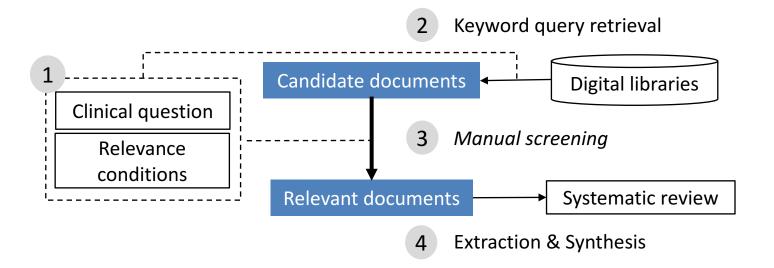
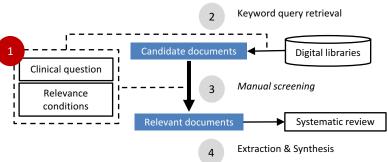


Seed-driven Document Ranking for Systematic Reviews in Evidence-Based Medicine

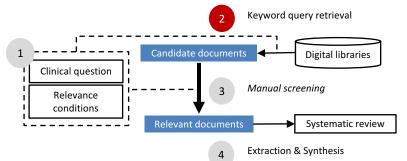

Grace E. Lee and Aixin Sun School of Computer Science and Engineering Nanyang Technological University (NTU), Singapore

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE


Systematic Reviews

- Literature survey
 - providing conclusions of clinical questions (topics)
 - existing literature
 - state-of-the-art answer of the clinical question
- SRs are conducted by following systematic steps

1. Defining a Clinical Question


- Set up a clinical question (topic)
 - existing biomedical literature
 - one or two relevant publications

- Define relevance conditions (eligibility criteria)
 - evaluating relevance of documents
 - explicit details

Patient	Intervention	Comparator	Outcome	Study type
 pancreatic cancer seniors (>60) surgical and medical history 	 laparoscopy laparotomy endoscopy	 physical examination surgical examination 	 staging of cancer cell resectability of cancer cell 	 randomized controlled test comparative study prospective study

2. Retrieval Process

- Collecting candidate documents
 - without missing out any relevant documents
 - high recall
- Various keyword queries to multiple databases
 - PubMed, MEDLINE, EMBASE, Cochrane CENTRAL

- Large candidate collection
 - more than 2,000 candidate documents in general for one SR

3. Screening Process

Identify relevant documents in candidate documents

#Rel Docs

16

48

3

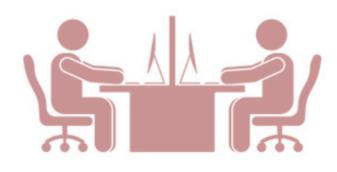
6

46

- manual screening
- multiple SR experts
- detailed relevance conditions

Sample SRs

 SR_1


 SR_2

 SR_3

 SR_4

 SR_5

- Output of screening step
 - relevant documents
 - 1 to 2 percent of candidate documents

% of Rel Docs

0.83%

0.44%

0.19%

0.29%

0.77%

Candidate documents

Clinical guestion

Relevance conditions

#Candidate Docs

1,911

10,872

1,573

2.065

5,971

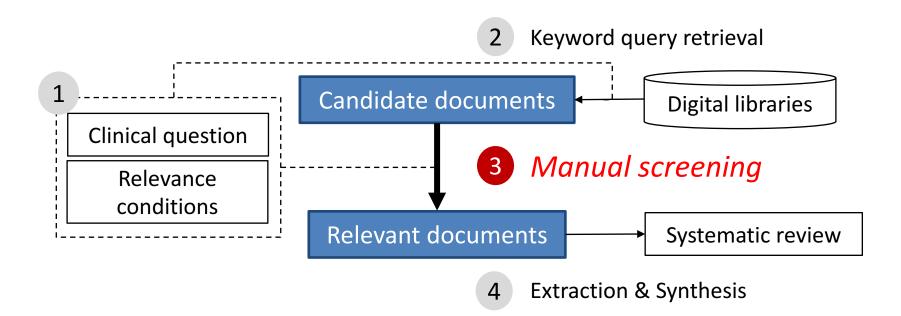
Keyword query retrieval

Manual screening

Extraction & Synthesis

Digital libraries

Systematic review



- Example of target data
 - study results
 - experiment methodology
 - subject information
- Analyze and synthesize data to draw an overall conclusion

Our Key Focus

Efficient Screening Process

- Four approaches to improve expensive screening process using text mining
 - 1. Reducing the number of documents to screen
 - 2. Reducing the number of SR experts needed for screening
 - 3. Improving the rate of screening documents
 - 4. Prioritizing the documents to be screened

Screening Prioritization

- Ranked list of candidate documents where relevant documents are at the top
 - SR experts can screen relevant document as early as possible

• Most promising approach to be applied in practice

Alison Ó Mara-Eves, James Thomas, John McNaught, Makoto Miwa, and Sophia Ananiadou. 2015. Using text mining for study identification in systematic reviews: a systematic review of current approaches. *Systematic reviews* 4, 1 (2015), 5.

Seed-driven Document Ranking (SDR)

- New approach for screening prioritization
- Seed document
 - a few relevant documents are known before screening process
 - serve as a query
- Rank candidate documents where relevant documents are at the top using a seed document
 - query by document: a long document to short keywords
 - explicit details of document contents
- Understanding characteristics of relevant documents
 - two observations

Our Findings from Analyzing Candidate Documents

• Observation 1.

For a given SR, its relevant documents share higher pair-wise similarity than that of irrelevant documents.

• Observation 2.

Relevant documents for a given SR share high commonalities in terms of clinical terms.

- Unified Medical Language System (UMLS) Metathesaurus
- extracting clinical terms from the text
 - MetaMap, cTakes, QuickUMLS

Seed-driven Document Ranking (SDR)

- Document representation
 - Observation 2. bag-of-clinical terms (BOC)
 - referring a term to a clinical term

- Weight of a clinical term
 - Observation 1. relevant documents share higher similarities

SDR: Term Weight Method

- Weight $\varphi(t_i, d_s)$ of a clinical term t_i
 - to what extent a term separates similar documents to a seed document, and dissimilar documents

$$\varphi(t_i, d_s) = \ln\left(1 + \frac{\delta(D_{t_i}, d_s)}{\delta(D_{\overline{t_i}}, d_s)}\right)$$

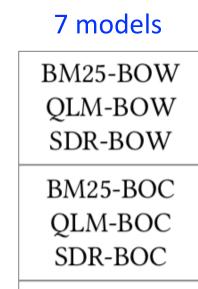
$$\delta(D_*, d_s) = \frac{1}{|D_*|} \sum_{d_j \in D_*} sim(d_j, d_s)$$

- Retrieval model
 - query likelihood model (QLM) with JM smoothing
 - combine the term weight method (φ)

$$score(d, d_s) = \sum_{t_i \in d, d_s} \varphi(t_i, d_s) \cdot c(t_i, d_s) \cdot \log\left(1 + \frac{1 - \lambda}{\lambda} \cdot \frac{c(t_i, d)}{L_d \cdot p(t_i | \mathbb{C})}\right)$$

Experiment: Setup

- 1. Screening prioritization: performance of SDR (in this presentation)
 - a single seed document
- 2. Simulating screening process with SDR
 - multiple labeled relevant documents are available
- Evaluation: average of performances when each relevant document is used as a seed
 - different relevant documents may lead to different performances


Experiment: Data

- CLEF eHealth 2017 (CLEF17) dataset
 - 50 diagnostic test accuracy (DTA) systematic reviews
 - train: 20 SRs
 - test: 30 SRs (competition results)
- Two separated evaluation results
 - test dataset (30 SRs)
 - total dataset (50 SRs)
 - no training in SDR
- Title and abstract of documents
 - clinical term extraction for BOC
 - length of document in BOC: 15% of original document in number of words on average

Experiment: Baselines

- Document representation
 - bag-of-words (BOW)
 - bag-of-clinical terms (BOC)
- Retrieval model
 - BM25
 - query likelihood model (QLM)
 - SDR

AES

- Average embedding similarity (**AES**)
 - document representation: average of word embeddings
 - ranking score: cosine similarity with a seed document
 - pre-trained word embeddings with PubMed corpus and Wikipedia

Experiment: Evaluation Measures

- Standard IR measures
 - average precision (*avgPr*)
 - precision@k (Pr@k)
 - recall@k (*Re@k*)
 - k = 10, 20, 30
- Task-specific measures
 - normalized LastRel by total number of candidate documents (C) (LastRel%)
 - rank position of last relevant document (*LastRel*)
 - work saved over sampling (WSS)

$$WSS = \frac{|C| - LastRel}{|C|}$$

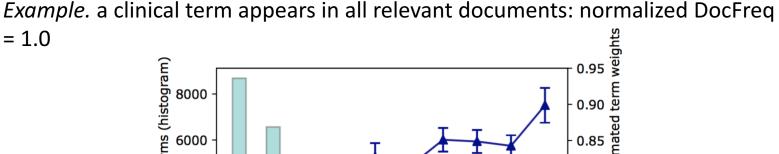
Result: SDR and Baselines

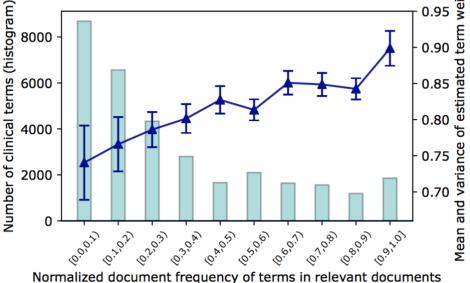
Result analysis in terms of • (i) BOC > BOW (ii) SDR > AES, BM25, QLM

Dataset	Ranking Model	AvgPr	Pr@10	Pr@20	Pr@30	LastRel%	Re@10	Re@20	Re@30	WSS
	CLEF-Query	0.18	-	-	-	46.0	-	-	-	0.54
	BM25-BOW	0.161*	0.176*	0.145*	0.126*	52.9*	0.246*	0.330*	0.385*	0.470^{*}
	QLM-BOW	0.159*	0.165^{*}	0.138*	0.118^{*}	52.0*	0.245^{*}	0.324*	0.376^{*}	0.479^{*}
30 SRs	SDR-BOW	0.181	0.201^{*}	0.166*	0.139*	46.7	0.257	0.353*	0.401^{*}	0.532*
50 51(3	BM25-BOC	0.213*	<u>0.233</u> *	<u>0.180</u> *	0.150*	46.5	0.261*	0.345*	0.408^{*}	0.534*
	QLM-BOC	0.214^{*}	0.228^{*}	0.180*	0.150^{*}	43.3*	0.264^{*}	0.361*	0.415^{*}	0.566*
	SDR-BOC	0.227	0.238	0.189	0.157	<u>39.8</u>	<u>0.273</u>	0.367	0.436	<u>0.600</u>
	AES	0.211	0.224	0.175	0.149*	38.7*	0.285*	<u>0.364</u>	0.420^{*}	0.612
	SDR+AES	0.264 ^{†‡}	0.276 ^{†‡}	0.213 ^{†‡}	$\pmb{0.177}^\dagger$	32.5^\dagger	0.315 [†]	0.413 [†]	0.484 ^{†‡}	0.673 ^{†‡}
	BM25-BOW	0.147^{*}	0.179*	0.146*	0.128^{*}	57.4	0.234	0.305	0.363	0.425^{*}
	QLM-BOW	0.141*	0.168^{*}	0.137*	0.119*	55.7*	0.233*	0.297*	0.343^{*}	0.442^{*}
50 SRs	SDR-BOW	0.170^{*}	0.205*	0.167*	0.144*	48.5	0.247	0.323	0.377	0.514
	BM25-BOC	0.164*	0.190*	0.151*	0.128*	46.4^{*}	0.230*	0.296*	0.345*	0.535*
	QLM-BOC	0.167^{*}	0.193*	0.156*	0.132^{*}	43.3^{*}	0.233*	0.307*	0.353*	<u>0.567</u> *
	SDR-BOC	0.178	0.202	<u>0.164</u>	<u>0.139</u>	39.8	0.240	<u>0.312</u>	<u>0.369</u>	0.601
	AES	0.147*	0.171*	0.134*	0.115*	50.5	0.238	0.294	0.333*	0.492*
	SDR+AES	0.202 ^{†‡}	0.226	0.179 ^{†‡}	0.152 ^{†‡}	<i>37.7</i> ^{†‡}	0.265 †‡	0.341 ^{†‡}	0.399 †‡	0.622 †‡

Result: SDR+AES

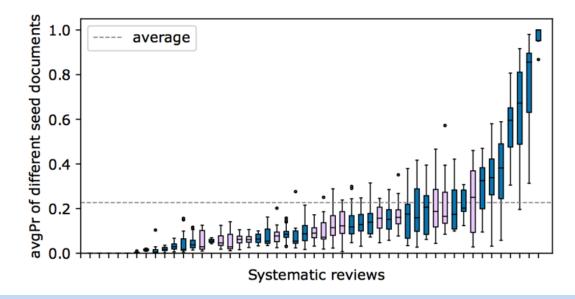
SDR+AES linear combination of ranking scores from SDR-BOC and AES


• SDR-BOC and AES well complement each other


Dataset	Ranking Model	AvgPr	Pr@10	Pr@20	Pr@30	LastRel%	Re@10	Re@20	Re@30	WSS
	CLEF-Query	0.18	-	-	-	46.0	-	-	-	0.54
	BM25-BOW	0.161*	0.176*	0.145*	0.126*	52.9*	0.246*	0.330*	0.385*	0.470*
	QLM-BOW	0.159*	0.165^{*}	0.138*	0.118*	52.0*	0.245^{*}	0.324*	0.376^{*}	0.479^{*}
30 SRs	SDR-BOW	0.181	0.201^{*}	0.166*	0.139*	46.7	0.257	0.353*	0.401^{*}	0.532*
50 51(5	BM25-BOC	0.213*	<u>0.233</u> *	<u>0.180</u> *	0.150*	46.5	0.261*	0.345*	0.408^{*}	0.534*
	QLM-BOC	0.214^{*}	0.228^{*}	0.180*	<u>0.150</u> *	43.3*	0.264^{*}	0.361*	0.415^{*}	0.566*
	SDR-BOC	0.227	0.238	0.189	0.157	<u>39.8</u>	0.273	0.367	0.436	<u>0.600</u>
	AES	0.211	0.224	0.175	0.149*	38.7*	0.285*	<u>0.364</u>	0.420^{*}	0.612
	SDR+AES	0.264 ^{†‡}	0.276 ^{†‡}	0.213 ^{†‡}	0.1 77 [†]	32.5^\dagger	0.315 [†]	0.413 [†]	0.484 ^{†‡}	0.673^{†‡}
	BM25-BOW	0.147^{*}	0.179*	0.146^{*}	0.128*	57.4	0.234	0.305	0.363	0.425^{*}
	QLM-BOW	0.141^{*}	0.168^{*}	0.137*	0.119*	55.7*	0.233*	0.297*	0.343^{*}	0.442^{*}
50 SRs	SDR-BOW	0.170^{*}	0.205*	0.167*	0.144*	48.5	0.247	0.323	0.377	0.514
	BM25-BOC	0.164*	0.190*	0.151*	0.128*	46.4^{*}	0.230*	0.296*	0.345*	0.535*
	QLM-BOC	0.167^{*}	0.193*	0.156*	0.132*	43.3^{*}	0.233*	0.307*	0.353*	0.567^{*}
	SDR-BOC	0.178	0.202	0.164	<u>0.139</u>	39.8	0.240	<u>0.312</u>	0.369	0.601
	AES	0.147*	0.171*	0.134*	0.115*	50.5	0.238	0.294	0.333*	0.492*
	SDR+AES	0.202 ^{†‡}	0.226	0.179 ^{†‡}	0.152 ^{†‡}	$37.7^{\dagger\ddagger}$	0.265 †‡	0.341 ^{†‡}	0.399 ^{†‡}	0.622 ^{†‡}

Analysis: Term Weight Method

 Calculate normalized DocFreq for clinical terms in relevant documents and bin them into 10 ranges



• Effective to promote clinical terms which appear in many relevant documents

Analysis: Performance of Individual SRs

- Performance distribution (*avgPr*) of different seed documents within a given SR
 - cause of different performances of SRs: coverage of relevance conditions

- Different difficulties for SRs
- Different performance of seed documents within a SR

Summary

- Seed-driven document ranking (SDR)
 - new approach for screening prioritization
 - domain-specific characteristics
 - seed-driven approach with a weight method
 - extensive analysis of the evaluation results

Thank You!

Thank you for SIGIR Student Travel Grant

