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Abstract

Let a and h be positive integers and let p be a prime. Let ¢i1,...,q be the
distinct prime divisors of h and write Q(h) = {Zle ciqi 2 ¢ € Lyci > 0}. We pro-
vide constructions of group invariant Butson Hadamard matrices BH(G, h) in the

following cases.

1. G = (Z,)** and at least one of the following conditions is satisfied.

o p* € Q(h),
o p®+2¢€ Q(h) and h is even,

e p"+1=(q1 —1)(g2 — 1) where ¢; and gz are distinct prime divisors of h.
2. G=Zps X Lpa and p —1,p € Q(h).
3. G = (Z,2)* and p® € Q(h) for some divisor b of a with 1 < b < a.

4. G = P x Zg where P is any abelian group of order p* and p € Q(h).

1 Introduction

Let H be a square matrix of order n all of whose entries are complex roots of unity, let H*
denote the complex conjugate transpose of H, and let I be the identity matrix of order
n. If HH* = nl, then H is called a Butson Hadamard matrix. If all entries of H are
complex hth roots of unity, we call H a BH(n, h) matrix. In particular, a Hadamard

matrix of order n is a BH(n, 2) matrix.

Let G be an abelian group of order n which is written multiplicatively. An n x n
matrix A = (ayx)ykec, Whose rows and columns are indexed by elements of G, is called
G-invariant (or just group-invariant) if a,, = a4 for all g, k,l € G. A G-invariant
BH(n, h) matrix is called a BH(G, h) matrix.

An overview of most known results on Butson Hadamard matrices is given in the
Ph.D. thesis of Szollési [22]. More recent work on Butson Hadamard matrices and group-
invariant Butson Hadamard matrices can be found in [12, 14, 16]. A survey of group-

invariant Butson Hadamard matrices and related objects is provided in [21].

For an abelian group G, let exp(G) denote the least common multiple of the orders
of the elements of G. It is well known [3] that group invariant BH(n,2) matrices, i.e.,
group invariant Hadamard matrices, are equivalent to Hadamard difference sets. Thus
the following is a consequence of the results of Turyn [23], Davis [8], and Kraemer [15] on

Hadamard difference sets.



Result 1.1 (Turyn, Davis, Kraemer). Let G be an abelian group of order 2*. A BH(G, 2)
matriz exists if and only if exp(G) < 24T,

The main purpose of this paper is a partial generalization of the existence part of
Result 1.1 to abelian p-groups. It should be noted, however, that there is no chance
to generalize Result 1.1 to BH(G,2) matrices with G being an abelian p-group of odd
order, since Hadamard matrices of odd order larger than 1 do not exist. Instead, we are
constructing BH(G, h) matrices with h > 2. Curiously, quite general constructions are
known already for BH(G, h) matrices in the case where G is an abelian p-group and p
divides h, see [2, 12, 21]. Very little is known, however, in the case where ged(p, h) = 1.

It is this latter case that we focus on.

Our first few constructions are similar to the “big subgroup construction” of relative
difference sets given in [9]. In fact, the subgroups we need are obtained from spreads of
elementary abelian groups that correspond to translation planes. We use these subgroups
as a foundation to build Butson Hadamard matrices in the form of group ring elements.
More specifically, we create a group ring expression by assigning the same root of unity
as coefficients to all elements of certain subgroups. If a group element is in more than
one of the chosen subgroups, the coefficients assigned to these subgroups must add up to
another root of unity. This requirement will determine the conditions under which our

constructions work. For instance, we prove the following.

Theorem 1.2. Let p be a prime and suppose there are complex hth roots of unity no, ..., np
such that Y %_ n; is a root of unity. Then there exists a BH(Z, % Z,, h) matriz.

It is interesting to note that Craigen and Szoll6si’s construction of BH(p?, 6) matrices
[22, Theorem 1.4.41] is as a special case of Theorem 1.2. In fact, suppose that p is an odd

prime and set

770:1,77p2<3and7’]i:(1) fori=1,...,p—1 (1)
p

in Theorem 1.2, where (;) is the Legendre symbol. Then we recover [22, Thm. 1.4.41].
This is not obvious at first glance, as [22, Thm. 1.4.41] uses Paley matrices and Kronecker
products whereas our construction is described in the language of group rings. However,

a direct comparison of the matrices shows that this is indeed the case.

In Section 4, we construct Butson Hadamard matrices invariant under Zyo X Zy. by
exploiting the way the cyclic subgroups of these groups are “nested”. A recursive con-
struction of Butson Hadamard matrices invariant under Z,. x (Z,)* based on elementary

properties of finite affine geometries is given in Section 5. In Section 6, Galois rings



are employed to obtain a construction of BH(G, h) matrices for groups G of the form
L2 X -+ X Ly for a prime p. Finally, in Section 7, we use non-homomorphic character
sum preserving bijections between abelian groups that were introduced in [13] to extend

our constructions to further classes of abelian p-groups.

For all our construction methods, vanishing sums of roots of unity play a crucial role.
and we heavily use relevant results of Lam and Leung [17]. The following is the central

result of [17] we need.

Result 1.3. Let h,k > 2 be integers and let qi,. .., q; be the distinct prime divisors of h.
There are complex hth roots of unity ny, ..., nx with n + - -+ + . = 0 if and only if

t

k= Zai(h (2)

=1

for some nonnegative integers a;.

Note that, using the notation introduced in the abstract, condition (2) is equivalent

to k € Q(h).

2 Preliminaries

Throughout this paper, we write (, = exp(2mi/h) and
UR)={¢ :i=0,...,h—1}.

Furthermore, Z,, denotes a cyclic group of order m.

2.1 Group Rings and Characters

We use the language of group rings to formulate our constructions. Let G be a multiplica-
tively written finite abelian group and let R be a ring. The elements of the group ring
R[G] have the form X =}
X and supp(X) = {g € G : b, # 0} is the support of X. Two elements X = dec ayg
and Y = 3 _;byg of R[G] are equal if and only if a; = b, for all g € G. A subset S of
G is identified with the group ring element » ges g For the identity element 1 of G and

agg with a, € R. The a,’s are called the coefficients of

A € R, we write A for the group ring element Al.

For our purposes, group rings R[G] with R = Z[(,] will be useful. In this case, the
elements of R[G] have the form X = 3" . a,9 with a, € Z[(;] and we write

XED = "ag,

geG
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where @, is the complex conjugate of ag.

We denote the group of complex characters of G by G. For U < G, write
Ut={xeG:x(g)=1forall ge U}

Characters x of G are extended to the group ring R[G] by x(X) = >_ cqagx(g) for
X = > ,cca9 € R[G]. The trivial character of G is the character that maps all

elements of G to 1.

The following is a useful criterion for checking if group invariant matrices are Butson

Hadamard matrices. For a proof, see [21, Lem. 2.1].

Result 2.1. Let G be a finite abelian group, let h be a positive integer, and let a, € U(h)
for all g € G. Consider the element D = 3 . aq9 of Z[Gu][G]. The G-invariant matriz
(agr-1)gkec s a BH(G, h) matriz if and only if

DDV = @G| (3)
Moreover, (3) holds if and only if
Ix(D)|* = |G| for all x € G.

For the rest of this paper, we identify the group ring elements D as in Result 2.1 with
the corresponding group invariant matrices (az-1)g1eq. Hence, if (3) holds, we will just
say that D is a BH(G, h) matrix.

For a proof of the following result, see [3, Chapter VI, Lemma 3.5], for instance.

Result 2.2. Let G be a finite abelian group and D =Y _,a,q with a; € C. Then

geG

1
ay = @ Zx(Dg_l) for all g € G.

xeé

2.2 Sums of Roots of Unity

Sums of roots of unity satisfying certain conditions will be an essential tool for all our
constructions of Butson Hadamard matrices. We now state a number theoretic result
determining precisely when these conditions can be satisfied. We defer the proof of this

result to the appendix, since it is quite technical.



Let h > 2 be a integer and let ¢, ..., ¢ be the distinct prime divisors of A. We recall

the following notation.

t
Q(h) = {Zaiqi ca; € Ly a; > 0},

=1

UR)=1{¢ :i=0,...,h —1}.

Theorem 2.3. Let h, m be positive integers.

(a) There are ny,... 1Ny € U(h) with >°7" n; = 0 if and only if m € Q(h).

(b) There are ny,...,nm € U(h) with

2 m=1
i=1
if and only if one of the following conditions is satisfied.

(1) h is even and m+ 1 € Q(h),

(17) h is odd and m — 1 € Q(h),

(1ii) h is odd, has at least two distinct prime divisors, and m = (q; — 1)(g2 — 1), where

41,492, Q1 # q2, are the two smallest prime divisors of h.

3 Construction from Finite Translation Planes

Let G be a finite group of order m2. A collection Uy, ..., U,, of subgroups of G with
\U;| = m for all ¢, U;U; = G for all i # j, and ", U; = G is called a spread of G. By

the fundamental work of André [1], there is a one-to-one correspondence between spreads

in finite groups and finite translation planes. Moreover, there is a spread in a group G of

order m? if and only if G is an elementary abelian p-group for some prime p.

Theorem 3.1. Let Uy, ...,U,, be a spread of a group G of order m? and let 1, . .

be any complex roots of unity with > ;- n; = 1. Then

1=0

is a BH(G, h) matriz, where h is the least common multiple of the orders of the n;’s.

')nm



Proof. 1t follows from the definition of X that X = > _,azg with a, € Z[p]. We first
show a, € U(h) for all g € G. As |U;| = m for all ¢ and U; N U; = {1} for all i # j,
every nonidentity element g of G is contained exactly one U;. Hence a, = n; € U(h). The
coeflicient of the identity element in X is > " n; = 1 by assumption. Thus a, € U(h) for
all g € G.

Now let x be any nontrivial character of G. If x was trivial on both U; and U; for
some i # j, then it would be trivial on U;U; = G, a contradiction. Hence |U;- N U =1

for all i # 7. This implies

= (m+1)m—m =m?

VG
i=0

and thus -, Ui~ = G. Hence every nontrivial character of G is trivial on exactly one

U;. Suppose y is nontrivial on U;. Then x(X) = x(U;)n; = mn; and thus |x(X)| = m?.

For the trivial character xq of GG, we have

Xo(X) =) (Uil =m > mi=m
=0 1=0

by assumption and thus |xo(X)| = m?. In summary, we have shown |x(X)| = m? for all
characters x of G. Hence X € BH(G, h) by Result 2.1. O

Translation planes and thus spreads of elementary abelian groups exist in abundance;

see the monograph [18], for instance. In particular, we have the following.

Corollary 3.2. Let G be an elementary abelian group of order p** and let h be any positive

integer such that at least one of the following conditions is satisfied.

e p® € Q(h),

e p*+2¢c Q(h) and h is even,

e p*+1=(q1 —1)(g2 — 1) where q1 and qo are distinct prime divisors of h.
Then there is a BH(G, h) matriz.

Proof. 1t is well known [18] that there is a spread in G. Hence, by Theorem 3.1, it suffices
to show that there are ny,...,mp1 € Q(h) with

p?+1

Z n; = L. (5)



First suppose that p* € Q(h). If h is odd, then (5) follows from Theorem 2.3 (b), as
condition (ii) of this theorem is satisfied. If h is even, then p* + 2 € Q(h), as we assume
p® € Q(h) and 2 is a prime divisor of h. Hence condition (i) of Theorem 2.3 (b) holds
and (5) follows.

If p*+2 € Q(h) and h is even, then (5) directly follows from Theorem 2.3 (b). Finally,
suppose p* + 1 = (q1 — 1)(go — 1) where ¢; and ¢y are distinct prime divisors of h. Then
expanding the left hand side of (Cg, + -+ 4 (2 71)(Cgy + -+ - + (271 = 1 gives a solution

q2

of (5). O

Corollary 3.3. Let h be a positive integer with at least two distinct prime divisors and
let g1 and qo be the two smallest prime divisors of h. For every elementary abelian group
of order p** with p* > (q1 — 1)(ga — 1) — 1, there is a BH(G, h) matriz.

Proof. If p* = (¢1 —1)(¢2 — 1) — 1, then a BH(G, h) matrix exists by Corollary 3.2. Hence
we can assume p® > (¢ — 1)(g2 — 1). Then p* € Q(h) by [17, Lem. 5.1] and thus a
BH(G, h) matrix exists by Corollary 3.2. O

Corollary 3.4. A BH(G, 6) matriz ezists for every elementary abelian group G of square

order.

Proof. This follows from Corollary 3.3, as (¢ — 1)(g2 — 1) = 2 for h = 6. O

4 Nested Cyclic Subgroups Construction

Throughout this section, G denotes the group Zy. X Z,., where p is a prime and a is a
positive integer. Our next construction uses cyclic subgroups of G of order p* as building
blocks for BH(G, h) matrices. We start with a preliminary result. By M(b) we denote
the set of cyclic subgroups of G of order p?, 0 < b < a.

Lemma 4.1. Using the notation just introduced, we have the following.
(i) M) = (p+ 1)p*~" for 1< b <a

(i1) Suppose 1 < b < a—1. Each subgroup in M(b) is contained in exactly p subgroups
in M(b+1).

(iii) Let x be a character of G of order p®, 0 < b < a. Then there is T € M(a — b) such
that the following holds for every K € M(a).

K <ker(x) if and only if T < K.

8



Proof. Parts (i) and (ii) are well known, but we include a proof for the convenience of
the reader. There are exactly p?® — p?®*~2 elements of G of order p® and each subgroup in

M(b) has exactly (p — 1)p*~! generators. Hence

M) = * =p* )/ ((p—1)p" ") = (p+ 1)p" .
This proves (i).

Suppose 1 < b < a—1. As Aut(G) is transitive on M(b), each subgroup in M(b) is
contained in same number of subgroups in M(b+ 1). Since |[M(b+ 1)|/|M(b)| = p and
each subgroup in M(b+ 1) contains exactly one subgroup in M(b), we conclude that (ii)
holds.

We now prove (iii). It is straightforward to show that ker(y) contains an element of
order p®. Let g be such an element and let k& be another element of order p* of G such
that G = (g, k). Since x has order p® and x(g) = 1, we have (k) = C;b for some integer
t coprime to p. Set T = (g*").

Write K = (g'k’) for some integers 4, j. Since K has order p?, we have T' < K if and
only if (¢'k7)?" € T, that is, k#" = 1. This holds if and only if j = 0 (mod p®~?). On the
other hand, we have K < ker(y) if and only if x(¢g'k’) = C;{, = 1, which also holds if and
only if j = 0 (mod p®~?). This proves (iii). ]

Before we state our construction, we introduce some more notation. By C(G) we denote
the set of all cyclic subgroups of G of order larger than 1. For each cyclic subgroup U
of G with 1 < |U| < p*!, let S(U) be the set of cyclic subgroups of G of order p|U|
that contain U. By Result 4.1, we have |S(U)| = p for all U with p < |U| < p*~! and
|S(U)| =p+ 1if [U| = 1. Note that

c(@) =Jsw. (6)

where U runs over all cyclic subgroups U of G with 1 < |U| < p*~! and the right hand

side of (6) is a partition of C(G) into pairwise disjoint subsets.

Theorem 4.2. Let nw, W € C(G), be complex roots of unity such that

> mw=mny (7)

WeS(U)

for all cyclic subgroups U of G with 1 < |U| < p*~'. Then

(a)



is a BH(G, h) matriz, where h is the least common multiple of all the orders of nw,

W e C(Q).

Proof. We first show that (7) implies

Z nw = Mu (8)
WeM(a)
UCcw
for every cyclic subgroup U of G. We prove (8) by backward induction on |U|. For
|U| = p*, the only subgroup in M(a) containing U is U itself, so (8) holds. Now assume
that (8) holds for all U with |U| = p* where 1 < b < a. Let K be a cyclic subgroup of G

of order p?~!.

Since |K'| = p® for K’ € S(K), we have

E nw = Nk’ (9)
WeM(a)
K/'CW

by the induction hypothesis. Note that a subgroup W € M(a) contains K if and only if

W contains exactly one of the subgroups in S(K), that is, we have
{WeM): KCW}={W e M(a): K' CW for exactly one K’ € S(K)}.

Using this and (7), (9), we get

Z Nw = Z Z nw = Z Nk = MK -

WeM(a) K'€S(K) WeM(w K'eS(K)
KCW

This completes the proof of (8).
From the definition of X, it is clear that X =} . a,g with g € Z[(,]. We now show

that a, € U(h) for all g € G. Let g be any element of G and let U be the cyclic group
generated by g. By the definition of X and (8), we have

Z Nw = Hu

WeM(a)
UCW

and thus a, € U(h) as required.

Finally, let x be any character of G and let p® be the order of y. By Lemma 4.1, there
is a cyclic subgroup T of G such that the following holds for every W € M(a).

W < ker(y) if and only if T < W.

Moreover, note that x (W) = p* if W < ker(x) and x (W) = 0 otherwise. Hence

> pnw = nrp”

WeM(a)
TCW
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by (8). Hence |x(X)|? = p*® for all characters x of G. Thus X is a BH(G, h) matrix by
Result 2.1. ]

Corollary 4.3. Let p be a prime and let a, h be positive integers such that p—1,p € Q(h).
Then there is a BH(Zpa X Zya, h) matriz.

Proof. Write G = Zypa X Zpa. By Theorem 4.2, it suffices to show that there are roots of
unity nyw € U(h), W € C(G), such that

Z nw = Nu (10)
Wes(U)
for all cyclic subgroups U of G with 1 < |U] < p®~'. Recall that C(G) is the union
of the pairwise disjoint sets S(U), where U runs over all cyclic subgroups of G with
1 < |U] < p* . We construct the necessary roots of unity ny recursively. For U = {1},
the set S(U) consists of the p + 1 subgroups of G of order p. Let Wy,..., W,;; denote
these subgroups. We first show that there are ny,...,m,+1 € U(h) with

p+1

Zm =1 (11)

If h is odd, then (11) has a solution by Theorem 2.3 (b) (ii), since p € Q(h) by assumption.
If b is even, then p+2 € Q(h), as p € Q(h) and 2 is a prime divisor of h. Hence (11) has
a solution by Theorem 2.3 (b) (i). This completes the proof of (11). Now set 1y =1
and nw, =n; for i = 1,...,p+ 1. This solves (10) for U = {1}.

Suppose that 1y ’s have been chosen such that (10) holds for all for all cyclic subgroups
U of G with 1 <|U| < p® and b < a — 2. Recall that p — 1 € Q(h) by assumption. In the
same way as above, we see that there are pi1, ..., u, € U(h) with Y7 | p; = 1. Now let U
be any cyclic subgroup of G with |U| = p’*! and let K7, ..., K, the subgroups in S(U).
Setting 1k, = pumnu for i = 1,...,p solves (10) for U. Since the sets S(U) are pairwise
disjoint, we can thus solve (10) for all cyclic subgroups U of G with |U] = p**!. This
shows that (10) has a solution. O

5 Recursive Subspace Construction

The constructions in the previous sections, in particular, yield BH(Z, x Z,, h) matrices
for all primes p. We now use these matrices as an ingredient in a recursive construction

that produces BH(Z,« x (Z,)®, h) matrices for all primes p and positive integers a. A

11



second essential ingredient will be subspaces of the maximal elementary abelian subgroup

of Zya x (Z,)*, when viewed as an finite affine geometry AG(a + 1, p).

We first fix some notation that we use throughout this section. Let p be a prime and

let a be positive integer. Let G, denote the group Zy« x (Z,)*, and write

Ga = (@) x (B) x {71) X -+ X (7a-1),

where the order of « is p* and the orders of 3, v;, for e = 1,...,a — 1, are all equal to p.

The following elementary abelian subgroups of GG, will play a crucial role.
W = <Oépa_17ﬁ7’717 c 'f}/afl)?
U _ <apa71>’
R = <717 s 77&—1>7
S =RU = <Ozpa_1,’)/1, e 7/71171)-

Note that (a?) X R 2 Zya—1 x 24" = G,_;. Hence we can identify G,y with (a”) x R.
Moreover, W = Zg“ is the maximal elementary abelian subgroup of GG,. We view W
as an affine geometry AG(a + 1,p) and S as a subgeometry of W. In particular, we
call subgroups of W of order p® hyperplanes of W and subgroups of S of order p*!

hyperplanes of S. The following is well known and straightforward to prove.

Result 5.1. Using the notation just introduced we have the following.

(a) There are exactly p®=* hyperplanes of S that do not contain U and ezactly p® hyper-
planes of W that do not contain U.

(b) For every hyperplane H of S that does not contain U, there are exactly p hyperplanes
Voof W with HSV and U LV

(¢) Let x be a character of G that is nontrivial on W. Then x is trivial on exactly one

hyperplane of W.

Based on Result 5.1, we introduce some more notation.
e By Hy, ..., Hy-1_1 we denote the hyperplanes of S that do not contain U.

e For each ¢ with 0 < i < p* ! —1, let Vios...,Vip—1 be the hyperplanes of W that

contain H; and do not contain U.

12



Suppose V;; = Vi j» with ¢ # /. Then V;; contains both H; and Hy and thus S.
But this is impossible, since U < S and U £ V; ;. This shows that the hyperplanes V; ;,
i=0,...,p ' —1,7 =0,...,p— 1, are pairwise distinct. Using Result 5.1 (a), we
conclude that the V; ;’s are all the hyperplanes of W that do not contain U.

Theorem 5.2. We use the notation introduced above. Suppose that ¢; ;, i =0,...,p" ' —

1,j=0,...,p—1, are complex roots of unity satisfying

p—1

> Gi=0fori=0,...p"" -1 (12)

§=0
Moreover, suppose that 1,4, t = 0,...,p" ' —1, g € R, are complex roots of unity such
that

pa—lil
V=D D e
=0 g€R

is a BH(G,_1,h) matriz. Let g; € R, i = 0,...,p" ' — 1, be arbitrary and let k be any

integer. Then
p

=11 /p—1
X = Z ( GijVijigi + Zm,gUg> a' M (13)

i=0  \;j=0 geR
is a BH(G,, h) matriz, where h is the least common multiple of the orders of all (; ;’s and

2
Nig S

Proof. We first show that all coefficients of X are in U(h). Fix any i € {0,...,p* ! — 1}
and set
p—1
Xi = Az -+ Bl where Az = ZC%]V;,JQZ and Bz = an’gU'g
7=0 geR

Write X; = ), oy bz with by ; € Z[(,]. We show that b,; € U(h) for all x € W.

We have V; ;NS = H; for j =0,...,p—1, as S and V; ; are distinct hyperplanes of W

and thus intersect in a hyperplane of S. Hence the sets V; ;\S, j = 0,...,p—1, are pairwise

a+1 a

disjoint and the union of these sets covers exactly p(|V; ;| —|H;|) = p(p*—p®~*) = p**t—p
elements of W\ S. Since |IW \ S| = p®* — p®, we conclude U?;(l] (Vi;\S)=W\S. As

gi € R < S, this implies
p—1

U (Vijgi \ $) =W\ 8 (14)

J=0

and the left hand side of (14) is a union of pairwise disjoint sets.

First suppose z € W \ S. Note that supp(B;) = S. Hence all contributions to b, ;
come from A;. By (14), there is exactly one j such that x € V; ;g;. Thus b,; = (; ;.

13



Next, suppose x € S\ Hig;. As g; € R C S, we have V,;¢, NS =V, ;g N Sg; =
(Vi;NnS)g; = Hig; for j = 0,...,p — 1. As x ¢ H,g;, this shows that A; does not
contribute to b, ;. Moreover, since UgeR Ug =5, there is exactly one g € R with z € Ug.
This implies by ; = 1; 4.

Finally, let « € Higi. Then x € V, jg; for j = 0,...,p — 1 and thus the contribution
of Aj to by, is 377~ ~0¢; = 0 by (12). Furthermore, as |J
g € R with x € Ug. This implies b,; = 1; 4.

ger Ug =5, there is exactly one

In summary, we have shown

b _{Ci,jforsomej ifxe W\ S,

1;q for some g € R otherwise.

By the definition of h, this shows that b,,; € U(h) for all x € W.

By (13), we have

all

pe—1_1
Z Xo/ﬁl“: Z bezazﬁkz

=0 zxzeW
Since 8 € W and 1,q,...,a”" '~! represent each coset of W in G, exactly once, the
elements o/B¥x, i =0,...,p°' — 1, z € W, cover each element of G, exactly once. As

b.; € Q(h) for all x € W, this shows that all coefficients of X are in U(h).

Next, we prove that
IX(X)[?> = p* for all x € G. (15)

First suppose x € W*. Then x is trivial on all V;;’s and on U. Furthermore, we have
xX(B8) = x(g) =1 for all g € R and x(«) is a root of unity of order dividing p®~*. Using
(12), we get

X(X) Z (ZQJW;JH‘ZWW’UO

=0 geER
cL 1 1 p— 1 a 1 1
:pa ZCZ] +p Z angx (16)
i= i=0 g€eR
a 171

I
(]
=
&
=

all

Recall that Y = Y7

order of x divides p®~!, we have y(a) = C;a_l for some integer t. Let 7 be the character

D ger nig90?" is a BH(G,_1, h) matrix by assumption. As the
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of Gy = (aP) x R determined by 7(a?) = (.-, and 7(g) = 1 for all g € R. Using (16),

we get

a—l_l a—l_l

)= S St = S0 Zm,gw)i:%xm. (17)

i=0 g€R i=0 geR

By Result 2.1, we have |7(Y)|? = p?*~2? and hence (15) follows from (17).

Now, suppose that y € G \ W+. By Result 5.1, we have that y is trivial on exactly
one of the hyperplanes of W, say V. First suppose that V =V, ; for some ¢, j. Then x
is nontrivial on U since UV = W and x ¢ W=. Hence x(X) = |Vi ;|G jx(g:ia' %) = p°C,
where ¢ = ¢; ;x(g:a'8¥) is a root of unity and thus (15).

Now assume V # V; ; for all 4, j. Then y is nontrivial on all V; ;’s and thus x(V;;) =0
for all 4, . Moreover, U is contained in V" and thus x is trivial on U. Hence the order of y
divides p®~* and y (o) is a root of unity of order dividing p~!. Let 7 be the character
of G,_; defined by 7(a?) = x(aB¥) and 7(g) = x(g) for all g € G. Then

a—l_l

XX) = D" > iU (@)x(@B®) =p > > migr(al’g) = pr(Y).

i=0 g€ER =0 g€ER

a—l_l

Hence |x(X)[> = p?|7(Y)| = p** by Result 2.1.

In summary, we have shown that all coefficients of X are in ¢(h) and that (15) holds.
Hence is a BH(G,, h) matrix by Result 2.1. O

Note that, by Result 1.3, there are roots of unity 7, ; satisfying condition (12) p € Q(h).
Hence Corollary 3.2 and Theorem 5.2 imply the following.

Corollary 5.3. Suppose that p € Q(h). Then there ezists a BH(Gy, h) matriz for all

positive integers a.

6 Construction of Butson Hadamard Matrices over
sz X - X sz

We now use Galois rings to construct BH(G, h) matrices with G of the form Z,2 X - - - X Zy2.
We first introduce the necessary background on Galois rings. We refer the reader to [19]

for background and proofs of the assertions made below.

Let p be a prime, let F, denote the finite field of order p, and let d be a positive
integer. For h € Z,2[x], let h € F,[x] be the polynomial that is obtained by reducing the

coefficients of f modulo p. There is a monic polynomial f € Z,:[z] of degree d such that

15



f is a primitive polynomial over F, and f divides 27 —1in Zy2|z]. The Galois ring of

degree d over Z,: is defined as
GR(p", d) = Zy2[z]/(f)-

Write R = GR(p?, d). There is g € R with ¢*""' =1 and ¢ # 1 for 1 < i < p® — 2. The
additive group of R is isomorphic to (Z,2)? and the unique maximal ideal of Ris [ = pR =
{0,p,pg, ..., pg" "2}. The residue class field K := GR(p?,d)/I = {0,1,3,...,5"" 2} is a
finite field of order p?. The set 7 = {0,1,g,...,¢*" 2} is called a Teichmiiller system.
Note that 7 is a complete system of representatives of cosets of I in R. An arbitrary
element a of R can be expressed uniquely as o = ag + pay with ap,a; € T and a is a

unit of R if and only if ag # 0.

Let R* be the set of units of R. Then |R*| = (p? — 1)p? and every element of R* has
a unique representation g'(1 + pa) with 0 < i < p? — 2 and o € 7. As a multiplicative
group, R* is the direct product of H = (g) and U = {1+ pa : a € T}. Moreover, we have
H>Zy y and U = (Z,)".

Define the absolute trace function Tr : K — F, by

d—1

Tr(a) =a+ao’ +---+af

for « € K. Let f be any divisor of d and let F' be the subfield of K of order p/. The
trace function of K relative to F' is denoted by Trq ;. Note that

Tras(a) =a+a? +- +a? 7

By transitivity of trace, we have Tr(a) = Tr(Try f)(«)) for all a € K.

We now define the ingredients of our construction. Recall that H = (g) is a subgroup
of R* of order p¢ — 1. The elements of U = {1 + pa : a € T} form a complete set of

representatives of H in R* and thus we can label the cosets of H in R* as
E;=H and E; = (1+pg")H fori=0,...,p%—2.

Note that |Ey| = |H| = p? — 1 for all 4.

Let f > 1 be a proper divisor of d and let F be the subfield of K of order p/. As
f <d, there is k € K, k # 0, with Trgq (k) = 0. Moreover,

V= {ZZ‘ e K: TIde(l_Cj) = 6}
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is a (d/f — 1)-dimensional F-subspace of K. In particular, |V| = p/(@//=1) = pd=Ff Tt is
straightforward to verify that, as an identity of subsets of the group R* (not of group ring
elements), we have Ez E; = E;.y for all Z,y € K. This implies that

D=|]JE;

zeV
is a subgroup of R*. Note that |D| = p?~/(p? — 1). Let Dy, ..., D,s_; be the cosets of D
in R* where Dy = D. The following was proved in [7, p. 183-185].

Result 6.1. Suppose that x is an additive character of R.
1. If x is the trivial character, then x(I) = p® and x(D;) = p* 7/ (p? — 1).
2. If x has order p, then x(I) = p? and x(D;) = —p~7/.

3. If x has order p*, then x(I) = 0 and x(D;) = —p?~ or p/(p/ —1). Furthermore,
for a fized character x of R of order p*, there is a unique coset D; such that x(D;) =

I - 1).
Theorem 6.2. Let G be the additive group of GR(p?,d) and let f be a divisor of d with
1 < f <d. Suppose that n,1n,...,nyr_1 are complex roots of unity such that

pf—1

Z ni = 0. (18)

Then, using the notation introduced above,

pf—1

X = mDi+nl

i=0
is a BH(G, h), where h is the least common multiple of the orders of all the n and n;’s
Proof. By definition, the cosets Dy, ..., D,s_; partition R* and we have G is the disjoint
union of I and R*. Hence all coefficients of X are in U(h). By Result 2.1, it remains to

show that
IX(X)|? = |G| = p* for all y € G. (19)

First suppose that the order of x divides p. Then

pf-1 pf-1
X(X) = mix(Ds) + nx(I) = x(Do) Y mi+p'n = pn
=0 =0

by Result 6.1 and (18). Thus (19) holds.
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Now suppose that y has order p?. Then, by Result 6.1, there is a unique j with
0 < j < p/ —1, such that x(D;) = p/(pf — 1) and x(D;) = —p?7 for all i # j.

Moreover, we have x(I) = 0. Hence

pf-1 pf-1
XX) =p* T =Dy = > p =ty =" =,
i£] =0
by (18) and thus (19) holds. This completes the proof. O

From Result 1.3 and Theorem 6.2 we get the following.

Corollary 6.3. Let p be a prime and let d, h be positive integers. Suppose there is divisor
f ofd with1 < f <d such that p’ € Q(h). Then there exists a BH((Z,2)?, h) matrix.

7 Folding Construction

It was shown in [13] that certain bijections between nonisomorphic groups preserve char-
acter sums (up to multiplication with roots of unity). We now use this idea to extend our

constructions of group invariant Butson Hadamard matrices to further abelian p-groups.

As a preparation, we consider a useful property of character values of group ring

elements.

Lemma 7.1. Let p be a prime, let a be a positive integer, and G = Zye X H where H is
an elementary abelian p-group. Let h be a positive integer with p*> 4 h and D € Z[()[G].
Let x be a character of G order p°, 1 <b < a, and let W be the subgroup of Zya of order
p* T Write D = Y1, " "I Do with D; € Z[G|[W x H] where a is a generator of e

If x(D) = pm where u is a root of unity and m is an integer, then there is a j such
that
x(D) = x(D;ja’) and x(D;) = 0 for all i # j. (20)

Proof. Note that y(a) is a primitive p’th root of unity. Hence, without loss of generality,
we can assume x(a) = (p. Write h = p'k with ¢t € {0,1} and (p, k) = 1. As x(D) €
Z[Cpr), we have p € Q((py) and thus p = +(, ¢ for some integers u,w. Using the
assumptions, we get

b—1_1 ph—1-1

> x(D)G = Y x(Di)x()' = x(D) = pm = (£¢m)C. (21)

=0 =0

p

Note that x(D;) € Q(y) for all i, since the order of x restricted to W is p®/(p®/|W]) =
pt=eH@e=b+D — p and H is elementary abelian. As £(m € Q(¢) and {1, (p, . .. ,Cpb 1

}
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is independent over Q((px), we conclude from (21) that x(D;) = 0 whenever i # u (mod
p*~1). Hence x(D) = x(D;a’) by (21) where j is the unique index with j = u (mod p®~!).
This completes the proof of (20). O

We now define the non-homomorphic bijections between groups that we will work
with. Let p be prime and let a be a positive integer. Let P be an abelian group of order
p* and write P = Zyt, X - -+ X Zyts where a =Y. t; and Zy, = (o), i = 1,...,s. Define

a lexicographic order on P by
ait-ralr > ol ol & x> y; for j = mind{i: x; # i),
where 0 < z;,1; < p' — 1 for all 1.

Consider a cyclic group Zy« = {1,c,...,a?" 7'} Forn =0,...,p* — 1, let f(a™) be
the n'" element of P in the lexicographical order. We call the bijection f : Zye — P, a™
f(a™) a folding of Z,.. For a group H and a folding f of Z,«, we extend f to a map
Zp x H — P x H by to G by f(gh) = f(g)h for all g € P and h € H and call this map a
folding of Z,. x H. Foldings are extended to bijections of group rings by linearity, that

is, for X =Y _~a,9 with a, € Z[(], we set

FX) =Y ayf(g). (22)

geG

geG

As above, let P = (o) X -+ X (05) = Zyts X -+ - X Lyts. We say that a subgroup U of
P is left full if it has the form

U= (al,...,ar,l,ab

for some [ and some r € {1, ..., s}. The following is proved in [13, Lem. 4.1, 4.3].

Result 7.2. Let p be a prime, let a be positive integer, and let o be a generator of Zya.

Suppose that [ : Zy x H— P x H is a folding.

(a) Let U be a left full subgroup of P and let W be the subgroup of Z,« of order |U|. Then
fla'w) = f(a') f(w)

for 0 <i<p*/|U| and allw e W.

(b) Let x be a character of P x H which is nontrivial on P and let U be the mazimal left
full subgroup of P contained in the kernel of x. Let W be the subgroup of Z,. of order
p|lU|. Then there is a character T of Zy x H such that

7(x) = x(f(z))

for allz € W x H and 7 has order p*/|U| when restricted to Zpa.
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Now we are ready to prove the main result of this section. The proof is similar to that
of [13, Thm. 4.6], but we include it for the convenience of the reader, as the setting is
slightly different.

Theorem 7.3. Let p be a prime, let a,h be positive integers with h Z 0 (mod p?), and
let G = Zpa x H where H is an elementary abelian group of order p®. Suppose that there
exists a BH(G, h) matriz X such that

X(X) = puyp® for some root of unity u, for all characters x of G. (23)

Let P be any abelian p-group of order p* and let f : G — P x H be the corresponding
folding. Then f(X) is a BH(P x H,h) matriz.

Proof. As f is a bijection, the group ring elements of X and f(X) have the same set of
coefficients. Hence all coefficients of f(X) are in Q(h). By Result 2.1, it remains to show

IX(FX))I* =[P x H] (24)

for all characters x of P x H.

First assume that x is trivial on P. Define the character 7 of G by 7(g) = 1 for
g € Zpo and 7(h) = x(h) for all h € H. Then x(f(X)) = 7(X) and (24) holds, since
|7(X)|? = |G| by Result 2.1 and |G| = |P x H|.

Now suppose that y is nontrivial on P. Let U be the maximal left full subgroup of P
contained in the kernel of x. Note that |U| < p®, since x is nontrivial on P. Let W be the
subgroup of Z,. of order p|U|. By Result 7.2 (b), there is a character 7 of G such that

7(x) = x(f(x)) for all z € W x H (25)

and 7 has order p®/|U| when restricted to Zy.. Let Y be any element of Z[(,]|[W x H|
and write Y = Y .y ao® With a, € Z[(;]. Using (22) and (25), we get

XFY)= D ax(fl@)= Y am(z)=7(Y). (26)

zeWxH zeW xH

Write p®/|U| = p’ and let a be a generator of Z,.. As p?/|W| = p’~!, we can write
X = Zfz)l_l X;a with X; € Z[(,)[W x H] for all i. Note that

X(f(X3) = 7(X3) (27)
for all ¢ by (26). Moreover, by (23) and Lemma 7.1, there is a j such that
7(X) = 7(X;a’) and 7(X;) = 0 for all j # i. (28)
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Fix ¢ with 0 < i < p*~! — 1 and write X, = Y owew Donen GwpWk With ay, € Z[().
Recall that f(gk) = f(g)k for all g € Z,« and k € H, as the restriction of f to H is the
identity map. By Result 7.2 (a), we have f(c'w) = f(a')f(w) for all w € W and thus

ZZawkfwka ZZawkfwoz

weW keH weW keH

N S e (zzawkfwk> 2 )
weW keH weW keH

= f(XZ-)f(o/).

Using (27), , and (29), we compute
ph—1-1 ph—1-1 P11
Z FXah) | =x | Y. f(X)fe) ] = X(F(Xi)x(f(ah)
=0 i=0

b11

Z 7( o)) = T(X;)x(f (o)) = 7(X)x(f(e/))r(a™).

We have |7(X)|? = |G| = |P x H| by Result 2.1 and x(f(a?))7(a™7) is a root of unity.
This completes the proof of (24). O

Corollary 7.4. Let p be a prime and let a,h be positive integers with p € Q(h). Then
BH (P X Ly, h) matrix exists for every abelian group P of order p®.

Proof. By Corollary 5.3 there is a BH(Zy. x (Z,)%, h) matrix. The proof of Theorem 5.2
shows that this matrix satisfies condition (23). Hence there is a BH (P x Z%, h) matrix
by Theorem 7.3. [

A Appendix: Proof of Theorem 2.3

Part (a) of Theorem 2.3 is just Result 1.3. To prove part (b), we first show the sufficiency
of each of the conditions (i)-(iii).

Assume that (i) holds, that is, h is even and m + 1 € Q(h). By part (a), there are
My s s € UR) with ST p = 0. Thus 37, (—=Tmran:) = 1 and this shows that (4)

has solution.

Suppose that (ii) holds, that is, h is odd and m — 1 € Q(h). By part (a), there are
MyeesPme1 € U(R) with Y0 "1 = 0. Setting 7,, = 1 thus gives a solution of (4).

Now suppose that (iii) holds. Then
(G H )l + -+ CET) = (-1)(=1) =1 (30)
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gives a solution of (4), since the number of roots of unity obtained by expanding the left
hand side of (30) is (g1 — 1)(g2 — 1) = m. In summary, we have shown the sufficiency of
conditions (i)-(iii).

To prove necessity, assume that (4) holds. Note that (4) can be written in the form

m+1

D i =0 with ppgr = —1. (31)

i=1
First assume that h is even. Then 7,41 = —1 € U(h) and thus m+1 € Q(h) by (31) and
part (a). Hence condition (i) of Theorem 2.3 is satisfied.

Hence we can assume that h is odd. Suppose that condition (ii) of Theorem 2.3 does
not hold, that is,

m—1¢ Q(h). (32)
To complete the proof, we have to show that condition (iii) of Theorem 2.3 holds.

We need to employ results from [17] and thus need some preparations. Let G = (g)
be a cyclic group of order h and let p : Z|G] — Z[(,] be the homomorphism determined
by p(g) = (. Let qq, ..., ¢ be the distinct prime divisors of h and let @; be the subgroup
of order ¢; of G, i =1,...,t. By [17, Thm. 2.2], we have

ker(p) = {Z XiQ;: X; € Z[G]} : (33)

First suppose that A is a prime power, say h = ¢® where ¢ is a prime. Note that, in
this case, the kernel of p is {XQ : X € Z|G]} where Q = 1+ g9 +--- 4+ g D" Ag
n; € U(h) for all i by assumption, we can write ; = ¢;* with a; € Z. We have

p(—l—i—Zgai) =1+ Gi=-1+> 17,=0
=1 =1 =1
by (31) and thus
—1+) g% =QH (34)
=1

for some X € Z[G]. Applying the trivial character of G to (34), we get m—1 = 0 (mod gq).
But this contradicts (32).

Hence we can assume that h has at least two distinct prime divisors. Let q1, ¢, ¢1 < g2,
be the two smallest prime divisors of h. If m —1 > (¢; — 1)(¢2 — 1), then m — 1 € Q(h)
by [17, Lem. 5.1], contradicting (32). Thus we have

m < (¢ —1)(g — 1). (35)
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The proof is done if we can show that m > (¢; — 1)(g2 — 1). Set

Z>o|G] = {Zagg €Z|G):a,>0forall g € G}.

geG

Consider Y = >0 1 g(W/a)i 1 5™ gai - Observe that Y € Zo[G] and

q1—1 m

pYV) =D Gt Gr=—1+) m=0
i=1 i=1 i=1

by (31). Thus Y € Z>o[G] Nker(p). We claim that, in fact,

q1—1 m ¢
Z gMai 4 Z g =Y = Z Y;Q; for some Y; € Zo[G]. (36)
i=1 i=1 j=1

If h has only two distinct prime divisors, then (36) follows directly from [17, Thm. 3.3].
Thus assume that h has at least three distinct prime divisors, say ¢; < ¢2 < ¢3. Using

(35) and the assumption that ¢; and g are the smallest prime divisors of h, we conclude

m—1+qg<(@g—-—1(e-1)—-1+ag=0¢—0©<qagp—a—q¢+qg.

By [17, Cor. 4.9], this implies (36). Hence (36) holds in all cases.

If g% =1 for some 7, then

m q1—1 q—1
| S |2 (o) oS -0
i=1 =0 =0

i#]

Using part (a), we conclude that m — 1 € Q(h), which contradicts (32). Hence we have

g # 1 for all 1. (37)

By (36) and (37), the support of Y1Q); does not contain 1. Thus, by (36), for each
i€{l,...,q1—1}, thereis j(i) > 2 such that gi(h/ql)Qj(i) C supp(Y’). Note that the cosets
g WMQ i, i =1,...,q — 1 are pairwise disjoint, since j(i) # 1 for all i and ¢"® ") € Q.
Hence, by (37),

q1—1

[supp(Y)] > Y g™ Qs | = (a1 = 1)|Qa| = (@1 = 1)ga.
i=1

On the other hand, by the definition of Y, we have [supp(Y)| < ¢; — 1+ m. We conclude
m > (q1 —1)g2 — (1 — 1) = (¢1 — 1)(¢2 — 1) and this completes the proof. ]
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