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ABSTRACT: Bacterial infection is a universal threat to public health, which not only causes
many serious diseases but also exacerbates the condition of the patients of cancer, pandemic
diseases, e.g., COVID-19, and so on. Antibiotic therapy has been used to be an effective way for
common bacterial disinfection. However, due to the misuse and abuse of antibiotics, more and
more antibiotic-resistant bacteria have emerged as fatal threats to human beings. At present,
more than 700,000 patients die every year with bacterial infections because of the lack of
effective treatment. It is frustrating that the pace of development of antibiotics lags far behind
that of bacterial resistance, with an estimation of 10 million deaths per year from bacterial
infections after 2050. Facing such a rigorous challenge, approaches for bacterial disinfection are
urgently demanded. The recently developed near-infrared (NIR) light-irradiation-based
bacterial disinfection is highly promising to shatter bacterial resistance by employing NIR light-
responsive materials as mediums to generate antibacterial factors such as heat, reactive oxygen
species (ROS), and so on. This treatment approach is proved to be a potent candidate to
accurately realize spatiotemporal control, while effectively eradicating multidrug-resistant
bacteria and inhibiting antibiotic resistance. Herein, we summarize the latest progress of NIR light-based bacterial disinfection.
Ultimately, current challenges and perspectives in this field are discussed.

KEYWORDS: NIR light, bacterial infection, antibacterial agent, multidrug-resistant bacteria, theranostic, photothermal therapy,
photodynamic therapy, light-responsive material

1. INTRODUCTION

Bacterial infection has been a globally deterring threat to human
well-being by inducing many diseases such as pneumonia,
meningitis, sepsis, cholera, skin ulcer, and gastric cancer, etc.
Besides, bacterial infection is a common complication that
happens along with cancer, diabetics, and even an infectious
pandemic such as COVID-19. Latest research showed that up to
6.9% COVID-19 patients suffered from bacterial infection,
which largely aggravates the illness and escalates the difficulty of
treatment.1 The antibiotic which has been prevalently known for
a hundred of years is representing a vital line of defense against
bacterial infection. Even so, due to the extensive utility of
antibiotics in clinics, communities, and agricultural sectors,
diverse antibiotic-resistance bacteria are emerging to cause a
detrimental catastrophe, posing a greater threat to the
population at large than ever before.2 The buildup of the
antibiotic resistance diminishes the potency of antibiotics,
thereby rendering some of severe clinical infections intractable.
According to a report from the UN Ad Hoc Interagency
Coordination Group on Antimicrobial Resistance, drug-
resistant bacterial infection contributes to 700,000 patients’
deaths a year at present and the total number of deaths will
elevate to 10 million every year from 2050 if urgent concern is
not received.3 Innumerable efforts for discovering novel

antibiotics have been executed, yet our ability to discover new
antibiotics and combat the evolution of antibiotic resistance in
pathogenic microbes is still limited. Most current antibiotics in
use to date have been discovered during the prime time for
antibiotics invention during the 1940s to 1960s.4 In provision
for the slow-going antibiotic development and increasing spread
of resistance, an unprecedented non-antibiotic approach is
urgently needed to be employed to conquer bacterial infectious
diseases.5

In recent years, with the development of nanosynthesis
technology and the cross-fusion of multiple disciplines, many
innovative ideas for the treatment of bacterial infection have
been afforded.6−8 In particular, functional nanomaterials have
been widely applied in antimicrobial research as potential
drugs.9−11 And many of these materials with special properties
were found to have greatly enhanced antibacterial activity under
external stimulations.12 For example, using lights, magnetic
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fields, and other physical stimulations, specific materials, such as
TiO2, Fe3O4, and graphene, etc., can generate enough heat and
free radicals to destroy the structures of bacteria or block the
bacterial metabolic pathways to achieve antibacterial effects.13,14

Compared to the conventional antibiotic therapy, these physical
stimulation based antimicrobial strategies have a broad
spectrum of highly effective antibacterial activities against both
normal bacteria and multidrug-resistant (MDR) bacteria and an
ability to reduce the threat of the burgeoning bacterial drug
resistance.15−19 Among these physical stimulation strategies,
light stimulation, especially near-infrared (NIR) light irradi-
ation, is undoubtedly the best choice in terms of safety,
operability, and low cost of apparatus, etc.20,21 NIR light (700−
1300 nm) has the unique advantages of superior tissue depth
penetration without resulting apparent photoinduced cytotox-
icity, which are conducive to the construction of diverse
antibacterial platforms for in-depth treatments.22−24 Indeed,
strategies, such as photodynamic, photothermal, and synergistic
therapeutic modalities that are based on NIR light, have been
extensively reported to eliminate bacterial inflammation, thus
helping wound healing, promoting tissue regeneration, and so
on.25−27 These results have unequivocally demonstrated the
broad application prospects of NIR-assisted bactericidal
strategies and have undoubtedly built up concrete fundamentals
in this field. To provide guidance for follow-up research, it is
necessary to systematically summarize and review the existing
relevant literature. Although many literature reviews have been
reported on antimicrobial activities, there has been no
systematic review of NIR-assisted antimicrobial strategies.28−33

Therefore, in this summary, we will comprehensively review the
latest progress regarding NIR-assisted antimicrobial strategies
from all aspects of photodynamic, photothermal, synergistic
therapies, and the applications of antibacterial medical devices,
as well as investigate their prospective developments.

2. PHOTODYNAMIC THERAPY

Photodynamic therapy (PDT) is a propitious alternative to
replace traditional antibacterial therapies by offering the
advantages of non-invasiveness, low side effects, and target
specificity.34 Upon the administration of photosensitizers (PSs),
cytotoxic species will be generated under irradiation to rapidly
damage the bacterial membrane, oxidize the lipids and the
proteins, and finally sterilize the lesion.35−37 Generally, under
the specific wavelength irradiation, a singlet state electron in a
ground state PS (S0) undergoes an electronic transition to an
excited singlet state (S1). After losing extra energy by vibrational
relaxation and internal conversion, the excited electron may
undertake an intersystem crossing into a more stable and long-
lived excited triplet state (T1), or lose energy by fluorescence
emission (i.e., radiative transition) returning to the ground state.
This characteristic property endows most PSs the ability to be
used as fluorescence-imaging contrast agents. The PS in the T1
state may lose the energy by phosphorescence process and
undergoes type I reaction in which superoxide anions (•O2

−)
were generated by the electron transfer between T1 PS and
neighboring oxygen to further produce other highly reactive
oxygen species (ROS), such as hydroxyl radicals (HO•),
hydroxide ions (HO−), hydrogen peroxides (H2O2), singlet
oxygen, and peroxynitrites (−OONO), etc. Alternatively, the T1
PS also can undergo type II reaction by transferring energy
directly to ground state triplet oxygen (3O2) to form excited state
singlet oxygen (1O2) which will induce direct or indirect
cytotoxicity to tainted sites, depending on the localization and
dose. Notably, the short life and high reactivity of ROS only
allow the destruction to surrounding infected tissue within a few
nanometers of PS binding sites, resulting in the site specificity of
the PDT treatment.38

2.1. Upconversion Nanoparticle. Although possessing
robust photodynamic characteristics, common PSs generally
require short-wavelength excitation, which significantly restricts
their effective medical use in the diagnosis and treatment of
superficial bacterial infections due to light spectrum overlap with

Figure 1. (a) Schematic illustration of the synthesis and antibacterial action of the UCNPs-PVP-RB nanosystem. Reprinted with permission from ref
49. Copyright 2020 Royal Society of Chemistry. (b) NIR light-triggered ROS generation by the D-TiO2/Au@UCN nanocomposites. Reprinted from
ref 52. Copyright 2019 American Chemical Society. (c) Schematic diagram of the self-assembly of PcN4-BA and the antibacterial activity. Reprinted
with permission from ref 54. Copyright 2020 Royal Society of Chemistry.
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optical absorption bands of intrinsic biological tissues. Under
such circumstance, NIR irradiation is considered as a promising
tool to minimize tissue absorption, scattering, and autofluor-
escence.39,40 In recent research, heartening outcomes have been
achieved by utilizing upconversion nanoparticles (UCNPs) as
carriers for PSs to convert long-wavelength NIR excitation to
short-wavelength visible or UV emission.41 In UCNP, the long
decay time and high probability of sequential excitations of
lanthanide caused by the dipole-forbidden nature of the 4f−4f
transition will firmly benefit the anti-Stokes emission process
(i.e., photon upconversion). Through the multiphoton absorp-
tion, emission of light at a shorter wavelength with higher energy
than that of excitation light can be attained, allowing the
occurrence of the Förster resonance energy transfer (FRET)
process to further stimulate the short-wavelength excited PSs for
ROS generation.42 For instance, the PS curcumin, possessing the
singlet oxygen generation ability and inherent antibacterial
characteristics, was applied to treat deep joint tissue infection
with UCNP as an intermediate carrier. The transition emission
of NaYF4:Yb,Er UCNPs at 450 nm (1D2−3F4) and 475 nm
(1G4−3H6) under 980 nm excitation successfully activated
curcumin for PDT, thus achieving the eradication of methicillin-
resistant Staphylococcus aureus (S. aureus, MRSA).43

Via matching of the emission spectrum of UCNP and the
absorption spectrum of the PS, enhanced tissue penetration of
PDT-functional UCNPs was realized by Xu et al., who
conjugated the PS Rose Bengal (RB) to the silica (SiO2) shell
of nanoparticles with potent antimicrobial photodynamic effects
under 980 nm irradiation.44 Likewise, Gruner and co-workers
proposed silicon phthalocyanine (SiPc)-loaded silica-coated
UCNPs with different surface functionalizations to successfully
inactivate bacteria.45 Notably, the silica-surface-coating strategy
is widely applied to antibacterial nanoagents to enhance their
overall liquid dispersibility and biocompatibility.46,47 Further-
more, hydrophilic synthetic polymers such as poly-
(vinylpyrrolidone) (PVP) are also commonly used as coating
materials to prevent particle aggregation and to increase the
water solubility of nanoparticles.48 Liu et al. recently introduced
a LiYF4:Yb/Er-based UCNP with RB loading on a PVP coating
as a PDT platform, which could accumulate in the periphery of
the drug-resistant bacillusAcinetobacter baumannii (XDR-AB) in
deep tissue (approximately 5 mm) and disrupt the bacterial
membrane under 980 nm excitation (Figure 1a).49

Compared to homogeneously distributed UCNPs, core−shell
UCNPs containing spatially confined dopant ions in the interior
markedly enhance the upconversion emission and optical
integrity of nanoparticles.50 By implementing such an approach,
Li and co-workers constructed a cationic antibacterial
nanostructure by doping the PS zinc phthalocyanine (ZnPc)
into a core−shell upconversion nanoparticle NaYF4:Yb,Er@
NaYF4 with relatively high upconversion fluorescence efficiency,
thus benefiting the efficacy of ROS generation.51 The multi-
functional nanoplatform NaYF4:Yb,Er@NaGdF4:Nd@SiO2-RB
presented by Xu et al. combines PDT, luminescence imaging,
and magnetic resonance imaging (MRI) by simply co-doping
lanthanide ions Gd3+ and Nd3+ into the lattice structure of
nanoparticles.46 In addition to the employment of frequently
used PSs, an NIR-photocatalytic antiseptic platform comprising
Au/dark-TiO2 as the core and upconversion nanomaterials as
the shell was reported by Xu and co-workers. Under 980 nm
excitation, the presented drug-release nanoplatform realized
PDT antibacterial treatment by inducing high surface plasmon

resonance (SPR) of gold on dark TiO2 for robust upconversion
luminescence (UCL) emission (Figure 1b).52

2.2. Others. As alternatives of UCNP-based platforms
converting NIR light to visible light to excite PSs with visible
absorbance, materials with one-photon absorption (OPA) or
two-photon absorption (TPA) such as NIR-absorbing PSs and
NIR-activating quantum dots (QDs) have been developed for
in-depth antimicrobial PDT under direct NIR excitation.53 For
example, boronic acid-functionalized zinc(II) phthalocyanine
(PcN4-BA) for direct NIR-induced bacterial inactivation was
introduced by Lee and colleagues, showing significantly
augmented ROS generation via self-assembly in water with
minimal dark toxicity. Interestingly, the boronic acid is
commonly applied for the bacterial targeting by covalently
binding to diol-containing lipopolysaccharides (LPS) on Gram-
negative bacterial surface to form boronic esters (Figure 1c).54

Furthermore, NIR-activating graphene quantum dots (GQDs)
composed of carbon-based semiconductor nanocrystals with
extremely small size (2−10 nm) and good biocompatibility have
shown great potential to abolish pathogenic bacteria through
ROS generation.55 By exploiting NIR-GQD as the NIR-photon
PS and the contrast agent coupled with two-photon excitation
laser microscopy, Kuo et al. reported the complete elimination of
MDR strains of pathogens by PDT, and distinct two-photon
luminescence (TPL) imaging under 800 nm irradiation with
high spatial resolution.56 Recently, a heavy-metal-free indium
phosphide (InP) QD with narrow band gap, increasing the
photoefficacy to kill MDR pathogens, was presented by Levy
and his group. The proposed therapeutic QD nanoparticles
which could generate superoxide radicals intracellularly were
proven to be suitable for NIR-mediated treatment with superb
diffusion in microbes and excellent biological compatibility
through renal clearance.57

3. PHOTOTHERMAL THERAPY
Owning the benefits of PDT, photothermal therapy (PTT)
provides specific and non-invasive laser-induced thermotherapy
to eradicate the bacteria. The photosensitive agent is able to
introduce a thermal ablation to lesion-containing loci by
photoinduced hyperthermia.25 With photon energy absorption,
the electronic transition happens from S0 to S1, originating the
nonradiative relaxation of instable excited electron to release the
kinetic energy as heat, which subsequently denatures the
bacterial proteins and causes bacterial death.58−60 To be
considered as an efficient PTT nanomaterial, the properties of
large NIR absorbance, high photothermal conversion efficiency,
decent photostability, suitable size, and good biocompatibility
should be possessed.61 Up to now, many valid PTT coupling
agents have been discovered, including gold-, carbon-, semi-
conductor-, polymer- and hybrid-based materials.62 Their
intrinsic characteristics, recent advancements, and potential
defects will be discussed in this section.

3.1. Gold-Based Materials. The noble element gold (Au),
at the primordial discovery stage, was renowned for its extreme
chemical inertness, as well as possessing superb resistance to
oxidation and degeneration.63 In the gradual progress to date,
colloidal Au nanoparticles have been widely adopted for their
ease of surface fabrication in varied strategies for specifically
regulated and targeted therapy. A classical optical phenomenon
known as localized surface plasmon resonance (LSPR) is
manifested by colloidal Au nanoparticles, in which light of a
specific wavelength initiates coherent oscillation of the surface
electrons in the conduction band of the Au nanoparticles,
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thereby altering the peak absorption and scattering cross-
section, correlated with radiative and nonradiative processes
such as absorption, fluorescence, and Raman scattering.64,65 To
incorporate Au nanoparticles into NIR applications for
photothermal therapy and to achieve superior bacteria-targeting
potential and biodegradability, the size, shape, and surface
modification of the nanoparticles, which are directly related to
the LSPR effect, must be significantly optimized to be suitable
for adoption in intricate photothermal therapy in the bacterial
microenvironment.66 In addition, various species of ligands
could be used to decorate the surface of Au nanoparticles, vastly
augmenting the specificity of treatment without affecting
surrounding normal tissues. It has been extensively reported
that surface-modified gold nanoparticles have excellent optical
absorption efficiency in the NIR optical window with negligible

diminishing effects from the biological medium and tissues,
achieving a considerably high ablation effect. Herein, we discuss
the diverse materials employed to improve the photothermally
induced bacteria killing effect.67−72

Since the presence of various antigens on the surface of
bacteria allows the specific formation of antibody−antigen
complexes, antibody targeting molecules have been broadly
applied to functionalize gold nanoparticles for highly targeted
antibacterial responses. Mocan and co-workers biofunctional-
ized gold nanoparticles with igG antibodies to achieve selective
photoactivated thermal bacterial ablation of MRSA under 808
nm laser power excitation.73 Teng and co-workers effectively
treated multidrug-resistant Pseudomonas aeruginosa (P. aerugi-
nosa) expressing unique secretion protein PcrV by conjugating
gold nanocrosses with the primary and secondary antibodies for

Figure 2. (a) Fabrication and work principle of nano neuro-immune blockers (NNIBs). Reprinted from ref 82. Copyright 2019 American Chemical
Society. (b) Schematic illustration of the synthesis of In2Se3 nanosheets and the states of Escherichia coli (E. coli) cells under different conditions.
Reprinted with permission from ref 91. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Photothermal ablation of focal
infections with PANI-GCS NPs self-assembly. Reprinted with permission from ref 102. Copyright 2016 Elsevier Ltd. (d) Structure and photothermal
effects of WMG1 and WMG2. Reprinted with permission from ref 105. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (e)
CPPDI showing much higher photothermal disinfection activity toward E. coli over Bacillus subtilis (B. subtilis). Reprinted with permission from ref
107. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) NIR triggered bacterial disinfection by the Fe3O4-CNT-PNIPAM
nanoagents. Reprinted with permission from ref 111. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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protein recognition, followed by the localized photothermal
ablation of bacteria under NIR light irradiation.74 Adopting the
alike strategy, Alhmoud and co-workers fabricated gold
nanoparticle-decorated porous silicon nanopillars to subse-
quently conjugate with S. aureus-targeting antibody for selective
>99% bacterial eradication after 10 min of 808 nm irradiation.75

The structural configuration of gold nanoparticles also plays a
vital role in photothermal conversion efficiency. As reported by
Ocsoy and co-workers, gold nanorods excited by 808 nm laser
displayed the distinctive hyperthermal bacterial elimination due
to the longitudinal SPR band presented in the nanorod shape.76

Despite the extensive development of gold nanoparticles, highly
sensitive image-guided bacterial ablation is still demanding.
Peng et al. proposed a poly(ethylene glycol (PEG)-coated Ag-
hybridized Au nanostructure that not only achieved high
photothermal conversion efficiency (η = 73%) under an 808
nm laser but also enabled sensitive photoacoustic (PA) image-
guided bacterial killing in vivo.77 Du and co-workers developed a
FRET-based gelatinase-responsive gold nanostar for NIR
fluorescence imaging and localized MRSA photothermal
eradication. The nanostar was linked with the NIR fluorescence
dye cypate (Cy) by a heptapeptide aptamer linker to form a
quenched FRET-based system. Overexpression of gelatinase
enzymes inMRSA environment triggers cleavage of the aptamer,
thereby releasing the cypate moiety for specific turn-on
fluorescence detection and localized photothermal killing.81

Ma and co-workers replaced commonly used surfactant
cetyltrimethylammonium bromide (CTAB) with layered
double hydroxides (LDHs) in the synthesis of gold nanorods
to increase dispersibility, biocompatibility, and photothermal
efficiency. They thus obtained Gold nanorod-LDH-PEG, which
is photothermally effective for dual-imaging mode PA- and CT-
guided antibacterial and antitumor therapy.78 The surfactant
CTAB can also be replaced with more biocompatible and less
toxic coating agents such as PEG, polyaniline (PANI), and
polyethylenimine (PEI) in the synthesis of Au nano-
particles.79−81 Furthermore, Au nanoparticles have emerged as
a worthy platform to deactivate bacteria by modulating
neuroimmune communication. Zhao and co-workers exploited
the high expression of transient receptor potential cation
channel subfamily V member 1 (TRPV1) and immune
escape-related CD47/PD-L1 surface antigens on the glioma
cell membrane for the fabrication of gold−silver nanocages.
Secreted by Streptococcus pyogenes (St. pyogenes) bacteria,
streptolysin S is responsible for causing pain and releasing
sensory neurons to suppress the host immune response, thereby
causing necrotizing infection. Since streptolysin S binds well
with the TRPV1 ion channel to trigger Ca2+ ion influx for
neuronal pain conduction, the TRPV1-functionalized Au
nanoparticles will specifically target St. pyogene, neutralizing
streptolysin S to suppress the activation of TRPV1 expressing
neurons and thus relieving pain through NIR mediation (Figure
2a).82

3.2. Carbon-Based Materials. Antibacterial nanocarbons,
including multiwalled carbon nanotubes (MWCTs), single-
walled carbon nanotubes (SWCNTs), and graphene-based
nanomaterials (GBNs), have greatly advanced in the past decade
for PTT treatment because of their low toxicity, intrinsic thermal
conductivity, and high absorption in the NIR region. Notably,
despite the advantages possessed by nanocarbons, chemical
functionalization is usually required to enhance their colloidal
stability and cytocompatibility in physiological environments.83

Graphene derivatives with distinctive two-dimensional sheets
have attracted broad research interest, especially as promising
candidates for photothermal therapy due to their large surface-
to-volume ratio, inexpensive synthesis, and stability character-
istics.35 Among them, the graphene oxide (GO) possessing
oxygen functional groups (i.e., carboxylic acid, phenol, hydroxyl,
and epoxide groups) offers a possibility for stable dispersion
formation.84 Jia and co-workers used a positively charged
chitosan-functionalized magnetic graphene oxide (GO-IO-CS)
to inhibit bacterial growth under 2 W·cm−2 808 nm irradiation,
while introducing a magnetic field efficiently assisting heat
localization through controllable bacterial agglomeration and
dispersion.85 Reduced graphene oxide (rGO) can be obtained
by the reaction of reducing agents with GO, decreasing the water
stability by eliminating surface oxygen functional groups and
increasing the NIR absorbance by restoring π electronic
conjugation.86 Thanks to its large NIR absorption cross-section,
rGO is successfully used to eradicate the pathogenic bacteria at a
laser power density as low as 400 mW·cm−2.87 However, the
nanoknife-like feature of GO and rGO may act as a double-
edged sword that simultaneously increases antimicrobial efficacy
by destroying the bacterial cellular membrane and increases the
unexpected normal cell death by piercing the host cell
membrane.83 To alleviate these defects, carboxyl graphene
(CG) with negligible dark toxicity was designed for improved
therapeutic effects in vivo. Qian et al. presented a pH-responsive
glycol chitosan-functionalized carboxyl graphene (GCS-CG) to
achieve specific targeting of bacterial infectious lesions in an
acidic microenvironment (i.e., pH 6.4), thus realizing precise
NIR-based photothermal ablation, which may shed light on the
future development of PTT probes for bacterial killing.88

3.3. Metal Oxides, Sulfides, Selenides, and Carbides.
Some metal oxides, sulfides, selenides, and carbides, such as
Fe3O4, W18O49, MoS2, CuS, In2Se3, Cu2Se, and Fe5C2, were also
found to exhibit great potential in optoelectronics and
theranostics due to their large surface area and facile surface
modification. In addition, their high photothermal conversion
efficiency provided by the large band gap along with broad
absorption across the spectrum render them to be reliable
candidates for NIR-induced antibacterial treatment.89,90 Re-
cently, a liquid exfoliation approach to synthesize 2D α-In2Se3
nanosheets was developed by Zhu and co-workers for large-scale
bacteriostatic agent production (Figure 2b).91 Furthermore,
Zhao et al. proposed water-dispersible cuprous selenide
nanosheets (Cu2Se NSs) with high photothermal conversion
efficiency of up to 61.16% to effectively inhibit the growth of
both Gram-negative and Gram-positive bacteria under NIR-II
(i.e., 1064 nm) laser irradiation.92 Considering their concen-
tration-dependent photothermal conversion capabilities, the
antibacterial performance of PTT 2D materials can be further
enhanced by fabricating inorganic nanoparticles.93 In addition,
magnetic inorganic materials have drawn attention from
scientists for use in treating bacterial infections. Both iron
oxide nanoparticles and iron carbide nanoparticles possess a
paramagnetic nature that enables the fast clearance and recycling
of nanocomposites by applying a magnetic field in vitro for
antibacterial treatments.94,95 Moreover, macro-biomolecule-
encapsulated inorganic nanoparticles were recently reported to
treat pathogenic microbes successfully with great biocompati-
bility in vitro.96

3.4. Polymer-Based Materials. Owing to excellent
conducting property, photostability, relatively low synthesis
expense, and high quantum yield, diverse polymers were
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explored in the field of light therapy. Since various supra-
molecular polymers and polymer-based nanoparticles have been
employed for photothermal antibacterial treatment,97 this
section is presented to introduce the applications of supra-
molecular polymer structures for bacteria killing upon NIR light
activation.
π-conjugated polymer nanoparticles (CPNs) are often

considered appealing as they possess enormous π-conjugated
backbones and delocalized electronic structure for large
extinction coefficients and good light-harvesting activity.98

The formation of CPNs often leads to the red shifting for
both absorption and emission spectra by high-order aggregation
and by energy transfer to the lower-energy emitting sites, thus
enabling the NIR application for thorough bacteria eradication.
Wang et al. adopted a CPN functionalized with positively
charged targeting peptide (e.g., Tat peptide) that enabled the
formation of CPNs-Tat/bacteria aggregation by interacting with
the negatively charged outer membrane of bacteria, achieving a
localized heat ablation of bacteria under NIR excitation.99 PANI,
as a generic conducting polymer used to date, is also commonly
employed due to its efficient electronic conductivity, high
stability, and high photothermal conversion efficiency when
doped under acidic conditions.100 Abel and his group function-
alized PANI with dansyl chloride as the extrinsic fluorophore.
The fluorescence detection accompanied by the NIR-induced
photothermal treatment ensured a direct and reliable P.
aeruginosa eradication under 785 nm excitation.101 Similarly, a
fluorophore-modified pH-responsive PANI nanoparticle system
adopted by Korupalli and co-workers is able to achieve a more
localized and enhanced focal photothermal ablation effect. The
region of abscesses possessing low pH triggered the chitosan to
be positively charged, facilitating a strong electrostatic
interaction for in situ aggregation with surface-negative bacteria,
while the healthy tissue at normal pH was left unaffected. The
image-guided PTT with precise abscess treatment ensured the
spatial accuracy and targeted heating to the aggregated bacteria
upon NIR exposure (Figure 2c).102 Besides, it was reported that
the conjugated polymer with advanced donor−acceptor−donor
strategy could attain higher photothermal conversion efficiency
due to its lower rate of intersystem crossing, and its high
electrostatic potential distributions could afford low-fluores-
cence radiative transition rate upon interaction with water.103,104

Following, Wang and co-workers integrated electron-rich
thiophene and electron-poor subunits to give a NIR-shifted
charge-transferred conjugated oligoelectrolyte which showed
relatively high photothermal conversion efficiency of up to 60%.
However, the high heat generation and the toxicity of the
conjugated oligoelectrolyte might potentially be setbacks with
regard to the nonspecific heat induction and cytotoxicity (Figure
2d).105 Similarly, Jiao et al. discovered a free radical−
photothermal correlated strategy to enhance photothermal
conversion. As the perylene diimide (PDI) exhibiting a strong
π−π interaction which suppresses the supramolecular dimeriza-
tion and quenches the radical anions, cucurbit[n]urils (CB[n])
was incorporated to boost the PTT conversion by increasing free
radical yield in aqueous solution through sterically hindering the
hydrophobic stacking of PDI. The research group found out that
the PDI noncovalently attached to the CB[n] could achieve
improved NIR photothermal conversion efficiency due to the
elevation of supramolecular free radicals upon addition of
sodium dithionite reducing agent.106 Following which, this
research group exploited this approach to realize the bacteria-
responsive photothermal therapy. It is expected that the bacteria

with greater reducing ability could selectively induce more
supramolecular free radicals, initiating higher heat generation to
be thermally ablated. Comparison wasmade among Enterococcus
faecalis (E. faecalis), E. coli, S. aureus, Bacillus subtilis (B. subtilis),
and P. aeruginosa, and they reported that facultative anaerobes
such as E. faecalis and E. coli possess more hydrogenases on the
membrane, thereby prompting higher reduction rate for free
radical formation and NIR photothermal-induced bactericidal
effect (Figure 2e).107

3.5. HybridMaterials.Compared with single nanoparticles,
NIR-responsive hybrid nanoparticles constructed by inorganic
and organic components have recently witnessed enormous
developments due to their tuning characteristics of different
functionalities to minimize the drawbacks of each single
component and retain the different beneficial features from all
of the components.108 While organic nanoplatforms can be used
as highly biocompatible materials with facile chemical
modifications for phototherapy, their stability and light energy
conversion efficiency normally hinder their applications. In
contrast, inorganic nanoparticles with excellent physical
strengths and varied light-response mechanisms can provide
relatively stable, tunable, and effective photonic bacterial
monitoring, but suffer from poor biodegradability. By
integrating the two, the hybrid nanosystem can not only exploit
individual strengths but also diminish the weaknesses of each
component.
Taking advantage of the excellent NIR absorption ability and

high photothermal conversion efficiency of pegylated reduced
graphene oxide nanoparticles (rGO-PEG) and gold nanorods
(Au NRs), nanohybrid rGO-PEG-Au NRs were developed to
effectively irradiate Gram-negative pathogens.109 As a highly
efficient NIR light absorber, polydopamine (PDA) has also been
applied as a photothermal agent for the ablation of bacteria. In a
recent study reported by Liu et al., the polymer was coated on
the surface of the magnetic core Fe3O4 to generate a hybrid
nanoplatform for the reduction and removal of bacteria.
Notably, the loaded HSP70 inhibitor (PES) greatly enhanced
the treatment efficacy by breaking the protective function of
HSP70 in bacteria.110 Yang et al. reported a dual-responsive
nanosystem capable of trapping, ablating, and releasing
pathogenic bacteria under NIR light monitoring. In this system,
temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM)
was conjugated on the hybrid carbon nanotube (CNT)-Fe3O4
surface. Upon NIR light irradiation, the heat generated from the
nanohybrid changed the polymer to a hydrophobic form, which
therefore promoted the adhesion to the bacterial surface to
generate an enhanced photothermal bacteria ablation. More-
over, the result from in vivo experiments showed nearly 100%
sterilization of the nanoagent-treated mouse wound after PTT
with no scabbing from skin inflammation (Figure 2f).111

3.6. UCNP-Based Materials. To attain bifunctional modal-
ities for bioimaging and antibacterial photothermal effect,
UCNP is being utilized as a potential platform to achieve a
precisely monitored bacterial ablation. The trivalent lanthanide
ions enclosed in a selected inorganic host lattice enable the
sequential absorption of multiple long-lifetime photons on
ladder-like energy levels to generate high anti-Stokes lumines-
cence. As mentioned previously, the primary forbidden nature of
4f−4f transition offers a very long lifetime for the excited ion to
experience sequential excitations and disparate pathways for
ion−ion interactions and energy transfer (i.e., excited state
absorption, energy transfer upconversion, cooperative sensitiza-
tion upconversion, cross-relaxation, and photon avalanche).112
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These concomitant wave functions of 4f−4f transition within a
single lanthanide ion thus allow the upconversion photo-
luminescence to occur with high resistance toward photo-
bleaching and photochemical degradation.113,114 In order to
advance a UCNP with improved upconversion luminescence,
proper surface passivation could be applied to provide an
optimal space for energy migration without reaching the outer
layer of UCNP and generating surface-related quenching
effect.115−117 Due to their enhanced photostability, flexible
tunability, and low autofluorescence, as well as easy surface
functionalization for different therapeutical strategies, UCNPs
have often been applied in bioimaging-assisted photothermal
therapy. This section reviews the usage of UCNPs for their
intrinsic imaging properties and potential heat released abilities
to accomplish dual-modal detection and photothermic bacteria
ablation.
Suo et al. developed thermal sensing and optical heating

bifunctional yolk−shell GdOF:Nd3+/Yb3+/Er3+@SiO2 UCNP-
based microcapsules via yolk−shell configuration and Nd3+,
both contributing to a certain extent to the heating property.
Internal space between the core and shell due to the yolk−shell
shape allows the enhanced energy absorption as well as multiple
reflections of NIR light within the cavity, thus enabling an
augmented rate of the nonradiative process to generate heat.
Excitation of Nd3+ ions with 808 nm could enable the photon
absorption to be converted to heat due to their metastable multi-
intermediate levels with relatively small energy gaps. Most
importantly, the subcutaneous temperature increase could be
real-time-monitored through the fluorescence intensity ratio
(FIR) technique for precise bacterial photothermal ablation.118

Similarly, the same group synthesized a 808 nm light-driven
dual-functional olive-like nanoplatform LuVO4:Nd

3+/Yb3+/
Er3+@SiO2@Cu2S with LuVO4-tridoped nanoparticles as the
thermal-sensing core and ultrasmall Cu2S nanoparticles as the

photothermal agent. Upon 808 nm laser excitation, two
disparate green emissions and NIR emission were observed.
Thermal-sensing behaviors of samples (Sa ∼ 0.0122 K−1, Sr ∼
1.4% K−1) were evaluated on the basis of the high-purity Er3+

green emissions, whereas the laser induction at 808 nm
intensified with the generated NIR emission that invoked an
augmented photothermal ablation efficiency of samples against
bacteria E. coli and S. aureus (∼95%).119 Furthermore, Zhang
and co-workers developed a nano-photothermal platform with
NIR excitation to NIR emission with the design of Y2O3:Nd

3+/
Yb3+@SiO2@Cu2S. This platform encompasses a similar
imaging-assisted photothermal induction strategy by adopting
the use of Cu2S as photothermal agent and Nd3+ for its heat
conversion by nonradiative process for NIR-induced photo-
thermal bacterial ablation.120

4. SYNERGISTIC THERAPY
There has been a proceeding effort on alleviating the severity of
drug-resistant bacteria by monotherapies such as PTT, PDT,
chemotherapy, and others. Nonetheless, the application of
monotherapies for bacteria ablation often necessitate the
vigorous therapy condition, causing the unavoidable issues
such as overheating that are a potential detriment to the
surrounding healthy tissues. Optimally, the most facile and safe
approach is to integrate a non-invasive, spatiotemporally
controlled therapy to leave the healthy cells unscathed. Hence,
to effectuate the aforementioned criteria, this review section
refers to the achievements of synergistic therapy combined with
the merits of various single therapies.121−131

4.1. PTT-Prodrugs. The modest amount of NIR-induced
photothermal effect could substantially demolish the bacterial
cell membrane and subject it to higher susceptibility, which
create an available space for chemodrug-PTT synergistic
treatment and lead to greater antimicrobial efficiency.132

Figure 3. (a) Schematic diagram of the in vivo therapeutic effect of aspirin-laden monocytes on osteomyelitis. Reprinted with permission from ref 142.
Copyright 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) NIR light-activated TRIDENT for antibiotic-resistant bacteria treatment.
Reprinted with permission from ref 139. Copyright 2019 The Author(s) under Creative Commons Attribution 4.0 International License (https://
creativecommons.org/licenses/by/4.0/). (c) Synergistic therapy of bacterial infection by Ag nanoparticles/graphene oxide nanocomposites.
Reprinted with permission from ref 153. Copyright 2017 American Chemical Society. (d) NIR-induced 2D-CNs-bacteira aggregation for localized
triple bacterial eradication. Reprinted with permission from ref 160. Copyright 2019 American Chemical Society.
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Recently, Zhang et al. reported a transition metal
dichalcogenide (TMD) nanosheet loaded with penicillin for
photothermal release of penicillin.133 Zhao and co-workers
prepared a NIR-activated thermosensitive phospholipid, dis-
tearoylphosphatidylcholine (DSPC), and a quaternized choles-
terol for bacterial membrane surface targeting to form
liposomes, which are then encapsulated with tobramycin and
cypate (NIR-sensitive photothermal agent). Positively charged
liposome targeted the biofilm and infiltrated the 200 μm wide
biofilm microchannel, realizing the antibiotic release upon NIR
light treatment to eliminate the biofilm.134 Likewise, Zhang et al.
introduced a thermally sensitive liposome compacted with black
phosphorus quantum dots and vancomycin antibiotic, in order
to achieve a photothermal/pharmacosynergistic therapy against
methicillin-resistant S. aureus.135 Intriguingly, the same group
incorporated an improved photoresponsive antibiotic-releasing
strategy through dual thermosensitive gatekeepers, phase-
change material (PCM) and poly(N-isopropylacrylamide-co-
diethylaminoethyl methacrylate) (PND). Upon 808 nm NIR
light activation, PCM and PND were provoked by external
stimuli PTT to cause the phase transition from solid to liquid
and the shrinking conformation for on-demand drug release,
respectively. The undesirable drug leakage can be collectively
prevented by solid PCM and PND with expanding coil
conformation without NIR irradiation.136 Besides, Wang and
co-workers loaded the thermosensitive 1-tetradecanol (TD)
into the hollow interior of the sea urchin-like Bi2S3
nanostructures to construct TD/Linalool@Bi2S3 composites
for the photothermal controlled release of antibacterial agent.137

Compellingly,Wang et al. demonstrated a new targeting delivery
nanoplatform by utilizing a macrophage membrane coated
gold−silver nanocage for selective bacteria targeting. Upon
pretreatment of macrophage with bacteria, the upregulation of
pathogen-related receptors was observed and the macrophages
with the excess expression of receptors on cell membranes were
used for coating of the gold−silver nanocage. By applying such
an approach, the nanoplatform could easily recognize and
adhere to bacteria with a specific recognition site, consecutively
activated by NIR light for drug delivery and photothermal
response.138 To further achieve precise bacterial ablation, Qing
et al. introduced a thermoresponsive drug delivery and
photothermal ablation strategy for microbial annihilation,
accompanied by fluorescent tracking. This functionalized
system contains imipenem drug, which releases, upon heat-
induced phase-change response, thermoresponsive nanostruc-
ture as a phase-change material and IR780 as a NIR light−heat
converter as well as a fluorescent tracker. Upon heat induction
above 43 °C, phase change occurred to release imipenem, which
in turn assisted in the photothermal bacteria treatment through
the photothermal−chemosynergistic therapy (Figure 3b).139

On an innovative drug-releasing approach, Liu et al. presented
an enzyme-responsive drug delivery strategy to ablate bacteria
biofilm with the aid of photothermal synergism. The ascorbic
acid prodrug, which was capped with hyaluronic acid (HA) and
ciproflaxin-modified molybdenum sulfide, was adapted to a
ruthenium core. Upon specific bacterial targeting, the excess
expression of the Hyal enzyme at the biofilm site could
potentially degrade the hyaluronic acid capping, thereby
releasing the ascorbic acid. The photothermal-responsive
MoS2 consequently catalyzed the ascorbic acid to generate
radical hydroxyl species to achieve synergistic biofilm elimi-
nation.140 To elaborate on the dual-stimulus-responsive strategy
for drug release, He and co-workers integrated two distinctive

bactericides into one platform, by loading the daptomycin onto
gold nanorod preconjugated with pH-responsive glycol chitosan
and polydopamine coating. Noteworthily, the acidity-triggered
charge reversal would aid in the daptomycin release, while co-
stimulating by NIR activation for the augmented release of
antibiotic and the enhanced bacteria adherence.141 Further-
more, Shi et al. exploited monocyte with programmed anti-
inflammatory ability and utilized it to realize the programmed
bactericidal and the anti-inflammation for osteomyelitis’ treat-
ment. In this antibacterial platform, aspirin-laden monocyte
(AsMon) was prepared in situ spontaneously by directly
injecting the aspirin conjugated-gold nanocage into mouse
abdominal cavity. Upon contact with the infection site, the
monocyte will differentiate into macrophage in response to
bacterial attachment. Internalization of bacteria will then occur
followed by the clearance of infection through phagocytosis. The
aspirin could also be released in control upon NIR-excited PTT
response of gold nanocage, which could assist to inhibit
inflammation and osteoclastogenesis, improving the rate of
bone regeneration after infection (Figure 3a).142

4.2. PTT-Metal Ions. Metal ions have been playing pivotal
roles in antibacterial activities.143−150 The bactericidal mecha-
nism is mainly relying on the interaction between the ions and
the thiol groups or other amino acid moieties in bacteria to
modify the normal functions of the bacterial metabolism
process.151 For instance, previous studies verified that silver
ion could facilitate the bacterial potassium ion (K+) release, thus
dysregulating whole cellular activities.152 Metal elements are not
only beneficial for the antimicrobial activity by physically or
metabolically dysfunctioning the bacterial physiological pro-
cesses but also suitable to be employed as stable backbones for
the fabrication of stable nanostructures. In particular, metal-
element-doped nanostructures could generate significant non-
radiative energy as previously mentioned, providing a possibility
for dual-functional combined treatments.
Employment of silver ions (Ag+) is one of the most popular

approaches for antibacterial therapies. To fully exploit the
synergistic effects from the photothermal material, many silver-
based nanomaterials have been fabricated with a significant
therapeutics outcome. For example, Ran et al. introduced a
nanosystem in which the silver nanoparticles (AgNPs) and GO
cooperated in the hyaluronidase (HAase)-coated nanomaterial
to generate excellent bactericidal effects under NIR light
stimulation (Figure 3c).153 Continuing with the promising
effects of the synergistic strategy, different Ag materials have
been successfully collaborated with other 2D platforms to
display the broad sterilizing effects from Gram-negative to
Gram-positive bacterial infection models.154−156 In another
example, silica-coated gold−silver nanocages (Au−Ag@SiO2
NCs) were presented as an encouraging bactericidal candi-
date.157 Similarly, Mei and co-workers developed the miniature
Au/Ag core−shell nanorods (NRs) for NIR-II-activatable PTT
and PA imaging of MRSA infection. Utilizing the NIR-II
phototheranostic approach, Au/Ag NRs were efficiently
activated by ferricyanide solution and were allowed to
continuously release free Ag+ to eliminate microbes as well as
to promote wound healing.147 In addition, dual release of Ag+

and Cu2+ under the photothermal treatment introduced from
AuAgCu2O nanogel could further effectively damage exposed
bacteria, assisting cutaneous chronic wound healing and keratitis
treatment.158

Likewise, PTT bacterial eradication by CuS nanodots was
accelerated by combining with Cu2+ release. The robust
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induction of the ion in short-period irradiation enhanced the
dermal tissue restoration as evaluated in the scratch assay in
human foreskin fibroblast cell. Stimulation of the main regulator
of oxygen homeostasis, hypoxia-inducible factor (HIF)-1, was
observed, and vascular endothelial growth factor (VEGF), a
direct neovascularization important factor for wound healing,
was also upregulated in the wound area. The results
demonstrated by Qiao and co-workers showed the effective
therapeutic modality to cure infectious wounds in vivo with
negligible local or systemic toxicities.159 Referring to the study
by Xu and colleagues, copper-doped calcium silicate bioceramics
were introduced to exhibit unique bioactivity based on the
release of silicon (Si) ions and Cu ions. The released Cu ions
inhibited bacterial growth, while both Si ions and Cu ions can
promote angiogenesis and enhance tissue regeneration.
Importantly, the alkaline environment created by stimulated
the formation of polydopamine which generated the photo-
thermal effect for dual effective antibacterial treatment.150

Taking advantage of Zn2+ ion, the metal−organic framework
(MOF) derived from ZnO-doped carbon on graphene (ZnO@
G) was fabricated with phase transformable thermally
responsive brushes (TRB) by in situ polymerization to yield
the leveraging 2D structure TRB-ZnO@G with dual-functional
antibacterial effects. The NIR light-triggered photothermal
effects switched the phase transformation of the polymer and
activated the bacterial aggregation process. Meanwhile, the
hyperthermia-induced nanostructure enabled Zn2+ generation
for synergistically enhancing the disruption of bacterial
membranes and intracellular substances (Figure 3d).160 Zeolitic
imidazolate framework-8 (ZIF-8) loaded with Zn2+ was also
utilized as a precursor to obtain bactericidal nanocarbons.
Thermosensitive gel layer poly(N-isopropylacrylamide) was
correspondingly coated on the nanocomplexes to generate
localized heat and massive Zn2+ for disintegrating bacterial
membrane and intracellular proteins.161 Interestingly, doping of
zinc ions with variation in levels can tune the space unit of

Prussian Blue (PB) to optimize the bactericidal effect of both
PTT and ion release from ZnPB. The mechanism of the
enhanced photothermal conversion efficiency of ZnPB is
ascribed to the band gap narrowing effect and the red-shifted
localized SPR, which move toward lower energies with
increasing Zn doping density. Upon NIR light irradiation, the
heat generated from the nanosystem disrupted the bacterial
membrane and accelerated ion release including Zn2+, Fe2+, and
Fe3+ which disturb the metabolic pathways of the bacteria and
enhance the bactericidal efficiency. Additionally, the upregu-
lated gene expression (MMP-2, COL-I, and COL-III) and
downregulated gene expression (IL-1β) caused by ZnPB can
increase the chemosynthesis of matrix metalloproteinases
(MMPs), promote collagen deposition, and inhibit inflamma-
tory factors to favor wound repair (Figure 4a).162

4.3. PTT-Nanozymes.Nanozymes, also known as artificially
synthetic nanomaterial enzymes, function effectively by imi-
tating the catalytic sites of natural enzymes for diverse catalytic
reaction.163 Similar to a frequently used natural enzyme
peroxidase, the nanomaterial-based peroxidase mimics can
catalyze H2O2 to generate HO•, which is an effective
antibacterial species. Therefore, nanozymes afford substantial
bactericidal ability by catalyzing the H2O2 with peroxidase-like
activity, bestowing a possible solution to extirpate the bacterial
infection combined with photothermal therapy.
To mention a few, Yin et al. developed a biomimetic

molybdenum disulfide nanoflower functionalized with poly-
(ethylene glycol) to achieve the catalytic conversion of H2O2 to
radical hydroxyl species, •OH.164 Huo and co-workers designed
a peroxidase-like nanocatalyst that consisted of single iron atoms
that were isolated in nitrogen-doped carbon for combating both
Gram-negative and Gram-positive bacteria in vitro.165 Besides,
Liu et al. adopted the nanocatalytic antibacterial therapy and
photothermal therapy by implementing hemoglobin-function-
alized copper ferrite nanoparticles. The Fenton coupling
between the two redox pairs in the nanosystem (Fe2+/Fe3+

Figure 4. (a) NIR-activated bacterial disinfection by the synergistic effect of heat and ions. Reprinted with permission from ref 162. Copyright 2019
The Author(s) under Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). (b) Defect-rich
and adhesive nanozymes for enhanced bacterial capture and elimination. Reprinted with permission from ref 168. Copyright 2019 Wiley-VCH Verlag
GmbH&Co. KGaA, Weinheim. (c) MoS2-BNN6 as NIR laser response NO carrier for synergistic bacteria killing. Reprinted with permission from ref
174. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Lysozyme-assisted photothermal eradication of MRSA infection.
Reprinted with permission from ref 184. Copyright 2019 American Chemical Society.
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and Cu+ /Cu2+) can repeatably catalyze the decomposition of
H2O2 at a low concentration to generate •OH, which could be
further quantified by the oxidation of colorless to chromogenic
peroxidase substrate, 3,3′,5,5′-tetramethylbenzidine (TMB).166

Similarly, Li et al. introduced a porphyrin-based porous organic
polymer (FePPOPBFPB) which enables the calorimetric
detection by TMB and ablation of S. aureus by NIR-light-driven
photo-Fenton activities.167 Moreover, Cao et al. reported defect-
rich adhesive nanozymes by utilizing MoS2 nanozymes as
nanobuilding blocks and copper nanowires as supports. The
rough surfaces and defect-rich active edges of nanozymes were
designed which not only greatly enhanced the bacterial adhesion
but also largely improved the intrinsic peroxidase-like activity in
vitro and in vivo (Figure 4b).168

4.4. PTT-Gaseous Molecules. Gas therapy has been
utilized as an alternative non-invasive treatment for combating
bacterial infections lately.169,170 Gaseous-signaling molecules
(GSMs), including hydrogen (H2), nitric oxide (NO), sulfur
dioxide (SO2), hydrogen sulfide (H2S), and carbon monoxide
(CO), not only cause negligible side effects to living organisms
with high antibacterial capacity but also act as endogenous signal
transmitters to induce various biochemical changes in the
organism.171

Nitric oxide, as an important molecule involved in the
immune responses and wound healing process, has been widely
chosen to be cooperative with antibacterial photothermal
treatment. The hydrophobic radicals and reactive nitrogen
species (RNS) such as nitrogen dioxide (NO2), dinitrogen
trioxide (N2O3), and

−OONO generated by NO are responsible
for the bacterial DNA deamination and membrane disruption.
Yu and co-workers introduced a synergistic strategy by
constructing Fe3O4-based magnetic nanoparticles with polydop-
amine and NO donor N-diazeniumdiolate (NONOate). The
magnetic characteristic of the presented material successfully
assisted the bacterial separation after the NIR light therapy, and
the participation of NO endorsed skin regeneration through the
increase of myofibroblast and collagen production.172 Similarly,
a versatile magnetic nanoplatform Fe3O4@PDA@Ru-NO@FA
was developed by Liu and his group. The choice of ruthenium
nitrosyls as gaseous molecule donor (Ru-NO) endows the
platform with low cytotoxicity and appreciable stability for NIR-
controllable release in biological tissues.173 Qin et al. invented a
photocontrollable NO-releasing nanovehicle by incorporating
2D TMD photothermal agent MoS2 and heat-sensitive NO
donor N,N′-di-sec-butyl-N,N′-dinitroso-1,4-phenylenediamine
(BNN6) to achieve ideal antimicrobial effect. The α-cyclo-
dextrin (α-CD), which consisted of six glucose subunits with
hydrophobic cavity and hydrophilic exterior, was modified in the
MoS2 surface, helping the stabilization of the nanosystem.
Interestingly, the hyperthermia induced by NIR irradiation to
MoS2 accelerated the process of reduced glutathione (GSH) to
oxidized glutathione (GSSG) which further induced the
oxidative stress in addition to nitrosative stress, destroying the
bacterial structure and cellular function (Figure 4c).174 In
addition, BNN6 could be used to combine with dopamine
crafted hydrogel to realize bacteria eradication and wound
healing with the minimum leakage of gas.175

Of late, H2 gas molecule was recognized as a potential bacteria
and biofilm disinfectant by Yu and co-workers. This antioxidant
molecule, showing excellent antimicrobial properties by
enhancing membrane heat sensitivity, is control-released by
palladium nanohydride (PdH) under the 808 nm excitation.176

4.5. PTT-Cationic Polymers. Photothermal therapy
assisted by cationic polymer could greatly enhance the selective
targeting toward the negatively charged bacteria surface, which
was endowed by teichoic acid and lipopolysaccharide in Gram-
positive and Gram-negative bacteria surfaces, respectively. The
ease of preparation renders cationic polymer a desirable
biomaterial used for surface functionalization, since its proper-
ties can be easily modified by various factors including H-bond
stabilization, hydrophobic interaction, and polymeric chain
flexibility, etc.177 Owing to its beneficial properties, naturally
derived or synthetic cationic polymers are prevalently applied in
diverse NIR biomaterial applications as we discuss in the section
below.
Hu et al. presented a pH-responsive Au nanoparticle by

conjugating it with two self-assembled monolayers, (10-
mercaptodecyl)trimethylammonium bromide (HS-C10-N4)
and 11-mercaptoundecanoic acid (HS-C10-COOH). The sur-
face-modified Au nanoparticle exhibited a zwitterionic feature,
aggregating with low acidic pH in a bacteria enrichment site
while dispersing evenly in normal neutral pH, allowing precise
lesion treatment.178 Feng and co-workers demonstrated anNIR-
mediated antimicrobial conjugated polyelectrolyte (CPE) by
conjugating with quaternary ammonium (QA). The cationic QA
side chain is known to facilitate bacterial recognition and
membrane disruption by electrostatic binding. Thus, the
synergistic effect of QA and the hyperthermia effect from CPE
render the introduced hybrid a potential candidate for
photothermal bacterial ablation.179 Mazrad and co-workers
synthesized fluorescent PDA-based carbon nanoparticles
passivated with high PEI ratio to acquire a cationic adhesive
characteristic to target negatively charged bacterial membranes,
providing a decent fluorescence detection by adhesion caused
quenching effect and a precise microbial inactivation by
photothermolysis.180 Similarly, by using different surface
modifications, Yang et al. developed a polypyrrole (PPy)-
based photothermal nanomaterial for NIR-II excited bacterial
treatment by utilizing the cationic and photothermal properties
of PPy.181 Wang et al. reported a boronic acid-functionalized
graphene-based QA salt to achieve specific bacteria targeting
and reduce the damage to the surrounding normal tissues upon
sterilization.182 Attractively, Yang and co-workers conceived a
precise luminescent imaging-guided photothermal therapy to
improve the spatial accuracy of the bacterial treatment by
fabricating PANI and GCS onto the surface of persistent
luminescence nanoparticle (PLNP) for selective bacterial
binding.183 On a disparate bacterial-targeting strategy, Li and
co-workers worked on a lysozymes-assisted exogenous killer for
NIR-mediated bacterial elimination. Human-hair melanosome
derivative (HHM) comprising of melanin as NIR-photo-
thermal-responsive core was grafted with an outer layer of
negatively charged keratin, absorbing well with positively
charged lysozyme through electrostatic interaction. Notably,
this design lies in the biodegradation of HHMs, thereafter
undergoing a protein-signaling pathway for the regulation of
collagen synthesis to augment tissue repairing wound closure
(Figure 4d).184

4.6. PDT-CHEMO. ROS activities and functions are not
limited to causing DNA damage or membrane structure
perturbation only; they can also promote the immune responses
which are attributable to the wound healing for post-treatment.
At the same time, ROS generation from PDT agents is able to
stimulate intracellular drug delivery and accelerate drug release
in the nanocomplexes.185 As O2 is consumed by PDT in the
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treatment area; hypoxia condition could be further induced to
hasten the bioreductive drug activities.186,187 By coloading
antibacterial drugs and PS into a single nanoparticle, chemo-
therapy and PDT can concurrently contribute to the highly
productive treatment.188

For example, Wei et al. developed a multifunctional
nanodevice for the comprehensive treatment of biofilm with
TiO2-coated UCNP and D-amino acid surface. UCNPs core
converted NIR light to UV light which stimulate TiO2 shell to
produce ROS and to spatiotemporally release free D-amino acids
(D-Tyr) to eradicate bacteria.189 Chen and co-workers
constructed a pH-responsive zeolitic imidazolate framework-8-
poly(acrylic acid) (ZIF-8-PAA) material for drug delivery and
PS ammonium methylbenzene blue delivery to the bacteria-
infected lesion. Roughly, the secondary modification with
AgNO3 and vancomycin/NH2-poly(ethylene glycol) (Van/
NH2-PEG) was achieved with decent pH responsiveness and
excellent drug loading capacity presented by PAA. The
significant results were observed after NIR light treatment in
three kinds of bacteria, including Escherichia coli, Staphylococcus
aureus, and methicillin-resistant S. aureus, revealing a superior
therapeutic PDT/AgNPs strategy.190

To enhance the drug delivery and localized PDT effects,
polymer-based photodynamic nanoassembly chitosan-chlorin
e6 (Ce6) was conjugated by Zhang's group to exhibit a strong
interaction with bacteria, altering the bacteria structure and
effectively delivering PS Ce6 into the infectious area.191

Moreover, it is notable that, in the bacterial infection site,
HAase is ubiquitously overexpressed, suggesting a strategy for
microenvironment-responsive fabrication of nanodevices. In
this viewpoint, photosensitive PCN-224 nMOF loaded with Ag
ions was coated with HA by Zhang et al. After the degradation of
HA activated by HAase, the positive charge from an initially
neutral nanosystemwas exposed to facilitate the specific bacteria

membrane association, showing an outstanding antibacterial
result (Figure 5a).192

4.7. PDT−PTT. Since PDT relies on intracellular induction of
ROS, the enhancement of PS delivery is therefore vital for
efficient photodynamic treatment. Interestingly, the uptake of
the PDT PS can be improved by increasing the temperature by
PTT in the targeted infection area.193,194 As well, an increase in
temperature by PTT will also effectively accelerate the blood
flow with an uplifted vascular O2 level which consequently
benefits PDT by elevating the 1O2 yield.195,196 Therefore,
inducing dual stresses of heat and ROS opens a new opportunity
to effectually exterminate bacteria with minimum surrounding
tissue damage through lowering the laser intensity and
maximizing the treatment condition.197−208

Yu et al. developed a supramolecular self-assembled nano-
composite offering dual PDT/PTT activity with broad-
spectrum eradication of drug-resistant bacteria. In the
introduced system, unique one-dimensional wire-like graphene
nanoribbons (GNRs) were coated with a cationic porphyrin
(Pp4N) to afford significant ROS production and temperature
promotion upon 660 and 808 nm light irradiations. This
photostable synergistic system provides excellent antimicrobial
effects for complete annihilation in mouse model of dorsal
infection (Figure 5b).209 Likewise, Liang's group co-doped a
photothermal conjugated polymer with triphenylamine deriva-
tive photodynamic agents via self-assembling for dual-functional
antimicrobial activity with more than 70%, 90%, and 99% killing
efficacy for Gram-(−) bacteria (E. coli), Gram-(+) bacteria (S.
aureus), and fungi (Candida albicans (C. albicans)) under 808
nm light radiation, respectively.210

For a polymer with a narrow band gap in the NIR range, a
donor−acceptor−donor (D−A−D) structure comprising two
electron-rich donors and one electron-deficient acceptor is
usually designed as the conjugated backbones. Applying the

Figure 5. (a) Schematic illustration of the synergistic bacterial disinfection by PCN-224-Ag-HA nanoagents. Reprinted from ref 192. Copyright 2019
Wiley-VCHVerlag GmbH&Co. KGaA,Weinheim. (b) Pp4N andGNR-PEO2000 self-assembly for drug-resistant bacteria disinfection upon double-
light activation. Reprinted with permission from ref 209. Copyright 2020Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. (c) NIR light-triggered
NO-enhanced PDT and low-temperature PTT-based synergistic approach for biofilm elimination. Reprinted from ref 222. Copyright 2020 American
Chemical Society. (d) Double-light-driven therapy of wound infection. Reprinted from ref 225. Copyright 2019 Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim.
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construction, synergetic local hyperthermia and ROS erad-
ication of bacteria were observed under 808 nm radiation with
valuable fluorescence tracking.211 Alternatively, the hybrid
hydrogel with an enhanced NIR-stimulated PDT effect from
the combination of polyisocyanide (PIC) hydrogel, cationic
conjugated polythiophene (PMNT), and CPNs-Tat was
introduced by Cui and colleagues for germicidal treatment.212

Besides organic polymer, a small protein with significant
photothermal induction can also be recruited for prospective
biocompatible nanosystems.213

Upconversion nanoparticles were applied as NIR-induced
mediators for the photodynamic effects upon the activation of
delivered PSs. In previous research, a multifunctional
upconversion platform for synergistic PDT/PTT antibacterial-
resistant therapy was achieved by loading phenothiazinium PS
methylene blue (MB) into UCNPs/CuS hybrid. Compared to
PDT or PTT alone, the combination therapy realized significant
enhancement upon single CW laser irradiation.214 In order to
minimize the normal tissue injury, highly sensitive PSs excited
by lower power density are required. Following this perspective,
poly(selenoviologen) was self-assembled on the surface of a
core−shell NaYF4: Yb/Tm@NaYF4 UCNP exploiting a mild
irradiation condition (λ = 980 nm, 150 mW·cm−2, and 4 min)
for MRSA ablation. The practical phototherapeutic efficiency
was attained from strong ROS production and high photo-
thermal conversion efficiency (52.5%) under low-power 980 nm
laser illumination.215

The formation of ROS in the PDT system is generally being
inhibited due to the hypoxic condition under a bacterial-infected
wound site. Therefore, oxygen supplying or alteration of ROS
generation strategies is pivotal for the development of
photodynamic-based antibacterial practices. Innovatively, a
light-activated alkyl free radical initiator encapsulated in a
polydopamine-coated carboxyl graphene (PDA@CG) was
synthesized to produce an excellent infection-responsive
antibacterial effect by generating alkyl radicals (R) under
various oxygen tension condition. Significant bacterial DNA-
damaging activity in vivo further showed the extraordinary
synergistic therapeutic effect of PDT and PDT under complex
physiological environment.216

For enhanced loci targeting, Zhou et al. proposed a positively
charged conjugated polymer (PTDBD) with dual photothermal
and photodynamic ability for specific targeting and killing of
bacteria under relatively mild treatment conditions (40 μg·
mL−1, 1.0W·cm−2).217 Hou et al. recently exploited the bacterial
lectins interaction of galactose in glycosylated plasmonic copper
sulfide nanocrystals (Cu2−xS NCs) to specifically ablate P.
aeruginosa under NIR-II light illumination with simultaneous
effects of PTT/PDT.218

4.8. PDT−PTT-CHEMO. While the above-mentioned
bimodal synergistic antimicrobial treatment exhibited higher
efficiency than the monomodal therapy, the efficacy can be
further enhanced by trimodal therapy built on cooperation
among three therapeutic agents within a single nanosystem. The
integration of drug, PSs, and photothermal agents realizes the
combination of chemotherapy, PDT, and PTT against bacterial
infection with minimum administration dose and lower
invasiveness. In these collaborating nanoplatforms, the heat
generated from the photothermal agents will increase the uptake
of both antimicrobial chemoagents and PSs and amplify the O2
supply for efficient ROS production. Antibacterial treatment
relying on a trifunctional nanostructure that involves various

bacterial killing mechanisms is therefore expected to give amuch
stronger multimodal bactericidal outcome.219−221

Trifunctional photothermal-, photodynamic-, and chemo-
therapy was achieved by the construction of dual-valent
platinum nanoparticles (dvPtNPs) composed of Pt0 and Pt2+

ions by Deng and co-workers. Laser excitation at 808 nm
initiated the photothermal destabilization with the release of
Pt2+ ions as the chemodrug, coexisting with the ROS production
for synergistic bacterial ablation.219 Similarly, synergistic
ablation could be realized by PB@PDA@Ag nanoparticle,
disrupting the plasma integrity, generating ROS, reducing ATP,
and oxidizing GSH. This nanosystem also showed accelerated
MRSA-infected diabetic wound healing indicated by the
upregulation of VEGF expression.220 Furthermore, an all in
one phototherapeutics antimicrobial nanoplatform was illus-
trated in the AI-MPDA nanoparticle by Yuan and co-workers.
Complementarily, indocyanine green (ICG) and L-arginine (L-
Arg) were encapsulated in mesoporous polydopamine (MPDA)
to form AI-MPDA nanoparticles via π−π interaction and
adsorption. PDT was efficiently generated under mild temper-
ature increase (45 °C) for activation of L-Arg for NO gas
production. The NO-enhanced PDT&PTT approach was then
performed to damage the bacterial membrane, turning on a
robust eradication of biofilm (around 100% in an abscess
formation model). Such low dose (0.2 mg ·mL−1 of AI-MPDA
nanoparticles) and mild temperature treatment condition are
significantly less harmful to the surrounding normal tissues and
ideal for clinical application of already-formed biofilm (Figure
5c).222

Similarly, another PDA-based nanosystem with significant
photothermal conversion efficiency was designed for synergistic
abolition of MDR bacteria in the diabetic mouse model by Tong
and colleagues. PDA-coated PB nanoparticles acted as the
scaffold for AgNPs reduction, which indicated a significant
elimination of bacteria through cooperative pathways consisting
of cell membrane disintegration, ROS elevation, ATP
decreasing, and metabolism disruption. Importantly, the
nanocomplex functioned as a reduced inflammation platform
in the wound area after synergistic therapy, showing a high
potential for the treatment of chronic infectious wounds.220

Dual-functional bacterial removing and wound healing also can
be achieved by combining Zn2+-doped sheet-like C3N4 with GO
under a short time exposure to 660 and 808 nm light
irradiations.223 Meanwhile, the heterojunction of this Zn2+-
doped C3N4 with Bi2S3 was fabricated by Li and co-workers with
the combination of β-lactam antibiotics to offer an efficient anti-
infectious outcome with wound healing promotion, eliminating
observable resistances.224

Specific capture and elimination of bacteria may be obtained
by simply modifying the nanoparticle surface with targeting
moieties. To further enhance the therapeutic outcomes of
synergistic treatment, glycoligands are popularly added to the
nanosystem. For example, Hu et al. developed a unique
glycosheet by galactose- and fructose-based ligands which self-
assembled on the surface of thin-layer molybdenum disulfide.
Multivalent carbohydrate−lectin interactions promoted the
bacterial targeting to precisely kill the bacteria in a combination
manner with control-released antibiotic activities, PDT and
PTT upon white and NIR light irradiations (Figure 5d).225

Evidently, some possible shortages of synergistic therapy are
still waiting to be avoided by further research. For instance, the
complex conjugated nanostructure may generate some biofunc-
tional issues such as not biodegradable and cytotoxicity. The
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simplicity of design can be achieved by innovation of a single
type of material bearing the ability with multiple synergistic
treatment effects. In addition, more targeting moieties need to
be further investigated in the ex vivo tissue or in vivo infected area
to realize the maximum effective targeting in a lesion. The
metabolic labeling method may be a promising candidate to
solve this problem.

5. BACTERIAL DISINFECTION BEYOND
NANOPARTICLES

Because the above discussion mainly revolved around the NIR-
responsive antibacterial nanoparticle, we are going to focus on
the various antimicrobial approaches beyond the nanoparticle,
which include antibacterial film, antibacterial implantation, and
hydrogel application.
5.1. Antibacterial Film. The film material possesses unique

properties originating from its flexibility/stretchability, great
pore interconnectivity, and specific physicochemical properties,
allowing it to be sturdily developed in diverse applications such
as water cleaning systems, energy storage devices, and
antibacterial platforms, etc.226,227 In particular, some of the
characteristics are rendering films to not only effectively shield
acute or chronic wounds from pathogens and dehydration but
also intrinsically promote hemostasis and tissue regeneration for
wound healing, which endow the film material to be a promising
candidate for curing microbial infections.228−236 Additionally,
NIR-excitable film coating is frequently designed to eradicate
biofilms or planktonic bacteria colonized on the device surface in
deep-tissue treatment. In this segment, we will elaborately

discuss the recent design of NIR-associated films for bacterial
disinfection.
For example, Li and co-workers introduced a biodegradable

ultralong copper sulfide nanowire-reinforced poly(citrates-
siloxane) nanocomposites elastomer, exhibiting modulatable
mechanical elasticity, tunable electronic conductivity, strong
NIR photothermal capacity, and broad-spectrum antibacterial
activity, with its remarkable real-time thermal-imaging feature in
vivo.231 Xi et al. designed a multifunctional elastomeric poly(L-
lactic acid)-poly(citrate siloxane)-curcumin @ polydopamine
hybrid nanofibrous scaffold for simultaneous tumor ablation,
antibacterial infection, and wound healing. After the photo-
thermal extirpation of bacteria by NIR light, the nanofibrous
matrix concurrently up-regulated the VEGF and the cluster of
differentiation 31 (CD31) immunoexpression in the endothelial
cells, which play pivotal roles in the early angiogenesis, thus
promoting the adhesion and proliferation of normal skin cells in
bacterial-infected mice (Figure 6a).237 To overcome the
biomedical device-associated infection, Zhao et al. introduced
an NIR-responsive organic/inorganic polyurethane (PU)
hybrid which functionalized with photothermal Au nanorod
and antifouling PEG, averting the hydrophobic interaction
between bacteria and prosthetic mesh PU for the subcutaneous
hernia repair. This platform could not only effectively ablate
pathogen bacteria including MDR bacteria in vivo upon 808 nm
NIR irradiation but also successfully prevent accumulation of
bacterial debris without the external stimuli because of its
antifouling property (Figure 6b).238 In consideration of the
platform regenerability, Budimir et al. created a Kapton/Au
nanoholes substrate coated with rGO−PEI thin films with

Figure 6. (a) Chemo-photothermal therapy by PPCP nanofibrous scaffolds. Reprinted with permission from ref 237. Copyright 2020 American
Chemical Society. (b) Schematic illustration of NIR-responsive PU-Au-PEG surface for antifouling and bacteria killing. Reprinted with permission
from ref 238. Copyright 2020 American Chemical Society. (c) Schematic diagram of NIR light-triggered biofilm eradication and the mechanisms of
promoted bone formation. Reprinted with permission from ref 256. Copyright 2020 American Chemical Society. (d) Schematic illustration of the
disinfection of the bacteria on the bone implant upon 808 nm laser irradiation. Reprinted with permission from ref 258. Copyright 2018 Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim.
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excellent reusability to destroy the S. epidermidis biofilm.239 Kim
and co-workers engineered an antibacterial microreactor by
using catechol-grafted poly(N-vinylpyrrolidone) and immobili-
zation of NIR-active Cs0.33WO3 nanoparticles inside the
poly(dimethylsiloxane) (PDMS)-based microreactors. The
continuous flow and adhesion of bacteria could be eradicated
by NIR light-induced photothermal reaction, and the mussel-
inspired immobilized Cs0.33WO3 nanoparticles could easily be
cleaned by simple acid treatment for a recyclable micro-
reactor.240 Moreover, Qu and co-workers fabricated diverse
substrates by sequential deposition of a gold nanoparticle layer
and a phase-transitioned lysozyme film (PTLF). The photo-
thermal effect from the Au layer induced by NIR laser could kill
99% of attached bacteria in 5 min with recyclable PTLF surface
by immersion in Vitamin C.241 The previous examples
necessitate the degradation of the platform layer for surface
regeneration upon every new usage. To boost the ease of use,
Wang et al. reported a smart antibacterial hybrid film based on
tannic acid/Fe3+ ion (TA/Fe) complex and PNIPAM. The
immobilized PNIPAM intriguingly possesses the heat-triggered
fouling-repellent ability, which is capable of removing dead
bacteria and other debris at 4 °C.242

5.2. Antibacterial Implantation. Bioimplantations and
devices were prominently developed for soreness alleviation and
function revitalization to improve the quality of life. Never-
theless, these implants were often subjected to bacterial
infection, increasing the patient morbidity and mortality. In
other words, the bioimplants are vulnerable to infections across
nearly all bioapplications, such as the internal articular
prosthetics,243 the implantable cardiovascular devices,244 the
abdominal wall implants, or even the external carriers such as
contact lenses.245,246 To prevent implant-associated infection,
efforts have been recognized on the basis of several strategies
such as adhesion resistance, contact killing, and biocide
leaching.247 However, there are existing issues in accordance
to these strategies: (i) adhesion resistance approach often
prevents bacteria adhesion; however, the planktonic microbes
are still suspended in the body. (ii) Contact killing, which is
described as surface-adhered bacterial cell lysis, frequently uses
pH-responsive antimicrobial peptides and is susceptible to
proteolysis, suggesting lower antibacterial efficacy. (iii) Biocide
leaching, which utilizes heavy metal ions and antibiotics, often
introduces cytotoxicity to surrounding normal healthy tissues
and builds up the severe antibiotic resistance of bacteria,
respectively. To overcome these setbacks, materials that were
previously discovered were applied for antiseptic implantation
accompanied by advanced technologies such as photothermal,
photodynamic, and synergistic therapies.248−250 This review
section exemplifies some of the work done in different advanced
therapy systems including several synergistic implant-associated
infection therapies.
In an individual PDT system, Tan and co-workers constructed

the surface of the frequently used biocompatible metal implant,
titanium metal, with liposome encapsulated PS IR780, and
perfluorohexane to yield high antibacterial efficacy.251 More-
over, in a PTT system, Zhang and co-workers discovered
rhenium trioxide (ReO3) as a commendable photothermal
nanoplatform. This platform also allows photoacoustic imaging
and CT imaging, potentiating the multimodal imaging-guided
diagnosis and therapy for implant-related infections.252

Furthermore, Zhao et al. reported a titanium metal decorated
with zinc oxide@collagen type I which is dual-light-excitable for
specific corresponding activation. The antibacterial effect of

ZnO was activated by 583 nm yellow light, whereas the
osseointegration was accelerated by heating effect under 808 nm
NIR excitation.253 Correspondingly, to promote effective
osteogenesis and efficient photoresponsive antibacterial effect,
Deng and co-workers fabricated a multifunctional orthopedic
material consisting of sulfonated poly(ether-ether-ketone)
conjugated graphene oxide nanosheets, PDA, and adiponectin
protein to facilitate in vivo bone formation. Intriguingly, this
platform could not only accelerate the new bone formation but
also perform as a recyclable antimicrobial platform, especially
suitable for biomaterial-associated repeated infection.254

To illustrate the various synergistic bacterial therapies, a NIR-
induced PTT/silver ions platform was adopted byWang and co-
workers by hybridizing the chitosan, silver nanoparticles, and
MnO2 nanosheets onto the surface of titanium metal as coating.
Since chitosan composite greatly stabilized the Ag nanoparticle,
the slow release of Ag+ ions could trigger the conversion of
oxidation stress indicator, GSH to GSSG, inducing bacterial
membrane damage and its vulnerability.255 Moreover, PTT
could be coupled with immunotherapy to eliminate methicillin-
resistant S. aureus biofilm infection on bone implant as reported
by Li et al. Along with photothermal effect, NO release, and
−OONO formation, the immunotherapy by NO-induced M1
macrophage polarization was confirmed through the upregula-
tion of the TNF-α and IL-6 expression, indicating the tissue
regeneration effect of NO (Figure 6c).256

In a synergistic PDT/PTT system, Feng and co-workers
covalently grafted the surface of titaniumwith chitosan-modified
molybdenum sulfide nanosheets for dual-light-activation (660
nm visible light for singlet oxygen generation, 808 nm NIR light
for hyperthermia induction) synergistic PDT/PTT therapy.
Although bacterial eradication efficiency was optimally achieved,
the process is rather onerous to incorporate two-light activation
to ablate bacterial cells.257 This research group further enhanced
their antibacterial implant application with single NIR light
activation. Similarly, on the titanium alloy, they decorated it with
photothermal-responsive red phosphorus/PDA, singlet oxygen
generating IR780 dye and an arginine-glycine-aspartic acid-
cysteine short peptide for improved bacterial cell adhesion and
accelerated bone tissue regeneration (Figure 6d).258 Besides,
Hong and co-workers offered a system by incorporating bismuth
sulfide inorganic semiconductor as the stable ROS generator
rather than exploiting iodide dye which suffers from poor
stability. Bismuth sulfide combined with trisilver phosphate was
conjugated on titanium metal to achieve high photocatalytic
performance and higher ROS yield for synergistic biofilm
elimination.259 Furthermore, Yuan et al. introduced a
modification of MPDA nanoparticles that loaded with ICGs as
the photosensitizer and RGDs as the osteogenicpeptide onto a
titanium implant to trigger ROS for bacterial membrane
destruction upon 808 nm laser excitation. It likewise
demonstrated excellent osseointegration between living bone
and implants, as well as osteogenesis effect proved by the
positive growth of mesenchymal stem cells.260

5.3. Hydrogel. Hydrogels have emerged as one of the most
significant design breakthroughs for the manipulation of
dynamic molecular interactions. Hydrogels have evolved from
simple physically or chemically cross-linked structures to
composite engineered materials that can potentiate native cell
functions or ablate tumor/bacterial cells in various applications,
such as drug delivery platforms, nanoparticle decorative
moieties, and so on.261,262 Smart hydrogels, which are
particularly sensitive to physical and chemical stimuli such as
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photon excitation, temperature, electrostatic interaction, pH,
and recognitive ions or molecules, have been adopted for a
variety of research designs.263 Because of their broad range of
stimuli-responsive functionalities, hydrogels’ structural proper-
ties have been prevalently refined and incorporated into NIR
photothermal design strategies for specific bacterial targeting
and ablation effects.264−269 Recently, the use of mussel-inspired
chemistry in forming hydrogels has been widely explored for
bioapplications, electronics, and soft robotics, etc. Generally,
three main building blocks, polyphenols, polydopamine, and
catechol-based polymers, have been well-developed for hydrogel
formation.270 This review section discusses the implementation
of hydrogels in NIR-based photothermal bacterial elimination,
which associated with effective wound dressing ability, in
accordance with the hydrogels’ modification with various
emerging materials and their general bonding characteristics,
for instance, covalent and noncovalent bond formation based on
the building block linkage.
Noncovalent interactions comprise hydrogen bonding,

hydrophobic interactions, and π−π interactions. For example,
an antimonene sheet could coat with bacteria-targeting network
polymer holding great potential in NIR-assisted photothermal
bacteria eradication and wound healing.266 Furthermore, Hsiao
and co-workers designed a smart pH-responsive hydrogel
formed by the conjugation of chitosan with mercaptopropyl
sulfonic acid (MPS)-modified PANI for localized photothermal
bacterial treatment. Chitosan, acting as a hydrogen donor/
acceptor, plays a crucial role in pH-responsive hydrogelation,
while self-doped MPS-modified polyaniline is a compatible
conducting polymer. In an inflamed abscess at pH 6.0−6.6, the
hydrogel was in an injectable aqueous form, whereas the
hydrogel-formed colloids at pH 7.0−7.4, preventing targeting in
normal healthy tissue. Excitation by an 808 nm laser at 2.0 W·

cm−2 subsequently ablates the pathogenic bacteria concentrated
with the hydrogels.271 Mohamed et al. constructed plasmonic Au
nanoparticles conjugated with poly(N-vinylcaprolactam)
(PVCL) to form a smart hydrogel responsive to temperature.
The PVCL nanorod exhibits a lower critical solution temper-
ature (LCST) of 35 °C, where polymer dissolution occurs at low
temperature, resulting in liquid form due to hydrogen bonding
with water; temperatures above the LCST initiate the
decomposition of hydrogen bonding, and the formation of
hydrophobic interactions dominates upon exposure to a 785 nm
diode laser, resulting in a phase change from solution to gel form
for efficient targeted bacterial ablation.272 Adopting a similar
thermally controlled solution−gel strategy, Ko and co-workers
developed an effective photothermal nanocomposite composed
of poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate)
(PEDOT:PSS) and agarose, achieving a sharp temperature
increase upon NIR exposure for light-excited self-healing ability
and antibacterial effects.273 Wang and co-workers introduced
pH-responsive supramolecular nanofiber networks by the self-
assembly of Ac-Leu-Lys-Phe-Gln-Phe-His-Phe-Asp-NH2
(IKFQFHFD) octapeptide loaded with cypate as a photo-
thermal agent and proline as a procollagen component for
healing purposes. The biocompatible octapeptide self-assembles
at neutral pH due to the side chains of phenylalanine amino
acids potentiating intermolecular π−π stacking. Hydrogel self-
assembly is also dictated by the intermolecular ionic interaction
and the hydrogen bonding formed between peptide molecules.
Upon a pH change from neutral to acidic pH, the supra-
molecular hydrogel could perform on-demand cypate and
proline release to promote photothermal killing and cell
proliferation processes for wound healing, respectively.274

Because of the development of hydrogels with covalent
interactions, metal-chelated phenolic compounds and Schiff-

Figure 7. (a) NIR light-responsive cryogels as wound dressing materials. Reprinted with permission from ref 275. Copyright 2019 Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim. (b) Scheme illustration of the FCB hydrogel for tumor therapy and wound healing. Reprinted with permission from
ref 277. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Structure of QCSG/CNT cryogel. Reprinted with permission from
ref 280. Copyright 2018 The Author(s) under Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/
4.0/. (d) TRIM films for photothermal elimination of various bacteria. Reprinted with permission from ref 281. Copyright 2020 Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim.
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based formation have been widely adopted for NIR photo-
thermal-responsive hydrogels. Yu et al. fabricated a photo-
thermal-responsive cryogel composed of chitosan/silk fibroin as
a scaffold and tannic acid/ferric ions (TA/Fe3+) as the
photoresponsive thermal agent (CSTFe). Covalent metal−
phenolic chelation interaction between the tannic acid and ferric
ion was employed as the photothermally responsive moiety.
Intermolecular hydrogen bonding between the chitosan and
TA/Fe3+ maintained the cryogel structure. The metal-chelated
TA/Fe3+ complex was important in both the 808 nm-laser-
irradiated photothermal bacteria killing and the wound healing
process, as described. The as-synthesized cryogel underwent
hemostasis evaluation and was shown to possess good blood
absorption and blood clotting properties, making it a potent
hemostasis material (Figure 7a).275 Similarly, Deng and co-
workers suggest the use of TA/Fe3+ in the formation of agarose-
based hydrogel composites for complementary NIR treat-
ment.276 Exploiting kindred wound healing and antibacterial
photothermal hydrogels, Zhou and co-workers formulated a
polypeptide-based hybrid nanosystem by cofunctionalizing the
PDA building blocks and F127-pretreated EPL polypeptide
(FEPL). The hydrogel was formed through Schiff-base covalent
interaction between the PDA and the amino group of FEPL,
which possess the functions of photothermal induction and
antimicrobial ability, respectively. It was proven that the
bioactive glass-PDA conjugated with FEPL decreased the
wound area to 8.3%, in distinct contrast with the 31.8% result
in the control group, thus establishing excellent wound healing
ability (Figure 7b).277 Furthermore, Zhao and co-workers
utilized the catechol-Fe3+ complex for pH responsiveness as well
as the antioxidant ability of catechol to scavenge the over-
production of ROS for improved wound healing processes,
which has rarely been reported.278

Different types of emerging photothermal frameworks and
biodevices have also been revealed. For instance, thermal
ablation of bacteria was achieved by the charge transfer between
ferrous ions and ferric ions in the PBMOF structure triggered by
NIR photons, while the bacterial capture realized by the
hydrogel electrostatic attraction allowing tight absorption
between the framework and the surface potential of bacteria,
inducing an effective bacterial elimination.279 In addition, Zhao
and co-workers obtained cryogel with good mechanical strength
and NIR-stimuli responsiveness by incorporating CNTs. They
invented an injectable shape memory hemostatic dressing
consisting of CNT-reinforced antibacterial conductive nano-
composite cryogels that could realize excellent hemostatic
effects compared to plain cryogels without CNT conjugation in
a mouse liver injury model, mouse-tail amputation model, rabbit
liver defect lethal noncompressible hemorrhage model, and
standardized circular liver bleeding model (Figure 7c).280

Intriguingly, Hu et al. reported a novel localized thermal
management strategy termed thermal-disrupting interface-

induced mitigation (TRIM) to establish a topical antibacterial
therapy with negligible cohesion loss of epidermal tissue during
the thermoablation process. They incorporated PDMS-based
flexible substrate size-controlled TRIM integrating a biomimetic
topography of 3 μm, as larger topography leads to unwanted
biofilm formation that hinders bacterial killing. This TRIM film
accommodated the dispersed localization of bacteria, and
subsequently, a modest intensity of NIR photoactivation at 70
mW·cm−2 triggered the shrinking of the PNIPAM hydrogel and
localized the Au nanostars in the microvalleys of the film,
concentrating the photothermal agents near the bacteria for
photothermal ablation (Figure 7d).281

6. CONCLUSION

In summary, by utilizing the light-responsive materials and
molecules as mediators, the energy of NIR light could be
converted for heat generation, ROS generation, and drug release
(Figure 8), which respectively are responsible for photothermal
therapy, photodynamic therapy, and synergistic therapy. These
therapy systems based on NIR-light response have been widely
applied in antibacterial studies, such as those involving wound
healing, tissue infection treatment, and inflammation clearance.
Though NIR-mediated materials have exhibited promising
antibacterial effects and enlightened broader audiences in a
medical perspective, the clinical application of a NIR-assisted
therapy system still requires many efforts. For instance, since
biosafety of NIR light-responsive materials is undoubtedly the
primary problem encountered by the clinical application, the
development of new and potent NIRmolecules or materials with
long-term biocompatibility and promising light converting
efficacy suitable for clinical translation still demands more
science and engineering interventions. In addition, the safety of
laser irradiation is also of concern, especially the high-power and
long-duration laser irradiation that may pose possible adverse
effects to normal tissue. Thus, personalized, low-cost, and
reliable therapeutic laser devices that can ideally achieve
effective NIR light-mediated inactivation of bacteria, especially
MDR strains of bacteria, are highly desirable for the well-being
of patients. In short, two significant criteria including the
smallest possible dosage of therapeutic agents and the optimal
laser irradiation power and time should be thoroughly
contemplated to obtain the potent therapeutic effect and at
the same time to circumvent various side effects. These
deliberations should be taken into account prior to the
implementation of NIR nanodrugs in clinical treatments. In
addition, to achieve safe and efficient treatment, the designing of
a precision treatment system is undeniably the best approach.
For NIR-assisted therapy, an optimized therapy should include
three precisions, namely, precise medication, precise irradiation
area, and precise irradiation time. To achieve these three
precisions, the NIR therapeutic system is suggested to be
designed according to the following aspects:

Figure 8. Schematic illustration of the mechanism of NIR light-based bacterial disinfection.
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(1) Enhance the bacterial targeting capability. By modifying
with antibodies, aptamers, and targeted peptides to
enhance the bacteria recognition ability of nanodrugs,
accurate delivery can be achieved, so as to effectively
reduce the dosage of nanodrugs and reduce the side
effects on normal tissues.

(2) Design the responsive therapeutic system. By combining
treatment with a bacteria-detection imaging platform, the
visualization of bacteria can be realized and precision
irradiation treatment can be guided.

(3) Construct the therapeutic-effect feedback platform. By
integrating the bacterial treatment system with heat, free
radical, and bacterial endotoxin, probes could be attained
to acquire the therapeutic effect in time and to realize the
precise implementation of irradiation time on demand.
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