be written as Z = Yy Zjg’ with Z; € Z[P]. If Z is minimal, then
each Z; must be minimal by the definition of minimality. Suppose that all Z;’s are
minimal and that Z is not minimal. Then there exists Y € Z[G] with Y ({) = Z({) and
supp(Y)| < [supp(Z)|. Write Y =37\ Yj¢’ with Y; € Z[P]. We have

Y ZiOF =2(¢) =Y () =) _Yi(0)¢. 9)

jEN jEN

By Proposition 13 (a), the set {¢7 : j € N} is linearly independent over Q((,). Moreover,
Z;(€).Y;(¢) € Z[G]. Thus Z;(¢) = Yj(C) for all j by (9). As |supp(Y)| < [supp(Z)],

10



we have [supp(Y;)| < [supp(Z;)| for some j, contradicting the minimality of Z;. This
completes the proof of part (a).

(b) Let X € Z[¢]. We indeed have X = >\ X;¢7 with X; € Z[(,], as {¢/ : j € N} is
an integral basis of Q(¢) over Q((,) by Proposition 13 (a). Let Z be a minimal alias of
X and write Z = 3.\ Z;¢’ with Z; € Z[P]. Then each Z; is minimal by part (a) and
dien Xi¢0 =X = Z(() = X ey Zi(€)¢. Thus Z;(¢) = X, which implies that Z; is a
minimal alias of X; and ¢(X;) = |supp(Z;)| for all j. Hence

U(X) = |supp(Z)| =Y _ |supp(Z;)| = Y £(X;)

JEN JEN
O

Proposition 19. Let t be an integer with ged(t,p) = 1 and let G be a cyclic group of
order p*. Write ord,.(t) = f and suppose that f divides p—1. Let o be the automorphism
of Q(C) determined by (7 = (. If X° = X for X € Z[(], then there is a minimal alias
Z € Z|G] of X with

A

Proof. For x € Z let r(x) be the integer such that r(x) = z (mod p® ') and 0 <
r(z) < p*~1. Note that the map x — r(xt) is a permutation of {0,...,p* ! — 1}, since
ged(t,p) = 1. Note that all orbits of z + r(zt) on {1,...,p* ! — 1} have length f, since
fl(p — 1) by assumption. Let Oy, ..., O, be the orbits of  +— r(xt) on {0,...,p*t — 1}
where £ = (p® ' —1)/f, Oy = {0}, and |O;| = f for all i > 0. For each 4, let z; be a fixed

element of O;, and set

N={0}u{zt°:1<i<l 0<s<f-1}

Then |N| =1+ (f = p® ! and the elements of N are pairwise incongruent modulo p®~*.

Moreover, {¢% : j € N} = {¢/ : j € N}, since t/ =1 (mod p*). Note that {¢’ : j € N}
is an integral basis of Q(¢) over Q((,) by Proposition 13 (a). Hence there are unique
Xj € Z[Gp] with X =37\ X;¢/. As X7 = X by assumption and N7 = N, we have

DX =Y X =X=X"=> X7,

JEN JEN JEN

11



where the index j¢ in Xj; is taken modulo p. This implies X7 = Xj; for all j and thus
(Xm)os = X, for all i, s. We conclude

¢ f-1 ¢ f-1
X=X/ =Xo+ D > Xpue(™" =X+ DD (X,,¢™)7 (10)
JEN i=1 s=0 =1 s=0

Let g be a generator of G and let P = (¢*""') be the subgroup of G of order p. Let
Zy € Z[P] be a minimal alias of X, and, for i = 1,...,¢, let Z; € Z[P] be a minimal alias

of X,,. Define
¢ f-1

Z=Zy+> 3 z0g!

i=1 s=0
We claim that Z is a minimal alias of X. Note that ZZ(ts) is minimal for all 7 and s, since
Z; is minimal. Furthermore, the elements of {0} U {z;t* : 1 <i</{, 0 <s < f— 1} are

pairwise incongruent modulo p®~!. Hence Z is minimal by Lemma 18 (a). Moreover, we

have
f-1 ¢ f-1
Z(C) = Zo(Q)+ D3 Zi(Q)¢ = Xo + YD (Xa(™)T =
i=1 s=0 =1 s=0

by (10), where we have used that Z, is an alias of X, and Z; is an alias of X, for

1=1,...,¢. Hence Z is an alias of X.

It remains to show Z() = Z. Note that X§ = Xo, as X7 = Xy for all j. As Z; is an

(®)

alias of X, we have Z;’ = Z; by Lemma 17. Hence

¢ f-1
i=1 s=1 i=1 s=0
since Zi(tf) = Zi(to) and ¢g“*" = g for all i. O

4 M-Function and Length of Cyclotomic Integers

We now prove a basic result relating the length of cyclotomic integers to the M-function.

12



Lemma 20. Let (g) be a cyclic group of order p and suppose that Z?;ol a;g* is a minimal
alias of X € Z[(,|. Then

i=

M(X) ZL< Za§+e ) max{0, /(X)) — p/Q}). (11)

In particular,

2(p— 1)’ p—1
Proof. Write k = £(X) and K = {i : a; # 0}. Since 3.'~) a,g’ is a minimal alias of X,
we have |K| = k. Moreover, we claim that

{i:a;, =a;}| <min{k,p—k} for all j € K. (13)

Note that |{i:a;, =a;}| < k for j € K, as 0 = a; # a; for i ¢ K. Moreover, if
{i:a;, =a;}| >p—Fk, then [{i:a; —a; # 0}| < k and X would have length less than £,
as 3.0 (a; — a;)g' is an alias of X. This contradicts k = ¢(X) and proves (13).

Using (6), we get
(p— DM(X) =" M(a; — a;) ZZM a;—a;)+ > Y M(a;—a;).  (14)
1<J ’LEK JjeEK €K j¢K

Since a; = 0 for j € K and M(a;) = a? for all i, we conclude

DY Mai—a)=p-kD ai=@p-k) a (15)

i€K jgK ieK i=0
Note that M(a; — a;) > 1 if a; # a;. Hence, in view of (13), we get
ZM —a;) > k —min{k,p — k} = max{0, 2k — p}.
€K

and thus
Z M(a; — aj) > kmax{0,2k — p}. (16)

i,jEK

Combining (14-16) proves (11).

13



It remains to prove (12). Note that M(X) > k(p—k)/(p—1) by (11), since >_ a? > k.
Hence it suffices to show M(X) > pk/(2(p —1)). Using (11) and >_ a? > k, we obtain

M(X) > ]% ((p — k) ;af + kmax{0, k — p/2}>
2k(p— k) +k(2k—p)  pk
2(p — 1) C20p—-1)

]

Corollary 21. Let (g) be a cyclic group of order p* and suppose that Z = Zfial a;g* is
a minimal alias of X € Z[C]. Then

M(X) > ]ﬁ ((p — (X)) Z_ @ + () max{0, ((x) - £ > . (17)
In particular,
o MO0 > o { 210 (00— 000} o)
-~ max 2(p—1)’ p—l .

Proof. Write X = Zg?“:j—l X;¢’ with X; € Z[¢,]. By Lemma 18 (b), we have {(X) =
a—1 a—1
. ~'(X;). Furthermore, M(X) = =0 I M(X;) by (7).

For j =0,...,p" ' —1, write Z; = Y.0_ apa-144,6"" *. Note that Z = Z?;Ll Ziq.
and thus Z; is a minimal alias of X; for all j by Lemma 18. Hence ¢(X;) = |supp(Z;)|

for all j. Moreover, | supp(Z;)| < ZZ;E aia_l ry; and thus we get
pt -1 p—1 pt -1 p—1
D= UX))D ey = Y (0= X))+ (UX) = (X)) Y oy
=0 k=0 =0 k=0
pe—1 pe—l-1 p—1
=(p— X)) D al+ > (UX) = LX) Y @y
i=0 =0 k=0
p*—1 p* -1
> (p— X)) D al+ Y (UX) = UX))X;).
i=0 =0

(19)

14



As M(X) = faol " M(X;), we have

plT—

(p=DMX) > > <<p—£<Xj>>Z Gpa-ipepg + (X)) max{0, £(X;) — g})

=0 k=0
by (12). Together with (19), this implies

P a__1 pa 1_1

(p = M(X) = Z a; + Z (X) = 6(X;5))0(X5)

+ Z X;) max{0, (X )—g}

pe—1 ’111

Z 2y Z X,) (UX) = €0X;) + max{0,0(X,) — £1)

pt—1

X)) Z a2 + £(X) max{0, £(X) — g},

where the last inequality holds due to Zp iy ((X;) = ¢(X) and this proves (17). Now
(18) follows from (17) in the same way as (12) follows from (11). O

5 Elements of Z[(] for which |X|? is a Nonsquare

The key to our results on GBFs from Z5}, to Zgy is to study solutions of | X|* = n where

n is a nonsquare integer and X € Z|[(].

Theorem 22. Let G = (g) be a cyclic group of order p®. Let n be nonsquare in-
teger not divisible by p and let qi,...,qs be the distinct prime divisors of n. Write
[ = ged{ord,(q1),...,ord,(gs)} and let t be an integer with ord,.(t) = f. Let o be
the automorphism of Q(¢) determined by ¢° = ¢'. Suppose X € Z[(] satisfies | X|* = n.
Then we have the following.

(a) f is odd.
(b) We have £(X) < 2n and there is a positive integer u such that ((X) € {uf,uf +1}
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() f<norp<i=

n

(d) There is an integer i such that (X' = X(".

(e) There is a minimal alias Z of X' with Z® = Z and we can write Z = ¢y +
Z;L:l c;I';, where co,...,c, € Z, c; # 0 for 7 > 0, and the I';’s are distinct orbits

of g — g" on G\ {1}. Moreover, |T';| = f for all j.

Proof. Let K be the subfield of Q(¢) fixed by o. By [14, Lemma 4.6], we have X (' € K for
some integer i (note that [13, Lemma 4.6] is stated for the case that | X|? is a square, but
its proof shows that the statement is also true if | X'|? is a nonsquare). Hence (X ()7 = X"
and this proves part (d). Replacing X by X', if necessary, we can assume X° = X, that
is, X € K.

If f is even, then K is real and thus X? = | X|? = n. Since n is a nonsquare, this implies
that Q(X) = Q(y/n) is a quadratic subfield of Q(¢). But the unique quadratic subfield
of Q(¢) is Q(+/(—1)®=1/2p) and it is straightforward to show v/n & Q(1/(—1)®-D/2p),

as ged(p,n) = 1 and n is a nonsquare. Hence f is odd.

By Proposition 19, there is a minimal alias Z € Z[G] of X such that Z®) = Z.
Moreover, Z) = Z implies that Z can be written in the form ¢y + >, ol for some
nonnegative integer u, where cg,...,c, € Z, ¢; # 0 for ¢+ > 0, and the I';’s are distinct
orbits of g+ g" on G\ {1}. If u = 0, then n = |X|? = |Z(¢)|* = ¢. This is impossible,
as n is a nonsquare by assumption. As ord,.(t) = f = ord,(t), we have |I';| = f for all 7.
This proves part (e).

Note that ¢(X) = |supp(Z)| € {uf,uf + 1} by part (e). If u =0, then X =¢y € Z
and n = | X |? is a square, contradicting our assumptions. Therefore, v > 1. By Corollary

21, we have n = M(X) > @ and thus ¢(X) < 2n. This completes the proof of part (b)
of Theorem 22.

To prove part (c), suppose f > n. Then u = 1, since uf + 1 < 2n. Thus ((X) €
{f, f+1}. Note that f < p/2, as f is an odd divisor of p — 1. As the function x(p — x) is
increasing for < p/2 and ¢(X) € {f, f + 1}, we have {(X)(p—4(X)) > f(p— f). Using
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Corollary 21, we conclude

(X () _ fp— 1)
p—1 - p—1

n=M(X)>

This implies p > (f? —n)/(f — n), which completes the proof of part (c). O

Theorem 23. Let n be a nonsquare integer. Let G = (g) be a cyclic group of order p*
and let P be the subgroup of G of order p. Assume there is X € Z[¢] with |X|* = n.
Then, for every alias Z € Z|G] of X, there is Y € Z[G] such that

Z7Y) =n + PY. (20)
Moreover, we have £(X) < 2n and

p<n’+n+l. (21)

Proof. Let Z € Z|G] be an alias of X. Then Z(¢)Z(¢) = XX = n. Using Lemma 16, we
conclude that ZZ(Y = n + PY for some Y € Z[G], which proves (20).

Now suppose p > n? +n + 1. Note that n > 2, as n is a nonsquare. If n = 2, then
p > 224241 = Tand hence p > 11 > 4n. If n > 3, then p > n?+n+1 > 3n+n+1 = 4n+1.
Hence we have p > 4n in any case.

Recall that XX = |X|?> = n by assumption and thus (XX)° = n for all 0 €
Gal(Q(¢)/Q). Since [Gal(Q(C)/Q)[ = ¢(p”), we conclude

1 — |Gal(Q(¢)/Q)| n
M(X) = (XX)” = ) —
oeGa%Q;@)/@) o(p")

We have M(X) = |X|? = n by assumption and ¢(X) < 2n by Theorem 22 (b). Write
s = ((X). Note that s < 2n < p/2, as p > 4n. Write f(z) = z(p — x) and note that

fn+D)=m+Dp-n—-1)=np-—1)+p—n*—n—1>n(p-1), (22)

as we assume p > n? +n + 1. On the other hand, n = M(X) > s(p —s)/(p — 1) by
Corollary 21 and thus f(s) =s(p—s) <n(p—1). As f(n+1) >n(p—1) by (22) and f

is increasing for x < p/2, we conclude s < n.
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Finally, let Z be a minimal alias of X and let Y be the element of Z[G] satisfying (20).
If PY =0, then ZZ(-Y = n and thus |Z|?> = n, contradicting the assumption that n is
nonsquare. Hence PY # 0 and consequently | supp(n+ PY')| > p—1. On the other hand,
we have |supp(Z)| = ¢(X) = s < n, as Z is minimal. This implies |supp(ZZ(—Y)| < n?.
Using (20), we conclude n? > |supp(ZZV)| = |supp(n+PY)| > p—1, which contradicts
the assumption p > n* + n + 1. This proves (21). ]

As promised in the introduction, we will now explain how our methods can be used to
study other combinatorial structures. For instance, suppose p and ¢ are distinct primes
and p is odd. Assume that a relative (pq, p, pq, q) difference set exists in an abelian group
(see [2] for the necessary background on relative difference sets). It can be shown that
that this implies that there is X € Z[(,] with |X|*> = ¢. Hence Theorems 22 and 23
immediately provide necessary conditions for the existence of such relative difference set.
In particular, we have p < ¢?> + ¢ + 1 by Theorem 23. Similarly, if a circulant Butson
matrix BH(pg, p) exists (see [12] for information on Butson matrices), then there also is
X € Z[¢,) with | X|* = ¢ and we get the same conclusions. Finally, our results can be
applied to other types of bent functions and, for example, immediately give new necessary

conditions for the existence of the functions studied in [15].

6 Elements of Z[¢] with | X|? = 2™ and Odd m

In this section, we study the structure of elements X € Z[¢] which satisfy |X|? = 2™. We

first summarize the results that can be deduced from the theorems in Section 5.

Corollary 24. Suppose there exists X € Z[(] with | X|*> = 2™, where m is odd. Write
f =ord,(2). We have the following.

(a) p<2*™4+2™+1 and f is odd.

(b) f<2morp<I=2L
(c) If p>2%m=2) 1 2m=2 4 1 then X # 0 (mod 2).
(d) f<2m+l,
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(e) U(X) € {uf,uf + 1} for some positive integer u and £(X) < 2™,
(f) p=7 (mod 8) or p=1,9,17,25,33,41, 49,57 (mod 64).

Proof. Parts (a), (b), and (e) follow directly from Theorems 22 and 23. For part (c),
suppose X = 0 (mod 2). The 2™ = |X?| = 0 (mod 4) and thus m > 3, as m is odd.
Furthermore, Y = X/2 € Z[¢] and |Y|* = 272, Hence p < 2*"~242m~1 41 by Theorem
23. This proves part (c). By Theorem 22 (b), we have f < ¢(X) < 2™ which proves
part (d). To prove part (f), note that f = ord,(2) is odd by part (a). Hence 2 is a square
mod p and thus p = +1 (mod 8). Suppose p =1 (mod 8). As f is odd, 2 is biquadratic
residue mod p and thus p is square mod 64 by a result of GauB[8]. This completes the
proof. O]

Using conditions (a), (b), and (d) in Corollary 24, it is straightforward to deduce the

following.
Corollary 25. Suppose there exists X € Z[(] with | X|* = 2™.
(a) If m =1, thenp=T1.
(b) If m =3, then p € {7,23,31,73}.
(¢) If m =15, then p € {7,23,31,47,71,73,79,89,103, 127, 151, 223, 233, 337,601 }.

(d) If m =17, then
p € {7,23,31,47,71,73,79,89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271,
311,337,359, 367, 383, 431, 439, 463, 479, 487, 503, 601, 631, 727, 881, 911,
919,937, 1103, 1801, 2089, 2143, 2351, 2593, 2687, 3191, 3391, 4177, 4513, 6361,
6553,8191,9719, 11119, 11447, 13367, 14951}.

We get the following directly from Result 10.

Corollary 26. Let m be a positive integer and suppose that X € Z[C] is a solution of
| X2 =2m. If2°7%2) £ 1 (mod p?), then X' € Z[(,] for some integer i.
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Throughout this section, we fix the following notation. Suppose that X € Z[(] satisfies
| X|? = 2™, where m is odd. By Theorem 22 (e), replacing X by X(* for some integer i,

if necessary, we can assume that there is a minimal alias
u
7 = Cco + Z CZ'FZ' (23)
i=1

of X, where u > 0, ¢g,...,cy € Z, ¢; # 0 for i > 0, the I';’s are distinct orbits of g - ¢?
on G\ {1} and |I';| = f for all i. Here we use the same notation as before. In particular,
G = (g) is cyclic group of order p* and P is the subgroup of G of order p. Note that
Z® = Z. Moreover,

Z7Y =9m 4 PY (24)

for some Y € Z[G] by Theorem 23. In the following list, we summarize the most important

notation required for the rest of this section.
(1) f = ordy(2).
(2) X € Z[¢] with | X|* = 2™ where m > 3 is odd.
(3) Z is a minimal alias of X satisfying (23), (24), and Z? = Z.

(4) S =c2+ fY %, 2. Note that S is the coefficient of the identity in ZZ(1),

=1 "1"

To get a deeper understanding of the situation, we first find a bound on the f5-norm

of the coefficient vector of Z, that is, on S =+ f > i, 7.

Lemma 27. If p > 2™ then S < 2m+1,

Proof. Write s = ((X). Note that s < 2™ by Corollary 24 (e). First, we assume
s<(p—1)/2. As Z=cy+ >, ¢I'; is minimal, it follows from Corollary 21 that

S(p—s) > S

Therefore, S < 2m+1,
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Next, we assume s > (p + 1)/2. By Corollary 21, we have

2s —p) +2S(p — s)
2(p—1) '

2 = pm(x) > L

Therefore,

2" (p—1) — 5(2s — p)
p—s

We aim to find an upper bound for the right hand side subject to (p+1)/2 < s < 2mFL,

Write f(s) = [2™"(p—1) — s(2s —p)]/(p — s). Then

25 < (25)

_2M(p—1)+p* +25° —dps

N (p—s)? |

Note that g(s) = 2™(p — 1) + p* + 2s*> — 4ps is a quadratic function of s with minimum
at s = p and that g((p+1)/2) = 2™(p—1) — (p* +2p — 1)/2 < 0, as p > 2™ by
assumption. This implies g(s) < 0 and thus f'(s) < 0 for (p +1)/2 < s < p. Since
(p+1)/2 < s < 2™ < p, we conclude

p—i—l) _ 2" (p—1) = (p+1)/2 _omt2 _PH+1
2 (p—1)/2 p—1

Combining (25) and (26), we get S < 2™+, O

f'(s)

< M2, (26)

£(s) Sf(

Recall that ZZ(-1) = 2™ + PY by (24). As ZZ") = (ZZEY)ED | this implies
(PY)=Y = PY. Similarly, Z® = Z and (24) imply (PY)® = PY. For convenience,
we write PY = AP + PY’ with A € Z and Y’ € Z|G] such that P and supp(PY’) are
disjoint. We thus have

Z7ZY =9m L PY = 2™ 4 \P + PY’. (27)

Observe that (PY')® = PY’ and (PY')"Y) = PY’, as (PY)® = PY and (PY)V =
PY.

Corollary 28. We have S = 2™ + \. Moreover, if p > 2™+ then X\ < 2™.

Proof. Comparing the coefficient of identity on both sides of (27), we find S = 2™ + \.

The second statement thus follows from Lemma 27. ]
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Lemma 29. We have
S% > 2™ + A + | M| (p — 1) + |[supp(PY”)]. (28)

Proof. Write Z = }_ ,a,9 and 727 = > gec gg with a4, b, € Z. Note that S =
Ygec o As ZZ0D =37 o agangh™!, we conclude

geG Yg-
Sl < S gl - (z|ag|) < (z) s )

geG g,heG geG geG

On the other hand, as ZZ(=1) = 2™ + AP + PY”, we have

2 1Byl = 127+ AL+ [A(p = 1) + [supp(PY')]. (30)
geG
Combining (29) and (30), we get (28). O

Lemma 30. Suppose that 2/ # 1 (mod p?) or p > 22"~%. Then
77 =2m 4 \P (31)

for some integer \. In particular, 2™ + \p is a perfect square. Moreover, if p > 2™, then
A > 0.

Proof. 1f a = 1, then (31) immediately follows from (24). Hence we can assume a > 1.

First suppose 2/ # 1 (mod p?). Then X¢? € Z|(,] for some integer j by Corollary
26. Recall that Z({) = X, as Z is an alias of X. Hence Zg¢’(¢) = X7 € Z[()].
Note that Z¢’ is minimal, since Z is minimal. Let N be defined as in Lemma 18 and
write Zg? =3, .n Zig'. Since Zg7(¢) = Y .oy Zi(€)¢" € Z[(y) and {¢" : i € N} is linearly
independent over Z[(,], we conclude that Z;(¢) = 0 for all ¢ with  # 0 (mod p®~'). Since
Z ¢’ is minimal, each Z; is minimal by Lemma 18 (a). As Z;(¢) = 0 for i # 0 (mod p*~!),
this implies Z; = 0 for all ¢ # 0 (mod p*~'). We conclude that Z¢’ =",  Zig" € Z[P)].
Thus 2™ + PY = ZZY = (Z¢7)(Zg¢’)~Y € Z[P], where Y is defined as in (24). This
implies Y € Z[P] and thus PY = |Y|P. Hence (31) holds (with A = |Y'|). This completes
the proof of (31) in the case 2/ #£ 1 (mod p?).
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Using Corollary 25, it is straightforward to check that 2/ # 1 (mod p?) whenever

m < 5. Hence we can assume m > 7.

Now suppose p > 224 Then p > 2™"3, as m > 7. Moreover, A < 2™ by Corollary
28. In view of (27), to prove (31), we need to show Y’ = 0. Suppose Y’ # 0. Then,
as PY'N P = (), there is g € G\ P with gP C supp(PY”). Recall that f = ord,(2) is
odd. Thus ord,(—2) = 2f. Since (PY’)® = PY’ and (PY’)"Y = PY’, we conclude
g2’ P C supp(PY") for j =0,...,2f — 1.

Next, we show that the cosets ¢C2’ P, j = 0,...,2f — 1, are pairwise disjoint. Note
that ordy.1(—2) is divisible by 2f, since ord,(—2) = 2f and a > 1. Assume g~2’ P N
g(_Q)j/P # () for some j,j' with 0 < 5,5/ < 2f — 1, j # j'. Then there are r,s €
{0,...,p— 1} with g2+ = g(*Q)jl“p‘ZA. This implies (—2)7 = (=2)7" (mod p*~1),
which contradicts the fact that ord,.-1(—2) is divisible by 2f. Hence the cosets g p,
7=0,...,2f — 1, are indeed pairwise disjoint.

As g2’ P supp(PY”’) for j = 0,...,2f —1, we conclude | supp(PY’)| > 2fp. Using

Lemma 29, we find
2"+ A2 =8> 2" + Al + [A(p— 1) + 2fp.
Recall that p > 2™*3 and A < 2™. Since
27N+ N N2 N S AR <N (p—1) < A(p—1) + (2™ + ),

it follows that 22™ > 2pf. As p > 22"~% and f is odd, we conclude f < 7. On the other
hand, we have p > 2*"~* > 210 as we assume m > 7. This implies f = ord,(2) > 10, a
contradiction. Therefore, Y’ = 0. This completes the proof (31).

Note that 2™ + Ap = | Z|? is a perfect square by (31). It remains to show that A > 0
if p>2m. If A\ = 0, then |Z|> = 2™, which is impossible, as m is odd. Thus A # 0. If
A <0, then 0 < |Z|> =2™+ Ap < 2™ — p and thus p < 2™. Hence p > 2™ indeed implies
A > 0. O

Our next goal is to determine all possible values of A\. For a prime r and an integer

n, let v,(n) be the r-adic valuation of n, i.e., r*(" is the largest power of r dividing n.
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Lemma 31. Suppose that ZZ=1) = 2™ + AP with X\ € Z. Then the following hold.
(a) If q is an odd prime divisor of A\, then ¢ = +1 (mod 8).
(b) Either vy(\) is even or ve(A) = m.
(¢) If 1 <X <29, then A € {1,4,7,16,17} unless m = 3 and \ = 8.

(d) If X\ is odd, then A = p (mod 8).

u u 2
(e) cg—i-ch?:Qm—i-/\ and (co—l—chi) =2"+ Ap.
i=1 i=1

Proof. Let ¢ be an odd prime divisor of A. By applying the trivial character of G to
ZZ =D = 2m 4 AP, we obtain |Z|> = 2™ + \p. As m is odd, this implies that 2 is a square
modulo ¢. Using the second supplement to quadratic reciprocity, we get part (a).

Write A = 2!y where p is odd. Note that t = v5(A). If t > m, then 1,(2™ + \p) = 2™,
which contradicts |Z|?> = 2™ + Ap, as m is odd. Hence t < m. If t < m, then t =
v2(2™ + A\p) = 15(|Z|*) and thus ¢ is even. This proves part (b).

Part (c) follows from part (a) and (b). Finally, as m > 3, we have |Z|*> = Ap (mod 8),
and this implies (d), since 22 = 1 (mod 8) for all odd integers x.

Finally, recall that Z = ¢o + >, ¢;I'; and |I;| = f for all i. Hence part (e) follows
by comparing the coefficient identity on both sides of ZZ(-1) = 2™ 4+ AP and applying

the trivial character to this equation. O
Lemma 32. Ifm >7 and p > 2*™4 +2m"2 4 1 then A € {1,4,7,16}.

Proof. Suppose that m > 7 and p > 2?™~% +2m=2 4+ 1. Then p > 2™ and thus A > 0
by Lemma 30. By Lemma 27 and Corollary 28, we have S = 2™ 4+ A < 2™+ and hence
A < 2™ Moreover, (2™ + A)? > 2™ 4+ Ap by Lemma 29. We thus have g()\) > 0 where

g(t) — t2 + (2m+1 . p)t 4 22m . 2m.
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Note that g(t) is decreasing for ¢t < (p — 2™*1)/2 and that A < 2™ < (2m+3 — 2m+1) /2 <
(p—2™*1)/2. Hence, if we have g(t) < 0 for some ¢ € R, then ¢t > \. For m > 9, we have

g(17) = 17* + 17(2™ ! — p) + 2™ — 2™
< 172 + <16 + 1)(2m+1 - 22m—4 _ 2m—2) + 22m _ 2m
— 172 + 2m+5 . 22m . 2m+2 + 2m+1 . 22m—4 o 2m—2 4 22m . 2m

< 172 4 omtlt _gm+2 — 172 _ 9m+tl

On the other hand, if m = 7, then
g(23) = 232 +23(2° —p) + 2 — 27 < 23% 4-23(2°% — 2!%) -2 — 2" < (.

Therefore, A < 17if m > 9 and A < 23 if m = 7. In view of Lemma 31 (c), it only remains
to prove (m, \) # (7,17). Thus suppose m = 7 and A = 17. As (2™ + )% > 2™ + \p, we

have
(27 + 17)2 — 97

17
Hence 210 + 25 + 1 < p < 1229. Recall |Z]?> = 2™ + Ap. It can be checked that, for p in
the above range, 27 + 17p is a perfect square only when p = 1129. However, if p = 1129,

then f = 564, which contradicts Corollary 24 (a). ]

p < < 1230.

For m = 3 and 5, it is possible to use our results to find all possible solutions of
XX = 2™ in Z[¢] (recall that we write ¢ = (,«). We will only treat those cases which
are needed for application in Section 7. As the necessary computations are tedious and
straightforward, we give the details only for one case. We say that A, B € Z[(] are
equivalent if B = +(*A" for some integer 7 and some 7 € Gal(Q(¢)/Q).

Corollary 33. If m =1, then p =7 and X is equivalent to (; + (3 + (3. If m = 3, then
p € {7,23,31,73} and X is equivalent to one of the following.

2 2 10 15 4 8
2<§ :@), 2> 2> Do 1Y (G G ) Y@
1=0 =0 =0 =1 =0 =0

Proof. By Corollary 25, we have p = 7if m = 1 and p € {7,23,31, 73} if m = 3. Suppose
m = 3 and p = 23. Note that f = ordy3(2) = 11 and 2/ # 1 (mod 23?). Hence we
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can assume X € Z[(s3] by Proposition 26. Recall that Z is a minimal alias of X. As
in the proof of Lemma 30, we see that Z € Z[P] where P is a group of order 23. By
Corollary 28 and Lemma 30, we have 1 < X\ < 8 and 8 + 23\ = |Z|%2. This implies
A € {4,7} and |Z|* € {100,169}. Replacing Z by —Z, if necessary, we can assume
(A 1Z]) € {(4,10),(7,13)}. Note that S = ¢+ 11> ¢ = 2™+ X = 8+ \. Hence, if
A =4, then u =1, ¢cg = —1, and ¢; = 1. Moreover, if A\ = 7, then u = 1 and ¢y = 2
and ¢ = 1. As Z = ¢y + ¢;I'; where I'; is an orbit of size 11 of g — ¢* on P, it is
straightforward to check that in both cases X = Z () is equivalent to 2+ 3712 & The

proofs for the other cases are similar. O

The proof of the following result is analogous to that of Corollary 33 and is skipped.

Corollary 34. Suppose m = 5. If p =151, then X 1is equivalent to

14 14

23.2° 35.2¢

3+ E (51 + E Cisr -
i=0 i=0

If p = 127, then X is equivalent to S, Z?’:o Cf;?l where {aq, ..., a9} is one of the
following sets.

{1,3,9,27,28,71,94,116, 121}, {1, 3,9, 27,28, 73,81,94, 121}, {1, 3,9,27,66, 71, 73,109, 116},
{1,3,22,27,66,73,84,116,125}, {1, 3,27, 28,66,73,92,94, 125}, {1,9, 22, 71,73,81, 84,94, 121}.

Remark 35. The six inequivalent solutions X € Z[(j27] of | X |*> = 32 are in one-two-one
correspondence to the six equivalence classes of (127,63,31) difference sets, cf. [1, pp.
154-155].

7 Applications to Generalized Bent Functions

Throughout this section, we fix the following notation. Let m be an odd positive integer.
Write H = U x K with U = Z;: and K = Zy" and note that H = Zj,.. Recall that we
write ¢ = (po. We assume that a GBF f : Z5. — Zyy exists. By (5), this implies that
there is D € Z[C][H] with

DD = gmpam, (32)
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(note that Z[(ope] = Z[(], since —¢ € Z[¢] and —( is a primitive (2p®)th root of unity).
Let x : U — C* be any character of U. We extend x to a ring homomorphism Z[(|[H] —
Z[C|[K] by linearity and setting x(g) = g for all ¢ € K. Write D, = x(D). Then

DDy = 2mpm, (33)

by (32). Write Dy = 3, 2 with z;, € Z[¢] and © = Y771 (2)¢2. By (33), for

v
any character 7 on K, we have |7(D,)|?> = 2™p®™ and thus 7(D,) = 0 (mod ©“™) by
Corollary 8. Using Result 1, we conclude

oK =Y 7(Dy)r(h)™' =0mod (©°™)

rek

for all h € K. Note that |K| = 2™ and © are relatively prime in Z[(], since |©]? = p and
p is odd. Hence it follows that x;, =0 (mod ©*") for all h € K. Thus E, := D, /©%" is
an element of Z[(][K]. Moreover, note that EXE)({D = 2™ as|0|? = p. Let us summarize

what we found so far.

Proposition 36. Suppose that D € Z[C][H]| satisfies (32), let x be a character of U, and
write B, = x(D)/©"". Then E, € Z|(][K] and

EE{Y =2m, (34)

The application of our results in Section 6 to equation (34) immediately gives the

following.

Corollary 37. Suppose that a GBE from Zy,. to Zaye exists. Then p < 22m 4 9m + 1 and
p=7 (mod 8) orp=1,9,17,25,33,41,49,57 (mod 64). Moreover, the following hold.

(a) If m=1, thenp=1T1.
(b) If m =3, then p € {7,23,31,73}.
(¢) If m =25, then p € {7,23,31,47,71,73,79,89,103, 127, 151, 223, 233,337,601}

Proof. Let x be any character of U, let 79 be the trivial character of K, and set X =
70(Ey). Then X € Z[(] and |X|?* = 2™ by (34). Hence the assertions follows from
Corollaries 24 and 25. O
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Our next objective is to eliminate more primes from the lists above.

Lemma 38. Let W = {w € Z[(] : ww = 2™}. Suppose
v4+w Z0 (mod 2) for all v,w € W with w # +wv. (35)

Then for any character x of U, there exist w € W and g € K such that E, = wg.

Proof. If v =0 (mod 2) for v € W, then w := (v € W, v4+w =0 (mod 2), and w # +wv.
This contradicts (35) and thus we have v #Z 0 (mod 2) for all v € W,

Let 7y be the trivial character of K and write v = 79(E,). We claim that
T(E,) = v forall 7 € K. (36)

Let 7 be a nontrivial character of K and write w = 7(E,). To prove (36), it suffices to
show w = £v. By (34), we have v,w € W. Let T'= {g € K : 7(g9) = 1} and write
E\ =3 ,ck Tq9 where x4 € Z[(]. Note that 7(g) = —1 for all g € K'\ T, as all nontrivial
characters of K have order 2. Note that

v+w:Zx9+ Za:g— ng :2Zx950(m0d2).

geK geT geK\T geT
Hence w = £v by (35). This proves (36).
Let A={r € K :7(F,) =v} and B= K \ A. By Result 1 and (36), we get

Ty = % Z T(E)T(9) = 2% (ZT(Q) - ZT(Q)> . (37)

TEA TEB

Asv # 0 (mod 2), there is a prime ideal p of Z[(] such that 2 € p and v ¢ p. Fory € Z[(],

let 14,(y) denote the largest nonnegative integer k such that y € p* (with the convention

Vp(y) = 0if y € p). Note that v,(v) =0, as v € p. Write T'=3"__,7(9) — > ,c57(9)-
We have

0 < vp(zg) = 1p(v) + 1%(T) — 15(2") = ,(T) —m

by (37) and thus 14,(T)) > m. As T is a rational integer, this implies 7' = 0 (mod 2™).
Using (37), we conclude z, = 0 (mod v) for all g € K and thus E, =0 (mod v).
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Hence F := E, /v € Z[(][K] and FFY = 1 by (34), as vo = 2™ by assumption.
Write F' = >y yy9 with y, € Z[(]. As FFEY = 1, we have > gek lYgl? = 1. This
implies |y§‘ < 1forall g € K and all £/ € Gal(Q(¢)/Q). Hence, by Result 6, there is
g € G such that y, is a root of unity and y;, = 0 for all A # g. We conclude F' = y,g and
thus E, = Fv = (y,v)g, which completes the proof, as y,vo € W. O

Theorem 39. If condition (35) holds, then there is no GBF from Zy,. to Zaope.

Proof. Suppose that condition (35) holds and suppose that a GBF f : Liypa — Ligpa €xists.
Write H = U x K with U = Z;: and K = Zy" and note that H = Zj .. Recall that we
write ¢ = (pa. By (5), there is D € Z[¢][H] with DD = 2mpa™_ Moreover,

> m(D)y7x(D) =0 (38)

red

for every nontrivial character y of H by Result 3.

Note that every 7 € H uniquely can be written as 7 = 7 o 7y where 7k is a character
of K and 7y is a character of U, extended to Z[C][H] by 7y(h) = h for all h € K and
linearity. Note that 7/(D) = ©“"E,,,. As we are assuming that (35) holds, Lemma 38
gives

7(D) = 7k 0 (D) = 7i (0" Eq, ) = O™ w(7) 7K (9(7)) (39)

for all 7 € H, where w(r) € W and ¢(7) € K. Note that w(r) and g(7) only depend on
Ty, that is, w(7x) = w(r) and g(7x) = g(7) for all x € UL. Moreover, |7x(g(7))]? = 1

for all 7 € H, as 7 (g(7)) is a root of unity.

Now let x be any character of H which is trivial on U and nontrivial on K. Note that

T (9)(Tx)k(9) = x(g) for all ¢ € H, as 7k has order 1 or 2 and xx(g) = x(g). Using
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(38) and (39), we get

Let H = U2, |Ul*, 7 € H, be the decomposition of H into cosets of U+. Since
g(mx) = g(7) for all x € U+ and |U*| = 2™, we get

0= Z X(g(r)) = 2™ Zx(g(ﬁ))-

and thus 327" x(g(7:)) = 0. This is impossible, since p is odd and x(g(7;)) = 1. O
Next, we find some conditions to ensure (35) is satisfied.

Lemma 40. If f > 2™~ then condition (35) holds.

Proof. If f is even, then W = () by Corollary 24 (a). Hence we can assume that f is odd.
Suppose that v = 0 (mod 2) for v € W. Then X = v/2 satisfies | X|? = 2™~2 and thus
f < 2™~ 1 by Corollary 24 (d), which contradicts our assumption. Hence v # 0 (mod 2)
for all v € W.

Now suppose that v + w = 0 (mod 2) for v,w € W, that is,
v =w (mod 2). (40)

Write R = Z[(]. Recall that f is odd. Thus, by Result 7 (b), the prime ideals of R

containing 2 are not invariant under complex conjugation. That is, these prime ideals

30



occur in complex conjugate pairs in the prime ideal factorization of 2R. Hence 2R =
15, (p:b:) by Result 7 (b), where the p;’s are distinct prime ideals of R and k = (p —

1)/(2f). As |v]? = |w|?* = 2™, we conclude

vR = sz (p)™ %) and wR = H P,

with a;,b; € Z and 0 < a;,b; < m. Note that (40) implies that a prime ideal divides vR
if and only if divides wR. Hence for each i, we either have (a) 1 < a;,b; < m — 1, (b)
a; =0 and b; = 0, or (c) a; = m and b; = m. Note that, in each case,

VIOR = H m+a;— i m al—i—b)

is divisible by p?p,”. This implies v = 0 (mod 4).

Set Y = vw/4. Then |Y|> = 224 If Y is nontrivial, then f < 2™~! by Result 9,
contradicting our assumption. Hence Y is trivial, that is, Y = 2™~ 2 for some root of
unity . This implies

k

vibR = 4Y R = 4x2" R = 2"R = [ [ (p:p))"

i=1
Comparing this with the factorization of vw R we previously obtained, we conclude a; = b;
for all 7, that is, vR = wR. Hence w = ev for some unit ¢ of Z[(]. As w and v have
the same absolute value, we have |e| = 1. Using Result 6, we infer w = 4% for some
integer i and thus v +w = (1 4 ¢*)v. Recall that v # 0 (mod 2). If i Z 0 (mod p%),
then the ideal (14 (*)R is coprime to 2R and thus v +w = (1 £¢*)v # 0 (mod 2), which

contradicts our assumptions. Hence i = 0 (mod p®) and thus w = +v, as required. [

For m =5 and m = 7, the following lists those primes that survive Corollary 24 and

are excluded by Theorem 39 and Lemma 40.

Corollary 41. Assume the existence of a GBF from Zy,. to Zope. Then we have the
following.

Ifm =5, then p & {47,71,79,103, 223,233, 337, 601}
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If m =17, then p ¢ {167,191, 199, 239, 263, 271, 311, 359, 367, 383, 439, 463, 479, 487, 503,
727,911,919,937, 2593, 2687, 3391, 4177, 6553, 11447, 14951}.

Let G be a cyclic group of order p®. Using the notation of Lemma 38, suppose that

w € W. It follows from Theorem 22 (e) that there is a minimal alias of w of the form

h <CQ + i Czrz> s
i=1

where h € G, ¢; € Z and the T';’s are distinct orbits of x + 2% on G \ {1}. It turns out

that condition (35) is satisfied if we always have ¢; = --- = ¢, and ¢ is odd.

Lemma 42. We use the notation of Lemma 38. Let G be a cyclic group of order p* and

suppose that every w € W has a minimal alias of the form
h(c£S) (41)

where h € G, ¢ € Z, and S is a subset of G \ {1} with S = S (note that h, c, and S
may depend on w). Then condition (35) is satisfied.

Proof. Let v € W and let g be a fixed generator of G. By assumption, v has a minimal
alias of the form (41). Replacing v by an equivalent number, if necessary, we can assume
that v has a minimal alias of the form Z = ¢+ S, where ¢ € Z and S is a subset of G
with S = 5. Note that S # (), as |v|?> = 2™ is a nonsquare. Let P be the subgroup of
G of order p. By Lemma 16 (b), we have

|SN Pl < (p—1)/2 (42)

for all h € G. Write S = 3., ¢/ with A C {1,...,p" — 1}. Note that v = Z(() =
¢+ 5ea (s as Z is an alias of v. Moreover, {1}U{¢? : j € A} does not contain any coset
of (¢,) by (42). Hence {1} U {{? : j € A} is linearly independent over Q by Proposition
13 (b). As S # 0, this implies v = ¢+ 3", (7 # 0 (mod 2). Hence we have shown

v # 0 (mod 2) for all v € W. (43)
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Suppose that v, w € W satisfy
v+w =0 (mod 2). (44)

To prove that condition (35) holds, we need to show w = 4v. As before, we can assume
that v has a minimal alias of the form Z = ¢+ 5, where ¢ € Z and S is a subset of G with
S = S. By assumption, w has a minimal alias of the form ¢°(d+T), where s,d € Z and
T is a subset of G with T® = T. Note that (44) holds if and only if v —w = 0 (mod 2).
Hence, replacing w by —w, if necessary, we can assume that w has a minimal alias of the
form Y = ¢*(d +T). Note that w = (*(d 4+ T(¢)) by the definition of an alias.

Let o be the automorphism of Q(¢) determined by ¢° = ¢%. Note that v = Z({)? =
Z(¢) = v, as S® = 5. Moreover,

w =Y (¢)7 = (¢7)(d+T(Q)7) = ¢*(d+T(C)) = ¢"w,
since T® = T'. Using (44), we conclude 0 = (v + w)? = v + (*w (mod 2) and thus
(1—¢%)w =0 (mod 2). (45)

On the other hand, we have w # 0 (mod 2) by (43). If (* # 1, then 1 — (* is coprime
to 2 and thus (1 — {*)w # 0 (mod 2), contradicting (45). We conclude ¢* = 1 and hence
Y=d+T.

Recall S =37, ¢/ and write T' = }_. ¢’ with B C {1,...,p" — 1}. By (42), we

have

c+d+<2(j+ZCj>EZ(C)+Y(C):v+wEO(mod2). (46)

jeA jEB
Write A = A; U Ay with A; = AN{ip®t:i=1,...,p—1} and Ay = A\ A;. Similarly,

write B = B;UBs,. For the convenience, of the reader we summarize some of the notation
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we have introduced. We have

Z:c—l—S:c—l—Zgj,

JEA
Y=d+T=d+)Y ¢,
JEB
v=Z()=c+ I I+ > ¢
JEA jEAg
w=Y()=d+> I+ ¢
jE€EB1 JEB2

Note that {¢? : j € A;}U{¢? : j € Bi} CZ|p). As {¢*:0<i < p* ! —1}is linearly
independent over Q(¢,), we 1nfer from (46) that

c—i—d—i—(ZCj—i-ZCj) =0 (mod 2) and (47)

JEAL JjEB]
Z ¢+ Z ¢ =0 (mod 2). (48)
JEA2 JjEB2

By (42), every coset of ((,) contains at most (p — 1)/2 elements of {¢? : j € A} and at
most (p—1)/2 elements of {¢/ : j € B}. Thus Ay U By does not contain any coset of ({,).
By Proposition 13 (b), this shows that {¢? : j € Ay U By} is linearly independent over Q.
Hence (48) implies As = B,. Note that |A;| < (p—1)/2 and |B;| < (p—1)/2 by (42), as
{¢:je Ay CcPand {¢’:j€ B} CP.

First suppose that A;UDB; is a proper subset of {p®~1, ... (p—1)p*~'}. Then {1}U{{? :
j € A1 U By} is linearly independent and (47) implies ¢+ d = 0 (mod 2) and A; = B
As we also have Ay = Bs, we conclude v = ¢+ U and w = d + U where U = ZjeA <)

Hence
E+cU+U)+HUP =W =|w?=d+dU+U)+|U]%

This implies c =d or c +d = —U — U. If ¢ = d, then v = w and we are done. Suppose
c+d=—-U —U, that is,

DWW+ +D ([T +(I)=—c—d (49)

JjEAL jEAg
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Note that the first sum in (49) is in Q((,) and every root of unity occurring in the second
sum has the form (""" with 1 <i<p*'—landk e Z. As{C:0<i<p*'—1}
is linearly independent over Q((,), we infer from (49) that -, , ((/ +(7) = —c —d
(and the second sum in (49) vanishes). Hence M = {1} U{¢’ : j € A, JU{C7 :j €
Ay} is linearly dependent. Thus M contains a coset of ((,) by Proposition 13 (b). As
|A1] < (p—1)/2, this implies {¢/ : j € A} U{¢ :j € A1} ={(, ..., ¢ "} and thus
—c—d =YY" ¢, = —1. This contradicts the fact that ¢ + d is even.

Now suppose A; U By = {p®~ ! ..., (p— 1)p®~'}. Then |A;| = |B;| = (p — 1)/2 and
djea ¢+ > ien ¢/ = —1. Recall that Ay = B,. We conclude v = ¢+ V + W and
w=d—-1-V+W,where V=73, (/and W = 3", (/. Note that if we write
c+V =3, T’ZCZ with r; € Z, then r; = 1 for |A;| = (p — 1)/2 indices ¢ and r; = 0 for
(p —1)/2 indices i, as well as ry = ¢. Thus, using (6), we find

(P —DM(v) = (p = HM(c+ V) + M(W))
(50)

-t (Cu(c_ 1y +1%1) T (p— DM(W).

Similarly,
(p— HM(w) = ]%1 (d2 +(d—1)*+ p%l> +(p—1HM(W). (51)

As M(v) = M(w) = 2™, we infer ¢* + (¢ — 1) = d* + (d — 1)? from (50) and (51).
This implies c = dord = —c+ 1. If c=d, thenv+w = (c+V+W)+ (d—1—
V4+W)=2c—1+2W # 0 (mod 2), which contradicts (44). Hence d = —c + 1 and
thusw =d—-—1—-V4+W = —c—V +W. Set X =c+ V. Note that X # 0, since
|A1] = (p—1)/2. Moreover, v = X + W and w = —X + W. We have

X2+ W2+ XW 4+ XW = [0 = [w]> = | X2+ W] = XW — XW.
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This implies XW + XW = 0 and thus W = —(X /X)W. We conclude
m 2 o T o X o
2™ = |v :XX—I—WW:XX—YW. (52)

Note that X € Q((,). Hence (52) shows that the degree of the extension Q(¢,)(W)/Q((,)
divides 2. But the degree of Q(¢)/Q((,) is p*~! and p is odd. As W € Q((), we conclude
W € Q(¢,). As W only involves roots of unity of the form ¢* with i 2 0 (mod p®~'), the
usual linear independence argument shows that W = 0. Hence w = - X +W = - X =

—X — W = —v and this completes the proof. O

For m < 5, the following provides lists of those primes that survive Corollaries 24 and
41, but are excluded by Corollary 33, Theorem 39 and Lemma 42.

Corollary 43. Assume the existence of a GBF from Zy,. to Zope. Then we have the
following.

(a) If m=1, thenp #7,
(b) If m =3, then p & {23,31,73},
(¢) If m =05, then p ¢ {127,151}.

Proof. Suppose m =1 and p="T7. Let v € W. Then v is equivalent to X := (7 + (% + (7
by Corollary 33. Hence v = +¢: X7 for some integer i and 7 € Gal(Q(¢7)/Q). Let ¢ be an
integer with (7 = (¢ and let (g) be a cyclic group of order 7. We have v = +CH(G+Z+Y)
and thus Z = +¢'(¢* + ¢* + g*) is an alias of v. It is straightforward to check that Z is
minimal and has the form (41). Hence, by Lemma 42, condition (35) is satisfied. Thus
there is no GBF from Zs.7a to Zso.7a by Theorem 39. The proofs for the other cases are

similar. O

Lemma 44. [f m > 7, p > 2*"/9, and f > (2™ + 3)/5, then condition (35) is satisfied.

Proof. Let G be a cyclic group of order p* and let w € W. We will show that w has a
minimal alias of the form (41). By Theorem 22 (e), multiplying w with a root of unity,

if necessary, we can assume that there is a minimal alias Z of w with Z® = Z such
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that Z = ¢y + Z;‘zl ¢;I'; for some nonnegative integer u, where cq,...,c, € Z, ¢; # 0
for i > 0, and the I';’s are distinct orbits of g — ¢*> on G'\ {1}. Replacing w by —w, if
necessary, we can assume c¢g > 0. Moreover, |I';| = f for all . By Lemma 30, we have
271 = 2™ 4+ \P with A\ € Z, where P is the subgroup of G of order p. Moreover,
we have A € {1,4,7,16} by Lemma 32. Recall that S = 2™ + X\ by Corollary 28 and
52 > 2m 4 \p for A > 0 by Lemma 29. Hence, if A = 16, then

p S 274(52 o 2m) — 22m74 4 2m+1 + 16 - 2m74 < 22m/9’

as m > 7. This contradicts our assumptions. Thus A € {1,4,7}. Recall that

u u 2
cg+chf:2m+)\and (qﬁ—chi) =2"+Ap (53)

i=1 i=1
by Lemma 31 (e) and that f is odd.

We now show that
ci=1fori=1,...,uor¢=—-1fori=1,...,u. (54)

Suppose that (54) does not hold. Write a = Y. ¢7 and 8 = Y " | ¢;. The assumption
that (54) does not hold implies o > 2 and that there is an ¢ with |¢;] > 2 or there are
t,7 with ¢;c; < 0. Thus, in any case, we have o > [ + 2. Recall that 5f > 2™ + 3 by
assumption. As 5f is odd and divisible by 5, this implies 5f > 2™ 4 7. Together with

(53) we get
512™ + X — )

2" 47 <5f = - . (55)
Note that
2" 4+ Ap < (2™ 4 \)? (56)
by (28). We have
- 2m 4+ X 5(2™ +7)
2 < < 57
LS T <y (57)

u

as f > (2™ + 3)/5 by assumption. This implies Y | ¢7 <5.

)
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Case 1. « =5. Then A\ =7, 5f =2™+7, and ¢y = 0 by (55). Using (53) and f < o — 2,

we get
2™ + T2 (a0 —2)%2  9(2™ +7)?
2m — 2 < ( — .

Therefore,

25\ 7 9

This contradicts our assumptions.

9 22m 22m
p< = (—+2m“+7) <=

Case 2. a = 4. Then ¢z +4f = 2™ + X (53) and thus A = 2 + 4 (mod 8), as f is odd.
This implies A # 1,7 and thus A = 4 and ¢j is even. Note that f < a — 2 < 2 and recall
that ¢y > 0. Moreover, ¢y < ¢2/2, as ¢ is even. Using a similar calculation as in Case 1,

we get

A+4f\? (24 4)2
2m+4p=(00+5f)2§(00+2f)2§<02 f> :%
and thus p < 2%™ /9, contradicting our assumptions.

Case 3. o = 3. Then 3 +3f = 2™+ X. As A € {1,4,7} and m is odd, this implies
co =0 (mod 3) and thus ¢y < ¢2/3. Using 8 < a — 2 = 1, we conclude

2" \p = (e + BI)? < (o + f)? < <C%§3f> -

As A > 1, we conclude
2m

(22m+2m+1)\+)\2_92m) < 2_,

<
p 9

1
~ 9\
contradicting our assumptions.
Case 4. o= 2. In this case, 8 = 0. Using (53), we get 2™ +Ap = (co+)? = 2 < 2™+ \.
This is impossible.

We have thus shown that (54) holds. Hence Z = ¢o + 7> ., I'; with v = +1. This
shows that w indeed has a minimal alias for the form (41). Moreover, p > 2™ /9 > 2m+2

by assumption. Hence condition (35) is satisfied by Lemma 42. O]

The following provides lists primes that survive all previous necessary conditions, but

are ruled out by Theorem 39 and Lemma 44.
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Corollary 45. Assume the existence of a GBF from Zy,. to Zoye. If m = T, then
p & {2089, 2143, 2351,3191,4513,6361,8191,9719, 11119, 13367}.

Finally, we summarize or results on GBFs from Z3,. to Zgpe.

Theorem 46. Let p be an odd prime, let a, m be positive integers, and suppose that m
is odd. If a GBF from Ly, to Ly exists, then the following hold.

e m > 3.

p <224 2m 4.

e ord,(2) is even and ord,(2) < 2™,

If m > 7, then p < 22™/9 or ord,(2) < (2™ + 3)/5.

Ifm =3, thenp=1.

Ifm =5, then p € {7,23,31,73,89}.

e I[fm=1717, then
p € {7,23,31,47,71,73,79, 89,103, 223,233, 337,431, 601,631,881, 1103, 1801} .

Proof. This follows from Lemmas 38, 40, 44, Theorem 39, and Corollaries 25, 37, 43, 41,
and 45. [
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