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Who, Where, When and What: a Non-parametric Bayesian Approach
to Context-aware Recommendation and Search for Twitter Users
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University

Micro-blogging services and location-based social networks, such as Twitter, Weibo, and Foursquare, enable

users to post short messages with timestamps and geographical annotations. The rich spatial-temporal-
semantic information of individuals embedded in these geo-annotated short messages provides exciting

opportunity to develop many context-aware applications in ubiquitous computing environments. Example

applications include contextual recommendation and contextual search. To obtain accurate recommenda-
tions and most relevant search results, it is important to capture users’ contextual information (e.g., time

and location) and to understand users’ topical interests and intentions. While time and location can be

readily captured by smartphones, understanding user’s interests and intentions calls for effective methods
in modeling user mobility behavior. Here, user mobility refers to who visits which place at what time for

what activity. That is, user mobility behavior modeling must consider user (Who), spatial (Where), tem-

poral (When), and activity (What) aspects. Unfortunately, no previous studies on user mobility behavior
modeling have considered all of the four aspects jointly, which have complex interdependencies. In our pre-

liminary study, we propose the first solution named W4 (short for Who, Where, When, and What) to

discover user mobility behavior from the four aspects. In this article, we further enhance W4 and propose a
non-parametric Bayesian model named EW4 (short for Enhanced W4). EW4 requires no parameter tuning

and achieves better results over W4 in our experiments. Given some of the four aspects of a user e.g., time,
our model is able to infer information of the other aspects e.g., location and topical words. Thus, our model

has a variety of context-aware applications, particularly in contextual search and recommendation. Exper-

imental results on two real-world data sets show that the proposed model is effective in discovering users’
spatial-temporal topics. The model also significantly outperforms state-of-the-art baselines for various tasks

including location prediction for tweets and requirement-aware location recommendation.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Management, Experimentation

Additional Key Words and Phrases: Recommendation and Search, Context-aware, Geographical Topic Modeling,
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1. INTRODUCTION
With the prevalence of 3G/4G technology, people are able to access Internet anytime anywhere via
smartphones, tablets, wearable devices, etc. Mobile Internet service has become an indispensable
part of people’s daily life. For example, people are willing to share opinions, moods, and activities
as tweets (short messages with maximum length of 140 characters) on Twitter, and share their
experience and tips as check-ins on Foursquare, a location-based social network. As a result, a
sheer amount of user-generated content (UGC) has been accumulated. As of December 2013, the
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number of tweets was increased at the speed of 500 million per day. Especially, most UGC is in the
form of short text, such as tweets, Facebook status, Foursquare shouts (short messages associated
with check-ins) and tips.

As more and more devices for Internet access are GPS enabled, a large portion of user generated
short text has been associated with spatial information. For example, Twitter users can specify the
locations for their tweets to indicate the surroundings of posting, where the locations may be in
the form of the latitude and longitude coordinates, or venues with semantic meanings, e.g., Times
Square. While the coordinates can be captured by GPS devices, the exact venues can be specified
explicitly by users, detected by mobile devices, or annotated by geo-tagging tools. It has been re-
ported that about 2.7% tweets contain geographic information about users’ current surroundings
according to a report dated on June 20131. Besides geo-annotated tweets, the check-ins made by
Foursquare users also contain the physical locations visited by the users. In addition to the spatial
information embedded in the locations and the semantic information carried by the short text, the
user-generated messages also contain temporal information, because the timestamp of each message
is readily captured by the message posting services.

The availability of short messages with rich spatial-temporal-semantic information of individu-
als in large amount makes it possible to design various context-aware applications in ubiquitous
computing environments, such as contextual recommender systems and contextual search. Recom-
mender systems are designed to generate a list of recommended items for users, and search engines
take keywords as input and present the most relevant results for users. For both applications, in
addition to time and location, understanding users’ interests and intentions are the pivots to achieve
good accuracy.

Over the past two decades, significant research effort has been devoted to developing algorithms
to improve the recommendation and search performance, and a number of effective methods have
been proposed, such as matrix factorization for recommendation [Koren et al. 2009], and nature
language processing techniques for search. In addition to this, more researchers have turned to
make use of additional information to mine user interests for more accurate personalized results.
Generally there are two approaches:

— Exploiting contextual information. Contextual information, such as location and time, reveals the
surrounding environment and the current situations of users, which might be correlated with users’
interests and intentions. For example, consider a white-collar who submits a recommendation re-
quest on weekday afternoon at her office. Then the recommender system can infer her interest
based on the contextual information, namely, the time “weekday afternoon” and the location “of-
fice”, and recommend her a coffee house near the office rather than a pub. Note that the contextual
information can either be captured by mobile devices implicitly, or be specified by users explicitly.

— Mining user mobility behavior from historical UGC. User mobility behavior consists of four as-
pects, namely, user aspect (who is the user), spatial aspect (where does the user go?), temporal
aspect (when does the user visit a place?), and activity aspect (what does the user do?). An ex-
ample behavior pattern is: a white-collar mostly stays at her office on weekday afternoons, and
likes to visit a coffee house near her office. Understanding user mobility behavior enables appli-
cations to capture user interests over time and locations, which is helpful in refining the list of
recommended items and the list of search results.

We believe that the contextual information and user mobility behavior compliment each other, and
the two together help us target users’ interests and intentions. Without understanding user mobility
behavior, the results would not be personalized; without contextual information, the results would
not be specific to current environment and situations. In fact, user mobility behavior reflects the
long-term interests of users, while contextual information helps discover users’ short-term interests
at the query time. Recall the white-collar who likes to go to coffee houses on weekday afternoons.
Suppose she always visits pubs at CBD (central business district) on weekend evenings, then her

1http://irevolution.net/2013/06/09/mapping-global-twitter-heartbeat/
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Fig. 1. High-level overview of the system architecture

preference to coffee houses and pubs at different time and locations is her long-term interest, which
can be discovered by user mobility behavior models. Suppose she submits a recommendation re-
quest on a weekend evening at CBD, then the spatial and temporal contextual information enables
us to predict her short-term interest in pubs.

Unfortunately, existing proposals on recommender systems and search engines have not fully
utilized the contextual information and the user mobility patterns, and most of them neglect the
valuable contextual information, i.e., recommender systems recommend items solely based on the
user-item purchase or rating matrix. Although several models have been proposed to model user
behavior and are able to make context-aware recommendations or predictions, they cannot jointly
model the four aspects of user behavior, e.g., who, where, when, and what. For example, the studies
[Hong et al. 2012; Ahmed et al. 2013] focus on the geographic location and activity aspects of users,
but do not model the temporal aspect. As a result, they cannot take time as an additional piece of
contextual information to achieve better recommendation accuracy.

In this article, we propose a framework that models user mobility behavior for context-aware
applications. As shown in Figure 1, our proposed framework consists of the offline and online com-
ponents. The offline component takes geo-annotate messages as input, and trains a user behavior
model that incorporates the interactions of all the four aspects in an integrated manner. The online
component takes in the contextual information of users and returns different recommendation and
search results to users for different applications. The main technical challenge of this article lies in
the offline component for the user mobility behavior modeling. It is however difficult to develop
such a model, because the interdependencies among the four aspects and the role played by each are
unclear. What’s more, the parameter estimation for the model would be very complex. To model user
mobility behavior from the spatial, temporal, and activity aspects, we take the following intuitions
into account:

(1) An individual’s mobility usually centers at several personal geographical regions, e.g., home
region and work region [Cho et al. 2011] and users tend to visit the places within these regions.
In addition, the number of personal regions is user-specific, e.g., some users may have additional
regions for shopping and weekend activities.

(2) The probability that a user stays at a given region is affected by the day of the week, e.g., users
are more likely to stay at the work regions on weekdays than weekends. Moreover, given a
region, users may have different temporal patterns on different days (weekdays or weekends),
e.g., a user may visit her shopping region in weekend afternoons, but in weekday evenings.

(3) Users engage in different activities at different places, and the topics of a user at a place are
influenced by both the user’s personal topic preference and the region where the user stays. For
example, a student who is interested in topics like reading and shopping will concentrate on the
shopping topic rather than reading topic when she is at Times Square.
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(4) When choosing a location to visit, a user will consider both her personal topic preference and
the geographic coordinates, i.e., whether the location matches her topic preference, and whether
the location is within her current region of stay.

(5) Different regions and topics lead to different word variations. Thus, the words used in a tweet
posted by a user at a location are influenced by the user’s current region and her topic preference,
which in turn reflect the user’s activity. For example, if a user is shopping at her home region,
the words she would use are more likely to be related to both the shopping topic and the home
region, such as “grocery”, “family”, etc.

Based on these intuitions, in our preliminary work[Yuan et al. 2013b], we propose a probabilis-
tic Latent Semantic Analysis (pSLA) [Hofmann 1999] based model W4 (short for Who, Where,
When, and What) to characterize the users’ mobility behaviors from the spatial, temporal and activ-
ity aspects in a principled framework. W4 can discover spatial-temporal topics, and identify personal
geographical regions and time-aware user interests from the geo-annotated messages. However, W4

is built under the strong assumptions that every user has the same number (i.e., 2) of personal re-
gions, and makes the same trade-offs between topics and personal regions when generating locations
and words. In this article, we relax these assumptions, and develop an enhanced model named EW4

(short for Enhanced Who, Where, When, and What). In EW4, all parameters (e.g., the number of
personal regions of each user, and the trade-offs between topics and regions) can be automatically
learned from the training data. In addition, as a Hierarchical Dirichlet Process (HDP) [Teh et al.
2006] based model, EW4 is less sensitive to the overfitting problem than W4.

Given information for some of the four aspects (i.e., user, spatial, temporal and activity aspects),
both W4 and EW4 are able to infer the other aspects, where the activity aspect is represented by
words. Thus, the proposed models can be served as the offline component of the framework for
various context-aware applications. The following are example applications among many others.

— Location-aware search. It has been reported that the location of a user may reveal their search
interests and intentions, and can be exploited to improve the relevance of search results [Jones
et al. 2008; Bennett et al. 2011; Yan et al. 2014]. Our models are able to detect users’ topical
preference at different locations (e.g., home, workplace, etc.), and refine the search results based
on the users’ current locations.

— Location-prediction. Although GPS-enabled devices can capture users’ coordinates, the loca-
tion services may be switched off by users for energy saving or other purposes. Moreover, GPS
devices usually do not work well in indoor environments. Because our models jointly model lo-
cation, time and semantic information, locations of users can be inferred based on their query
keywords and time.

— Time and requirement aware location recommendation. It has been reported that time is an impor-
tant factor that influences user mobility, and incorporating temporal influence can significantly
improve recommendation accuracy [Yuan et al. 2013a, 2014]. In addition, when querying for
recommendations, users may have specific needs expressed in short text, e.g., “chessy pizza”,
“budget shopping mall”. Exploiting users’ specific needs can definitely improve the accuracy of
the recommendation results. Our models are able to make use of time factor and specific needs as
additional evidences to better understand users’ intentions, and make more accurate recommen-
dations.

Besides these applications, W4 and EW4 can also be applied in user profiling, location identifica-
tion, topic tracking, etc. In the experiments, we evaluate their effectiveness in various applications
including location prediction for tweets (with or without time), requirement-aware location recom-
mendation for individual users, location prediction for a target user at a given time, and predicting
the users who will visit a given location at a given time. Experimental results show that W4 outper-
forms existing approaches [Li et al. 2011; Cho et al. 2011; Hong et al. 2012; Hu and Ester 2013;
Ahmed et al. 2013] for these applications, and the enhanced version EW4 further outperforms W4

significantly.
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The contributions of this work are summarized as follows:

— We develop a new probabilistic generative model EW4 to model users’ mobility behavior from
user, spatial, temporal and activity aspects in an integrated way. The model enables us to discover
spatial-temporal topics for individual users, and to make context-aware recommendations and
search.

— We propose a new inference algorithm for estimating the model parameters.
— We define a new problem, namely, requirement-aware location recommendation, which aims at

recommending locations for a target user based on her specific requirement (and time).
— Experimental results on two real-world data sets show that EW4 is capable of identifying inter-

esting spatial-temporal topics for users. The results also show that EW4 significantly outperforms
the state-of-the-art baselines for various applications.

The rest of this paper is organized as follows. We survey the related studies in Section 2, and
characterize users’ mobility behavior in Section 3. Section 4 introduces the proposed model for the
offline component, namely, EW4. The algorithm for parameter estimation is presented in Section 5.
Potential applications for the online component are discussed in Section 6. The experimental results
are presented in Section 7. Section 8 concludes our work.

2. RELATED WORK
We group the existing proposals on mobility modeling and geographical topic modeling based on
the aspects considered in these proposals, namely Who, Where, When and What.

Where What: The existing studies on geographical topic modeling focus on the geographic
(Where) and activity (What) aspects, but do not consider users at all. How to represent locations
is an essential part of these studies. Locations have two properties: the geo-locations represented
by coordinates, and the functions (e.g., a shop) represented by the topics. Based on the ways of
representing locations, the existing studies can be divided into two categories:

First, some proposals [Wang et al. 2007; Hao et al. 2010] represent locations by location ids, and
this enables these proposals to distinguish the functions between locations. However, this modeling
manner fails to exploit the coordinate information, which is important to analyze the user mobility
region. Specifically, Wang et al. [Wang et al. 2007] propose a Latent Dirichlet Allocation (LDA)
based model to learn the relationship between location and words. They assume that each word is
associated with a location. When a word is generated, its associated location is also generated. Hao
et al. [Hao et al. 2010] mine the location-representative topics from travelogues using an LDA-based
model. In the model, a travelogue is split into several segments along with locations, and the words
in each segments are generated either from local topics or global topics. Comparing to travelogues,
tweets are very short, and each tweet can be associated with only one location.

Second, other proposals [Eisenstein et al. 2010; Sizov 2010; Yin et al. 2011] represent locations
as coordinates, and they are capable of describing the mobility regions of users. However, they ei-
ther neglect the functions of locations or assume that nearby locations have the same functions,
which are generally not true in practice. Eisentein et al. [Eisenstein et al. 2010] propose regional
variants of topics, which are used to generate the words of a geo-referenced document. They use
bi-variant Gaussian distributions of regions to generate coordinates of locations. Sizov [Sizov 2010]
proposes GeoFolk model to manage geo-referenced documents. In addition to the word distribution,
each topic in GeoFolk is also associated with two Gaussian distributions over latitude and longitude,
respectively. In GeoFolk, each geographic region represents a distinct topic/function. Hence, it fails
to correlate the different regions with the same function; it would not be suitable to model a large
area containing many topical regions since the topic model becomes computationally expensive as
the number of topics grows. In its subsequent work [Kling et al. 2014], Kling et al. propose a multi-
Dirichlet process (MDP) based model to detect non-Gaussian geographical topics. Yin et al. [Yin
et al. 2011] propose a probabilistic Latent Semantic Analysis (pLSA) based model to discover geo-
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graphical topics. In the model, each region is characterized by a topic distribution, and represented
by a bi-variant Gaussian distribution over coordinates.

In contrast, we propose an approach that is able to exploit both properties of locations. Further,
different from these proposals, we model individual users and consider the temporal aspect.

Where When What: Mei et al. [Mei et al. 2006] model topics of documents from spatio-temporal
aspects using pLSA. Specifically, they assume that each word is drawn from a background word
distribution, a time and location dependent topic, or a topic of the documents. Similarly, Bauer et
al. propose an LDA-based spatio-temporal model [Bauer et al. 2012], where a city is divided into
grids. Compared with the models [Mei et al. 2006; Bauer et al. 2012], our model considers more
aspects:1) the models [Mei et al. 2006; Bauer et al. 2012] do not consider the user information at
all; 2) it either does not consider the geographic property of locations [Mei et al. 2006], or does not
consider the functions of locations [Bauer et al. 2012]; 3) they only consider discretized time.

There are also several studies on extracting events from Twitter stream [Li et al. 2012; Ritter
et al. 2012], which exploit the temporal (When) and activity (What) information, and some work
even considers the geographic aspect (Where) [Sakaki et al. 2010]. However, their problem settings
are different from ours, and none of them considers user information.

Who Where When: We next review the work on modeling mobility behaviors of individual users
(Who) that focuses on the geographic (Where) and temporal (When) aspects.

Brockmann et al. [Brockmann et al. 2006] find that human mobility behavior can be approximated
by the continuous-time random-walk model. Gonzlez et al. [Gonzalez et al. 2008] find that users
periodically return to a few previously visited locations, such as home or office, and the mobility of
each user can be represented by a stochastic process centered at a fixed point. Song et al. [Song et al.
2010b,a] focus on the predictability in human mobility, and report that there is a 93% predictability
of human mobility, which is contributed by the high regularity of human behavior. Cho et al. [Cho
et al. 2011] observe that the mobility of each user is centered at two regions ( representing “work”
and “home”), and model each region as a Gaussian distribution over latitude and longitude. The
probability that a user stays at the two regions is modeled as a function of time. They propose a
generative model, Periodic Mobility Model (PMM), to predict the location of a user. PMM takes a
user and time as input; It generates a region, and the region further generates a geo-location.

None of these studies consider the activity (topic) aspect of user behavior as we do in this paper.

Who Where What: There are several studies on modeling the geographic (Where) and activity
(What) aspects for individuals (Who).

Hong et al. [Hong et al. 2012] propose a method to learn the geographical topics for Twitter users.
For a user, this method first generates a region based on the popularity of regions and the preference
of the user over the regions. Then, a topic is generated depending on both the region and the user.
The topic, together with the region, generates the words of a tweet; the region alone generates the
coordinates based on its Gaussian distribution over coordinates.

In their subsequent work [Ahmed et al. 2013], the authors consider the relations between regions,
and propose a Chinese Restaurant Franchise (nCRF) based model to study users’ geographical top-
ics. Specifically, regions in the model are organized hierarchically, where regions in upper levels
geographically encompass those in lower levels, and are more diverse in terms of topics. A tweet
defines a path from the root region to the leaf region, where its coordinates are sampled based on
the Gaussian distribution of the leaf region, and its text content is generated based on the topics and
language model of the leaf region.

Different from our work, these two studies does not consider the temporal aspect. In addition,
the regions in the two models are global, which are shared by all users, and cannot precisely depict
individual users’ mobility areas, while our proposed model is able to model regions of individuals.
Moreover, the methods in the two studies fail to consider the semantic information of individual
locations in the same region.
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Hu et al. [Hu and Ester 2013] propose a model that considers both the coordinates and semantic
information of locations. In this model, the topic and region of a tweet is drawn based on both
global and user-specific topic and region distributions, respectively. The topic further generates the
text content, where the region and topic together determine the location of the tweet. However, this
work does not consider the temporal aspect, and does not model the interaction between regions and
topics.

In summary, none of existing studies aim to model the four aspects (Who, Where, When, and
What). In contrast, our two models jointly consider the four aspects. In our proposed models, differ-
ent users have different personal regions, and the regions at which a user stay is influenced by both
the day of a week and the time of a day. Each personal region has a Gaussian distribution over co-
ordinates, a topic distribution and a word distribution. Each tweet has a topic, which is drawn based
on the topic distribution of the personal region, and the topic, together with the region, generate
the location and words of the tweet. Note that this is the first work that models the coordinates and
functions of locations simultaneously, and it can capture both the geographic region and functional
information of locations.

Who Where When What: The W4 model proposed in our paper [Yuan et al. 2013b] is the first
work that jointly models who, where, when and what aspects. It models the generative process
of a geo-tagged tweet as follows: a region r is first drawn based on the author u’s distribution over
personal regions at time t, and then a topic z is drawn based on u’s topic distribution at r. Finally, the
location of the tweet is drawn from a weighted combination of topic z’s distribution over location
identifiers and region r’s Gaussian distribution over coordinates, and the words of the tweet are
drawn from a weighted combination of the topic z’s and region r’s word distributions.

This article substantially extends the W4 model in the following aspects. First, the W4 model is
based on probabilistic Latent Semantic Analysis (pLSA) model, and is sensitive to overfitting prob-
lem. In addition, several parameters of W4 need manual tuning. In contrast, the EW4 model is based
on HDP model and is a non-parametric Bayesian model, in which parameters can be automatically
learned from the training data. Second, in the W4 model, all users have the same number of personal
regions. In contrast, in EW4, users can have different numbers of personal regions, which is mod-
eled by the Chinese Restaurant Process (CRP). Third, the W4 model assumes every user makes the
same trade-off between regions and topics when selecting locations and words, while EW4 learns
the weight of each part from training data. Fourth, we include a new task in the experiments, namely,
time and requirement-aware location recommendation, which aims at recommending a list of loca-
tions for the target users to visit at the target time based on their specific requirements. Finally, as
to be shown by our experimental studies, the EW4 model performs much better than the W4 model
for various applications.

3. CHARACTERISTICS OF INDIVIDUAL MOBILITY
In this section, we study the characteristics of individual user mobility pattern on two data sets,
namely, World-Wide tweets collection (WW) and microblogs collection from USA (USA). More
details about the two data sets are reported in Section 7.

We first examine the effect of spatial distance to users’ mobility. Specifically, for each user, we
calculate the distance between every pair of her visited locations. Then, we aggregate the results of
all users and plot the number of check-ins as a function of distance in Figure 2. From the figures,
we observe that the probability distribution follows a power law function on both data sets. This
observation is consistent with the observation made by [Ye et al. 2011]. The results show that users
are more likely to visit locations close to their visited locations, and thus the locations visited by a
user form several spatial clusters.

To better illustrate the spatial clusters, we randomly select a user from the data set and plot her
visited locations in Figure 3. The locations visited on weekdays and weekends are plotted in differ-
ent colors. From the figure, we observe that the locations visited by the user can be grouped into
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Fig. 2. Distribution of distance between pairs of check-ins

Fig. 3. Visited locations of a user plotted on a map

(a) Weekdays (b) Weekends

Fig. 4. Visiting time of locations in weekdays and in weekends

several geographical regions, and the user visits a region with different probabilities on weekdays
and weekends.

Next, we analyze the temporal pattern of users’ mobility. Specifically, we divide the check-ins of
a randomly selected user into two sets based on the check-in days (i.e., weekdays and weekends).
For each set, we plot the visited locations on the map and distinguish three visiting time slots by
using three different colors in Figure 4. From the figures, we make an observation that the visiting
time of locations in a region is different on weekdays and weekends.
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4. PROPOSED MODEL
In this section, we introduce the offline component of our framework that models user mobility
behavior. Specifically, we first describe the modeling intuitions in Section 4.1, and then introduce
the EW4 model in Section 4.2.

4.1. Intuitions and Notations
We model user mobility behavior based on the following intuitions, which jointly consider the four
aspects in user mobility behavior (i.e., who, where, when, and what).

Intuition 1. An individual’s mobility usually centers at several personal geographical regions,
e.g., home region and work region [Cho et al. 2011]. The number of personal regions is user-
dependent, e.g., users who are interested in outdoor activities may have hiking regions, and
users who are interested in shopping may have shopping regions.
Intuition 2. A user may visit a region with different probabilities on weekdays and weekends
(Section 3), e.g., she may go to work region on weekdays rather than on weekends. In addition,
the visiting time of a region is influenced by the day (Section 3), e.g., a user is more likely to
stay at home region in the evenings of weekdays, as well as daytime on weekends.
Intuition 3. The topics of a user at a place are influenced by both the user’s personal topic
preference and the region where the user stays. For example, suppose a user who is interested
in both eating and hiking comes to a place full of restaurants, then the user is more likely
to be interested in the eating topic. In addition, the topics of a user at her home region (e.g.,
entertainment and shopping) are expected to be different from the work-related topics at her
work region.
Intuition 4. When choosing a location to visit, a user will consider both the topic requirement
and the region where the user stays. Intuitively, a user tends to visit nearby locations within her
current region of stay that meet her requirement (e.g., for meal). In addition, different users may
make different trade-offs between the topic and region factors, e.g., comparing to those without
cars, the users who have cars may treat the region with less importance, because it is much
easier for them to drive to the locations they want to visit.
Intuition 5. Different regions and different topics lead to different language variations, which
in turn reflect the users’ activities. Therefore, the words in a user’s tweets are affected by both
the topic and the region. For example, if a user is shopping at her home region, the words she
would use are more likely to be related to both the shopping topic and the home region, such as
“grocery”, “family”, etc. In addition, the weight of each part is also user-specific.

We consider each user u has several personal regions, denoted by {ru,0, ru,1, ..., ru,|Ru|}, where
|Ru| is the number of regions of user u. The personal regions are estimated based on the locations
of all geo-tagged tweets from user u. We model a location ` as a two-tuple ` = {id`, cd`}, where
id` is the identifier of the location, and cd` is the latitude and longitude coordinates of the location.
A region r is modeled by a bi-variant Gaussian distribution over the latitude and longitude, parame-
terized by the mean vector µr and covariance matrix Λ−1r . Note that we use r to represent a region
(i.e., any one of the personal regions) when the semantic is clear.

We model time t in a day as a continuous variable in 〈hh : mm : ss〉 format, and categorize days
into two classes, namely, weekdays and weekends. Specifically, we use s ∈ S = {0, 1} to denote a
day of a week, i.e., s = 0 for a weekday and s = 1 for a weekend day. Note that t is cyclic on a daily
basis. For instance, the time difference between 23:00:00 and 1:00:00 is the same as the difference
between 1:00:00 and 3:00:00.

We consider a tweet d is a five-tuple di = {ui, `i,wi, ti, si}, where ui denotes the user or the
author of the tweet; `i, ti, and si denote the location, the time in a day, and the day of the week, as
described earlier;wi are the words in tweet di. For easy presentation, we use D, U , and L to denote
the collections of tweets, users, and locations respectively. The word vocabulary is denoted by V .
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Table I. Symbols
Symbol Description
U , L, S, W , D user set, location set, day set {weekday, weekend}, vocabulary set, tweets set
Z, R, Ru topic set, region set of all users, region set of user u, where R =

⋃
u∈U Ru

|(·)| the number of elements in set (·)
u, `, w, s, t user u ∈ U , location ` ∈ L, word w ∈ W , day of a week s ∈ S, time of a day

〈hh : mm : ss〉
di, zi, ri, wi the ith tweet in D, the topic, region and the words in tweet di
ru,j the jth region of user u, where 1 ≤ j ≤ |Ru|
cLi , cWi the location and word switches for tweet i
cw,w number of times the word w appears in w
{t}r the collection of time of the tweets that are assigned to region r
td(t1, t2) the difference between time t1 and t2 in a day
G0 global probability measure over topic space with mixing proportion τ
Gr region-specific measure over topic space with mixing proportion θr
τ global multinomial distribution of topics
θr multinomial distribution of topics specific to region r
ψu,s multinomial distribution of regions specific to user u on day s
φZLz multinomial distribution of locations specific to topic z
φZWz multinomial distribution of words specific to topic z
φRWr multinomial distribution of words specific to region r
ξLu Bernoulli distribution specific to user u for sampling the binary switch cL

ξWu Bernoulli distribution specific to user u for sampling the binary switch cW

µr, Λr mean, precision matrix of Gaussian distribution over geographic coordinates spe-
cific to region r

νr,s, λr,s mean and precision of Gaussian distribution over time specific to region r in day s
γ parameter of the prior of τ
α concentration parameter for Gr
β parameter for Chinese Restaurant Process for ψ
η, χ, ζ Dirichlet prior vector for φZL , φZW , and φRW

o, δ Beta priors for ξL and ξW , where o = {o0, o1} and δ = {δ0, δ1}
µ0, κ0, υ0, ε0 Normal-Wishart prior for µ, and Λ

ν0, ι0, ρ0, λ0 Normal-Gamma prior for ν, and λ
nSRs,r,¬i number of times region r is assigned to day s, excluding tweet i
nRZr,z,¬i number of times topic z is assigned to region r, excluding tweet i
nZLz,`,¬i number of times location ` is assigned to topic z, excluding tweet i
nZWz,w,¬i number of times word w is assigned to topic z, excluding tweet i
nRWr,w,¬i number of times word w is assigned to region r, excluding tweet i
nUCLu,(·),¬i number of times switch cL = (·) is assigned to user u, excluding tweet i
nUCWu,(·),¬i number of times switch cW = (·) is assigned to user u, excluding tweet i
mz number of tweets that are assigned to topic z
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That is, d ∈ D, u ∈ U , ` ∈ L, and each word in wi belongs to V . All notions used in this article
are shown in Table I.

4.2. Generative Process
EW4 generates the day, time, words, and location for each tweet posted by a user. The high-level
generative process is as follows:

(1) For each tweet d of a given user u in day s, a personal region r is drawn based on the day
(Intuitions 1 and 2), and then draw time t based on the time Gaussian distribution of region r
on the day s.

(2) A topic z is drawn based on user u’s topic preference and the sampled region r (Intuition 3).
(3) The location ` and each word w are drawn based on the location and word distributions of the

topic z and region r (Intuitions 4 and 5).

Next, we introduce the details of the generative process of each step.
In EW4, we employ Chinese Restaurant Process (CRP) to draw the region. CRP is a stochastic

process in which customers select seats at a restaurant with an infinite number of tables. The first
customer randomly selects a table to sit, while the other customers can either sit at an occupied
table i with probability of ni

n+β , or sit at a new table with probability of β
n+β , where ni is the

number of customers at table i, and n is the total number of customers in the restaurant. As a
Bayesian nonparametric approach, CRP is effective in clustering data (i.e., customers) into clusters
(i.e., tables), and it can automatically estimate how many clusters are needed to model the data.

In our problem setting, given the historical locations that have been visited by a user, CRP au-
tomatically discovers personal regions for this user. More specifically, given the day s, user u can
either select an existing region (r ∈ Ru), or create and select a new region (r /∈ Ru) . The probabil-
ity that u selects a region r is defined as follows:

CRP (r|u, s) =


β∑|Ru|

r′=1 n
SR
s,r′ + β

r /∈ Ru

nSRs,r∑|Ru|
r′=1 n

SR
s,r′ + β

r ∈ Ru
(1)

Based on the sampled region r, the time t is drawn based on Gaussian distribution
N (td(t, νr,s)|νr,s, λ−1r,s) (Intuition 2). Note that we do not sample time t based on its exact time
point, e.g., 11:00 pm. Instead, the time t is generated based on the time difference td(t, νr,s) between
it and the mean time of the time Gaussian of region r on day s, i.e., t ∼ N (td(t, νr,s)|νr,s, σr,s). In
other words, the time that is close to the mean time is more likely to be sampled. Since the time in
a day is cyclic, the time difference is always less than or equal to 12 hours, e.g., the time difference
between 11:00 pm and 1:00 am is 2 hours.

Parameterized by the topic preference of the user u and the sampled region r, a topic z is drawn
from the region-specific probability measure Gr over topic space, where the multinomial mixing
proportions of Gr is denoted by θr (Intuition 3).

After selecting the region and topic, we draw the location ` and each word w. As stated in In-
tuition 4, a user tends to visit a nearby location (e.g., restaurant) that can fulfill her topical needs
(e.g., lunch). That is, when choosing a location to visit, a user jointly considers both its geographic
location and its topic (e.g., restaurant or bar). Here we use a switch cL to decide which one accounts
for the location selection: if cL = 1, the location is sampled based on the topic-specific multino-
mial distribution over locations φZLz , and if cL = 0, the location is sampled based on the Gaussian
distribution N (`|µr,Λ−1r ) of region r.

Since word selection is also influenced by both region and topic (Intuition 5), we introduce an-
other switch cW . If cW = 1, the word is sampled based on the topic-specific multinomial distribu-
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Fig. 5. The graphical representation of proposed model EW4

tion over words φZWz , and if cW = 0, the word is sampled based on the region-specific multinomial
distribution over wordsφRWr . Since a tweet is very short (limited within 140 characters), we assume
all the words in one tweet come from the same topic.

Note that unlike W4, we assume different users will make different trade-offs between topics
and regions when selecting locations and words. Thus, cL and cW in EW4 are drawn from two
user-specific Bernoulli distributions ξLu and ξWu , respectively.

How to set the number of topics |Z| is an important issue. Most previous studies are built on
topic models such as pLSA and LDA, in which the number of topics |Z| needs to be empirically set.
Unfortunately, it is quite hard, if possible, to tell how many topics exist in the corpus. To address
this problem, we employ hierarchial Dirichlet process (HDP) in our model, which can automat-
ically learn |Z| from the data. Specifically, we introduce a global probability measure G0 over
the region-specific measure Gr, where the mixing proportion of G0 is denoted by τ . In a finite
model, the number of topics |Z| is a positive integer, and τ is drawn from the Dirichlet distribution
Dir(γ/|Z|, ..., γ/|Z|). After that, each θr is drawn from the Dirichlet distribution Dir(ατ ), where
α is a concentration parameter that controls the variance of the draws around τ . Taking |Z| → ∞,
the global topic distribution τ ∼ Dir(γ/|Z|), and we have Gr ∼ DP (α,G0), a Dirichlet process
with base measure G0 and concentration parameter α. Finally, the finite model becomes an HDP.
More details about the HDP model can be found in [Teh et al. 2006].

Based on the aforementioned intuitions and notations, EW4 generates the day, time, words, and
location for each tweet posted by a user in an integrated manner. The generative process is described
in Algorithm 1, and the graphical model is shown in Figure 5.

Note that we can give hyper priors for the hyper-parameters in our EW4 model, and sample these
hyper-parameters during Gibbs sampling. For example, we can give Gamma priors for α, κ0, υ0,
etc., and give Gaussian priors for µ0 and ν0 [Rasmussen 1999; Teh et al. 2006]. However, these
hyper priors will make the model much more complicated and also slow the parameter estimation
process. Thus, in this article, we empirically set these hyper-parameters at fixed values.
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Algorithm 1: Generative Process of EW4

1 for each user u, (u = 1, ..., |U |) do
2 Draw location switch Bernoulli distribution ξLu ∼ Beta(o);
3 Draw word switch Bernoulli distribution ξWu ∼ Beta(δ);
4 end
5 Draw global topic multinomial distribution τ ∼ Dir(γ/|Z|);
6 for each user u, (u = 1, ..., |U |) do
7 for the tweet di ∈ Du do
8 Draw a region r based on CRP (r|u, si), where si is the day of di;
9 if r /∈ Ru then

10 for each day s ∈ S do
11 Draw time distribution N (νr,s, λ

−1
r,s) ∼ Normal −Gamma(ν0, ι0, ρ0, ω0);

12 end
13 Draw geographical distribution

N (µr,Λ
−1
r ) ∼ Normal −Wishart(µ0, κ0,υ0, ε0);

14 Draw region-specific topic multinomial distribution θr ∼ Dir(ατ );
15 Draw region-specific word distribution φRWr ∼ Dir(ζ);
16 Add r into Ru;
17 end
18 Draw a topic z ∼ θr;
19 if z /∈ Z then
20 Draw topic-specific location multinomial distribution φZLz ∼ Dir(η);
21 Draw topic-specific multinomial distribution φZWz ∼ Dir(χ);
22 Add z into Z;
23 end
24 Draw a time t ∼ N (td(t, νr,si)|νr,si , λ−1r,si);
25 Draw a location switch cL ∼ ξLu ;
26 if cL = 0 then
27 Draw a location ` ∼ N (µr,Λ

−1
r );

28 end
29 else
30 Draw a location ` ∼ φZLz ;
31 end
32 Draw a word switch cW ∼ ξWu ;
33 if cW = 0 then
34 for the k − th word (k = 1, ..., |wi|) do
35 Draw a word w ∼ φRWr ;
36 end
37 end
38 else
39 for the k − th word (k = 1, ..., |wi|) do
40 Draw a word w ∼ φZWz ;
41 end
42 end
43 end
44 end
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5. PARAMETER ESTIMATION
We first introduce the sampling algorithm for parameter estimation in Section 5.1, and then discuss
the time and space complexity of the sampling algorithm in Section 5.2.

5.1. Sampling Algorithm
We employ collapsed Gibbs sampling to obtain samples of the hidden variable assignments, and
to estimate the unknown parameters {θ,ψ,φZL,φZW ,φRW , ξL, ξW ,µ,Λ,ν,λ}. There are four
latent variables in the model, namely, region r, topic z, the switch for location sampling cL, and the
switch for word sampling cW .

We initialize z, cL and cW for each tweet by random values. Because the personal regions of each
user is generated based on CRP, we create a region for each user at the initialization step, and assign
all the user’s tweets to the region. Then, we use two-step Gibbs sampling to obtain the samples:
region ri and topic zi of each tweet di are sampled in the first step, and the two switches cLi and cWi
of each tweet di are sampled in the second step. For each set of variables, (e.g., ri and zi), a Gibbs
sampler computes the full conditional probability for their assignments conditioned on all the other
assignments (e.g., r¬i, z¬i), while the assignments of the other set of variables (e.g., cL, cW ) are
fixed.

For the first-step sampling, we derive the updating equation for region ri and topic zi for tweet
di based on the following equation:

P (ri = r, zi = z|r¬i, z¬i, .) ∝
P (r, z, .)

P (r¬i, z¬i, .)
, (2)

where other parameters involved in sampling are omitted in this equation.
However, with different cL and cW assignments, the generative processes of location and words

of a tweet are different, which makes it difficult to get an updating equation applicable to all tweets.
To solve this problem, we divide the tweet collections D into four subsets based on the assignments
of cL and cW , namely, D1,1, D1,0, D0,1 and D0,0, where Dc1,c2 denotes the collection of tweets
with cL = c1 and cW = c2. Comparing to that for D, it is much easier to obtain the updating
equation for tweets within each subset, because given a subset, the generative processes of locations
and words of its tweets are fixed. Then, we compute the conditional probability for each set.

We first focus on D1,1, in which tweets’ locations and words are sampled according to the topic-
specific distributions over locations and words, respectively. The sampling equation 2 for ri and zi
of tweet di ∈ D1,1 becomes:

— If r /∈ Rui , then

P (r, z, .)

P (r¬i, z¬i, .)
=

β∑|Rui
|

r′=1 n
SR
si,r′,¬i + β

· ατz∑|Z|
z′=1 n

RZ
r,z′,¬i + α

·
nZLz,`i,¬i

+ η∑|L|
`′=1 n

ZL
z,`′,¬i

+ |L|η
·

N (td(ti, ν0)|ν0, λ−10 ) ·
∏|V |
w=1

∏cw,wi
y=0 (nZWz,w,¬i + χ+ y)∏c(.),wi

y=0

∑|V |
w=1(n

ZW
z,w,¬i + |V |χ+ y)

(3)

— If r ∈ Rui , then

P (r, z, .)

P (r¬i, z¬i, .)
=

nSRsi,r,¬i∑|Rui
|

r′=1 n
SR
si,r′,¬i + β

·
nRZr,z,¬i + ατz∑|Z|
z′=1 n

RZ
r,z′,¬i + α

·
nZLz,`i,¬i

+ η∑|L|
`′=1 n

ZL
z,`′,¬i

+ |L|η
·

N (td(ti, νr)|νr, λ−1r ) ·
∏|V |
w=1

∏cw,wi
y=0 (nZWz,w,¬i + χ+ y)∏c(.),wi

y=0

∑|V |
w=1(n

ZW
z,w,¬i + |V |χ+ y)

(4)
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where `i, ti andwi are the location, time, and words of tweet di; cw,wi
is the number of occurrences

of wordw inwi, and c(·),wi
is the length ofwi. If z is a new topic, i.e., z /∈ Z, we have ∀` nZLz,` = 0,

∀w nZWz,w = 0, and ∀r nRZr,z = 0. N (td(t, νr)|νr, λ−1r ) is the likelihood that the temporal Gaussian
distribution of r generates time t.

We estimate the parameters νr, λr for the temporal Gaussian distribution based on the time of the
tweets assigned to region r, where the time collection is denoted by {t}r. The posterior of νr, λr
can be derived as follows:

P (νr, λr|{t}r, .) ∝ P ({t}r|νr, λr) · NG(νr, λr|ν0, ι0, ρ0, λ0)
=

∏
t∈{t}r

N (td(t, νr)|νr, λ−1r ) · NG(νr, λr|ν0, ι0, ρ0, λ0)

= NG(νr, λr|ν′r, ι′r, ρ′r, λ′r), (5)

whereNG(·) is Normal-Gamma function, and the parameters ν′r, ι
′
r, ρ
′
r, λ
′
r are estimated as follows:

ν′r =
ι0ν0 + |{t}r|tr
ι0 + |{t}r|

ι′r = ι0 + |{t}r|

ρ′r = ρ0 +
|{t}r|
2

ω′r = ω0 +
1

2

∑
tk∈Tr

td(tk − tr)2 +
ι0|{t}r| · td(tr − ν0)2

2(ι0 + |{t}r|)

(6)

In the above equations, tr is the average time of tweets in region r. Given Equations 5 and 6, we
can update νr, λr as follows:

νr = ν′r

λr =
ρ′r
ω′r

(7)

The details of the equations about Gaussian parameters can be found in [Rasmussen 1999; Mur-
phy 2007].

Note that given a collection of time, we can get two Gaussian distributions with different νr and
λr, and the νr of the two distributions are 12-hour apart from each other. For example, νr for time
1:00 and 23:00 can be either 0:00 or 12:00. Obviously, 0:00 is a better choice for the mean, since
it is closer to 1:00 and 23:00 comparing with 12:00. As a result, the value of λr for νr = 0 : 00 is
larger. Thus, between the two sets of νr and λr, we choose the νr, λr pair with the greater λr value
as the mean and precision for the temporal Gaussian distribution.

For tweet di in the subset D1,0, the Equation 2 for sampling the region ri and topic zi is as
follows:

— If r /∈ Rui
, then

P (r, z, .)

P (r¬i, z¬i, .)
=

β∑|Rui
|

r′=1 n
SR
si,r′,¬i + β

· ατz∑|Z|
z′=1 n

RZ
r,z′,¬i + α

·
nZLz,`i,¬i

+ η∑|L|
`′=1 n

ZL
z,`′,¬i

+ |L|η
·

N (td(ti, ν0)|ν0, λ−10 ) ·
∏|V |
w=1

∏cw,wi
y=0 (ζ + y)∏c(.),wi

y=0

∑|V |
w=1(|V |ζ + y)

(8)
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— If r ∈ Rui
, then

P (r, z, .)

P (r¬i, z¬i, .)
=

nSRsi,r,¬i∑|Rui
|

r′=1 n
SR
si,r′,¬i + β

·
nRZr,z,¬i + ατz∑|Z|
z′=1 n

RZ
r,z′,¬i + α

·
nZLz,`i,¬i

+ η∑|L|
`′=1 n

ZL
z,`′,¬i

+ |L|η
·

N (td(ti, νr)|νr, λ−1r ) ·
∏|V |
w=1

∏cw,wi
y=0 (nRWr,w,¬i + ζ + y)∏c(.),wi

y=0

∑|V |
w=1(n

RW
r,w,¬i + |V |ζ + y)

(9)

For tweet di in subset D0,1, the Equation 2 for sampling the region ri and topic zi is as follows:

— If r /∈ Rui
, then

P (r, z, .)

P (r¬i, z¬i, .)
=

β∑|Rui
|

r′=1 n
SR
si,r′,¬i + β

· ατz∑|Z|
z′=1 n

RZ
r,z′,¬i + α

· N (`i|µ0,Λ
−1
0 ) ·

N (td(ti, ν0)|ν0, λ−10 ) ·
∏|V |
w=1

∏cw,wi
y=0 (nZWz,w,¬i + χ+ y)∏c(.),wi

y=0

∑|V |
w=1(n

ZW
z,w,¬i + |V |χ+ y)

(10)

— If r ∈ Rui
, then

P (r, z, .)

P (r¬i, z¬i, .)
=

nSRsi,r,¬i∑|Rui
|

r′=1 n
SR
si,r′,¬i + β

·
nRZr,z,¬i + ατz∑|Z|
z′=1 n

RZ
r,z′,¬i + α

· N (`i|µr,Λ−1r ) ·

N (td(ti, νr)|νr, λ−1r ) ·
∏|V |
w=1

∏cw,wi
y=0 (nZWz,w,¬i + χ+ y)∏c(.),wi

y=0

∑|V |
w=1(n

ZW
z,w,¬i + |V |χ+ y)

(11)

The parameters µr and Λr for the spatial Gaussian distribution of region r can be estimated
based on the coordinates of tweet locations assigned to r with cL = 0. We use {cd}r to denote the
collection of such coordinates, and obtain the posterior of µr and Λr as follows:

P (µr,Λr|{cd}r, .) ∝ P ({cd}r|µr,Λr) · NW(µr,Λr|µ0, κ0, υ0, ε0)

=
∏

cd∈{cd}r

N (cd|µr,Λ−1r ) · NW(µr,Λr|µ0, κ0, υ0, ε0)

= NW(µr
′, κ′r, υ

′
r, ε

′
r), (12)

where NW(·) is Normal-Wishart function, and µr
′, κ′r, υ

′
r, ε

′
r are estimated as follows:

µ′r =
κ0µ0 + |{cd}r|cdr

κ0 + |{cd}r|
κ′r = κ0 + |{cd}r|
υ′r = υ0 + |{cd}r|

ε′r = ε0 +
∑

cd∈{cd}r

(cd− cdr)(cd− cdr)T +
κ0|{cd}r|
κ0 + |{cd}r|

(µ0 − cdr)(µ0 − cdr)T (13)

In the above equation, cdr is the mean of {cd}r. Given Equations 12 and 13, we can update µr,
Λr as follows:

µr = µ
′
r

Λr = υ′r · ε′−1r

(14)
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Last, we can sample the region ri and topic zi for tweet di in subset D0,0 (details can be found in
the published version from ACM Digital Library).

When the number of topics |Z| changes, and when a sampling iteration is finished, we sample
new global topic distribution τ (details can be found in the published version from ACM Digital
Library).

After sampling region ri and topic zi for all tweets di ∈ D, we sample cLi and cWi (details can be
found in the published version from ACM Digital Library).

After sampling a sufficient number of iterations, we calculate the parameters as follows:

ψu,s,r = P (r|s) =
nSRs,r + β

|Ru|∑|Ru|
r′=1 n

SR
s,r′ + β

θr = P (z|r) =
nRZr,z + ατz∑|Z|
z′=1 n

RZ
r,z′ + α

ξLu = P (cL = 1|u) =
nUCLu,(1) + o1

nUCLu,(0) + nUCLu,(1) + o0 + o1

ξWu = P (cW = 1|u) =
nUCWu,(1) + δ1

nUCWu,(0) + nUCWu,(1) + δ0 + δ1

φZLz = P (`|z) =
nZLz,l + η∑|L|

`′=1 n
ZL
z,`′ + |L|η

φZWz = P (w|z) =
nZWz,w + χ∑|V |

w′=1 n
ZW
z,w′ + |W |χ

φRWr = P (w|r) =
nRWr,w + ζ∑|V |

w′=1 n
RW
r,w′ + |W |ζ

5.2. Time and Space Complexity
We use Gibbs sampling to estimate the parameters. For each tweet in each iteration, we need
to calculate its probability distributions over topics and personal regions, and over switches
cL and cW . The process is iterated for T times. The total time complexity is therefore
O(T |D|(|Rmax||Zmax||Wmax| + |cL||cW |)), where |Rmax| is the maximum number of personal
regions of users, Zmax is the maximum number of topics, |Wmax| is the maximum length of a tweet
(i.e., 140), and |cL| = |cW | = 2.

The space required by EW4 is as follows:

—O(|U ||Rmax|) and O(|U ||S||Rmax|) for the parameters of users’ time and spatial Gaussian dis-
tributions;

—O(|Zmax|) for the topic proportions π of the global measure G0;
—O(4× |D|) for the topic, region, cL, cW assignments of documents;
—O(|Zmax|(|L|+ |W |)) for the count of locations’ and words’ topic assignments;
—O(|U |(|cL|+ |cW |)) for the number of cL and cW selections of each user;
—O(|U ||Rmax|(|Zmax|+ |W |)) for the topic and word counts of each personal region;

Aggregating them together, the total space complexity is O((|U |+ |D|) + |Zmax|(|L|+ |W |) +
|U ||Rmax|(|Zmax| + |W |)). Since the matrices for locations and words are very sparse, thus the
storage can be significantly reduced by utilizing sparse matrices. When reading out parameters, we
needO(|U ||Rmax|(|Zmax|+ |W |)+ |Zmax|(|L|+ |W |)+ |U |) to keep the parameters (See Table I).
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For the two data sets (WW and USA, See Section 7.1), the memory required is less than 1 GB. As
future work, it would be interesting to improve the complexity to handle data of large scale [Cui
et al. 2014].

6. APPLICATIONS
The proposed model EW4 involves four aspects of user’s mobility behavior (i.e., who, where, when,
and what). As the online component of our framework, the model can infer missing information in
some of four aspects given information available from other aspects. A variety of applications can
be built on top of the model and we name a few as examples.

Requirement-aware location recommendation. Location recommendation aims to recommend
new locations for users to visit. Sometimes a user may have clear requirement about the recommen-
dation, e.g., a user wants to have pizza at 7:00 PM. Obviously, the requirement explicitly reveals
a user’ preference, and thus can be utilized for making recommendations. However, to the best of
our knowledge, none of previous studies on POI recommendation has considered users’ require-
ments. Since EW4 jointly models the who, where, when and what factors, it is able to utilize both
time and need (in the form of short text or keywords) to make requirement-aware recommendations.
Formally, given a user u, day s, time t and a set of words w that describe user need, the candidate
locations are ranked by:

P (`|u, s, t,w) =

∑|Z|
z=1

∑|Ru|
r=1 P (u, s, t, r, z,w, `)∑|Z|

z=1

∑|Ru|
r=1

∑|L|
`′=1 P (u, s, t, r, z,w, `

′)

∝
|Z|∑
z=1

|Ru|∑
r=1

P (r|u, s)P (z|r)P (t|r)P (l|r, z)P (w|r, z)

=

|Z|∑
z=1

|Ru|∑
r=1

ψu,s,r · θr,z · N (td(t, νr)|νr, λ−1r ) · (ξLu,0 · N (`|µr,Λ−1r ) + ξLu,1 · φZLz,` ) ·∏
w∈w

(ξWu,0 · φRWr,w + ξWu,1 · φZWz,w ) (15)

Location prediction for tweet. Given a tweet with its content in words, user, and posting time, the
task of location prediction is to predict the most likely location at which this tweet is posted. It has
been shown [Cho et al. 2011; Cheng et al. 2011] that geographical locations can be used to predict
user’s behavior, discover users’ interests, and deliver location-based advertisement or content. How-
ever, not all tweets are explicitly annotated with geographical locations. Hence, location prediction
for tweets is a very important application and can be used to facilitate many applications.

A number of methods have been proposed for this task [Li et al. 2011; Kinsella et al. 2011;
Eisenstein et al. 2010; Wing and Baldridge 2011; Hong et al. 2012; Ahmed et al. 2013]. The stud-
ies [Li et al. 2011; Kinsella et al. 2011] build language models for each candidate location, and
make prediction based on these language models. They are designed to predict location identifier
for a text. The work [Wing and Baldridge 2011] segments the world into grids, and employs super-
vised models to predict a grid for a given text. The recent proposals [Hong et al. 2012; Ahmed et al.
2013] present approaches for predicting geographic coordinates of a text from a user. Since EW4

can make both kinds of predictions for a text from a user, namely, predicting location identifiers and
geographic coordinates. Our method is also able to take the time factor into consideration.

Formally, given a user u, day s, time t, and words w, a location ` is predicted based on Equa-
tion 15. Then, the top 1 location is returned as the prediction result.
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Activity prediction. EW4 is able to predict the activity of a user at a given time. Specifically, given
a user u and time s and t, the words describing the activity are ranked by:

P (w|u, s, t) =

∑|Z|
z=1

∑|Ru|
r=1 P (u, s, t, r, z, w)∑|Z|

z=1

∑|Ru|
r=1

∑|V |
w′=1 P (u, s, t, r, z, w

′)

∝
|Z|∑
z=1

|Ru|∑
r=1

P (r|u, s)P (z|r)P (t|r)P (w|r, z)

=

|Z|∑
z=1

|Ru|∑
r=1

ψu,s,r · θr,z · N (td(t, νr)|νr, λ−1r ) · (ξWu,0 · φRWr,w + ξWu,1 · φZWz,w ) (16)

User prediction. User prediction aims to predict the likelihood of a user visiting a location at a
given time. This could be very useful for merchants for planning purpose, or for them to target on
specific costumers. Specifically, given location `, day s, and time t, we rank candidate users by
P (u|`, s, t), which is calculated as follows:

P (u|`, s, t) =

∑|Z|
z=1

∑|Ru|
r=1 P (u, s, t, r, z, `)∑|U |

u′=1

∑|Z|
z=1

∑|Ru′ |
r=1 P (u′, s, t, r, z, `)

∝
|Z|∑
z=1

|Ru|∑
r=1

P (r|u, s)P (z|r)P (t|r)P (l|r, z)

=

|Z|∑
z=1

|Ru|∑
r=1

ψu,s,r · θr,z · N (td(t, νr)|νr, λ−1r ) ·

(ξLu,0 · N (`|µr,Λ−1r ) + ξLu,1 · φZLz,` ) (17)

Location prediction for user. This task is to predict the place where a user stays at a given time.
This would be useful for logistic planning, e.g., to arrange a meeting with a user or a group of users,
and location-based advertisement delivery. Formally, given a user u and time t, we aim to rank all
candidate locations based on P (`|u, s, t), which is calculated by:

P (`|u, s, t) =

∑|Z|
z=1

∑|Ru|
r=1 P (u, s, t, r, z, `)∑|Z|

z=1

∑|Ru|
r=1

∑|L|
`′=1 P (u, s, t, r, z, `

′)

∝
|Z|∑
z=1

|Ru|∑
r=1

P (r|u, s)P (z|r)P (t|r)P (l|r, z)

=

|Z|∑
z=1

|Ru|∑
r=1

ψu,s,r · θr,z · N (td(t, νr)|νr, λ−1r ) ·

(ξLu,0 · N (`|µr,Λ−1r ) + ξLu,1 · φZLz,` ) (18)

Tweets recommendation. This task is to recommend tweets that are interested to a user based on
the user’s topic preferences, current location, and time. Specifically, given user u, day s, time t, and
location `, we aim to rank tweets by considering P (w|u, s, t, `), where w is the word vector of a
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candidate tweets.

P (w|u, s, t, `) =

∑|Z|
z=1

∑|Ru|
r=1 P (u, s, t, r, z,w, `)∑|Z|

z=1

∑|Ru|
r=1

∑
w P (u, s, t, r, z,w

′, `)

∝
|Z|∑
z=1

|Ru|∑
r=1

P (r|u, s)P (z|r)P (t|r)P (l|r, z)P (w|r, z)

=

|Z|∑
z=1

|Ru|∑
r=1

ψu,s,r · θr,z · N (td(t, νr)|νr, λ−1r ) · (ξLu,0 · N (`|µr,Λ−1r ) + ξLu,1 · φZLz,` ) ·∏
w∈w

(ξWu,0 · φRWr,w + ξWu,1 · φZWz,w ) (19)

7. EXPERIMENTS
We evaluate the proposed model in this section. We first evaluate the accuracy of EW4 for the
application of location prediction for tweets and requirement-aware location recommendation in
Sections 7.2 and 7.3 against several state-of-the-art baselines. Then, we present samples of the
discovered topics and the mobility patterns of users in Section 7.4. Results of other example appli-
cations of the proposed model are reported in Section 7.5.

7.1. Data set
Two real-world data sets are used in the experiments, namely, WW data set and USA data set. Next,
we give the details about the two data sets.

WW Data set. Foursquare users can associate their accounts to Twitter, so that when they make
check-ins in Foursquare, corresponding tweets will be posted in Twitter. Using the streaming API
provided by Twitter2, we collect 3,478,394 Foursquare check-ins from November 1, 2012 to Febru-
ary 13, 2013, among which 1,322,437 contains shouts (short messages) written in English alphabets.
We examine the users who posted English shouts, and remove the inactive users who visited fewer
than 5 different locations. Since users may check in when traveling to new places, and incorporat-
ing such check-ins will make it hard to estimate personal regions. Thus, we filter out the outlier
check-ins as follows: we train GMM for each user, and remove invalid Gaussian components whose
weights are smaller than 0.1. Check-ins that are most close to these invalid components are deleted.
We iterate this process for each user. In the end, 89,007 check-ins are left after pre-processing. We
refer to this data set as WW (World-wide) data set as the tweets are from users in different countries.

USA data set. This data set is the GeoText3 (Geo-tagged Microblog Corpus) published by re-
searchers from Carnegie Mellon University [Eisenstein et al. 2010]. This data set comprises mes-
sages from geo-located microblog users approximately in the United States. Each message is associ-
ated with its geographic coordinates. To map the geographic coordinates of each message to a loca-
tion identifier, we crawl the geographic coordinates of locations in United States from Foursquare,
and map the coordinates of each message to its nearest location. After that, we apply the same
pre-processing with WW to this data set.

We remove stop-words from the text in both data sets. The statistics of the data sets after pre-
processing is shown in Table II. For each data set, we randomly split the documents (tweets or
messages) into three collections in proportion of 8:1:2 as the training set, development set, and test

2https://dev.twitter.com/docs/streaming-apis
3http://www.ark.cs.cmu.edu/GeoText/
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Table II. Statistics of the two data sets
WW USA

Number of users 3,883 4,122
Number of locations 60,962 35,989
Number of tweets/messages 89,007 171,768

set, respectively. We do this by following a previous work [Cho et al. 2011] 4. The data sets used in
this paper are available online 5.

7.2. Location Prediction for Tweets
Given a tweet with its text content, user id, and posting time, the task of location prediction is to
predict the most likely location at which this tweet is posted.

7.2.1. Evaluation Metrics. To evaluate the prediction performance of different models, we use two
metrics, namely, prediction accuracy (Acc) and average error distance (Dis).

Prediction accuracy (Acc) is the percentage of tweets for which the predicted locations are exactly
the true location among all tweets in the test set.

Average error distance (Dis) is the average of the Euclidian distance between the predicted geo-
graphic coordinates and the true geographic coordinates for all tweets in the test set.

Note thatAcc andDis are different—it is possible that the number of correctly predicted tweets is
similar, but the wrongly predicted locations are deviated from the true locations very differently for
different methods. Apparently, larger Acc and smaller Dis indicate better prediction performance.

7.2.2. Baseline Methods. We compare our model with 7 baseline methods to evaluate the perfor-
mance, including the state-of-the-art models for predicting locations for text.

KL-divergence based Model (KL) [Li et al. 2011; Kinsella et al. 2011]. This method builds lan-
guage models (LM) for each candidate location during training. Given a test text, it computes the
KL-divergence between the LM of the test text and the LM of each candidate location. The loca-
tion with smallest KL-divergence is returned as the prediction result, and its coordinates are used to
calculate the error distance.

Mean Coordinates (Mean). This model estimates the mean coordinates of visited locations for
each user. Given a tweet, it returns the location that is closest to its author’s mean coordinates as the
prediction result.

Popular Location (Pop). This model first finds out the location for each user that she visited most
frequently. Given a tweet, it returns the most frequently visited location of its author as the prediction
result.

Topic+Region Model (TR) [Hong et al. 2012]. This model captures the user preference over latent
regions and topics. The locations, which are treated as geographic coordinates, are generated from
the Gaussian distributions of regions, and words are generated based on the topics and regions. In
addition, the latent regions in this model are not personal. Given a tweet from a user, TR can predict
the geographic coordinates of the tweet.

Hierarchical Geographical Model (HG) [Ahmed et al. 2013]. This model organizes geographical
regions in a hierarchy, where regions in lower level are more specific w.r.t geographical area and
topics. Each tweet is generated by a path from the root region to a leaf region, while the text content
is drawn based on topics and the language model of the selected leaf region. Similar to that of TR,
regions in HG are also global.

4Note that the model proposed in [Cho et al. 2011] does not contain tuning parameters, and the authors randomly split the
data set into training and test sets in proportion of 8:2 but do not create a development set.
5http://www.ntu.edu.sg/home/gaocong/datacode.htm

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22

Table III. Comparison of baseline methods with EW4
\T and EW4

Factors in modeling KL Mean Pop TR HG ST W4 EW4
\T EW4

Who (User) ×
√ √ √ √ √ √ √ √

Where (Geo) ×
√

× GlbR GlbR GlbR PsnR PsnR PsnR
When (Time) × × × × × ×

√
×

√

What (Words)
√

× ×
√ √ √ √ √ √

Manually setting tuning parameters × × ×
√

×
√ √

× ×

Spatial Topic Model (ST) [Hu and Ester 2013]. In ST model, each user has a distribution over
global regions and topics. Different from TR, ST considers the identifiers of locations, and each
topic has a distribution over location identifiers. ST assumes each tweet has a region and a topic: the
topic determines the text content of the tweet, and topic and region together influence the draw of a
location, i.e., the sampling probability of a location is proportional to the product of the likelihoods
of the topic generating the location and the region’s Gaussian distribution generating the location.

Who+Where+When+What (W4) [Yuan et al. 2013b]. This model is built based on similar intu-
itions as in EW4. Specifically, for each tweet, a personal region is first drawn based on its user and
time, and then a topic is drawn based on the user’s topic distribution at that region. Finally, the topic
and region together generate the location and the words of the tweet. The differences between W4

and EW4 are summarized in Section 2.
Note that both TR and HG are designed to predict the geographical coordinates, and cannot return

the location identifier. Thus we cannot compute Acc for the two baselines. In order to compare with
those approaches in terms of Acc, we identify the location identifier for the predicted geographic
coordinates by finding the nearest location to the coordinates.

All baselines have been optimized by the development set. Specifically, for TR, the numbers of
regions for WW and USA data sets are 500 and 600, respectively. For HG, the priors over topics,
topics mixing vectors, parameter λ and ω are all set to 0.1, and the numbers of regions for both data
sets are 600. The number of topics for TR and HG are 50. For W4, the number of topics for WW and
USA data sets are 10 and 20, parameters λ, κ for the two data sets are both 0.6 and 0.1, respectively.

7.2.3. Our Proposed Methods. The above baseline models are compared with EW4, the model
proposed in this article.

Enhanced Who+Where+When+What (EW4). The differences between EW4 and other methods
are summarized in Table III, where “PsnR” and “GlbR” represent “using geographical information
by estimating personal regions” and “using geographical information by estimating global regions
for all users”, respectively.

Enhanced Who+Where+What (EW4
\T ). Except our preliminary work [Yuan et al. 2013b], none

of existing studies makes use of the time factor in prediction. To study the performance of our
model without time factor, we consider a simplified version of EW4, known as EW4

\T , which does
not consider the time factor. Note that EW4

\T exploits the similar set of aspects as the baseline
approaches TR HG and ST do, but its modeling method is different from theirs.

7.2.4. Experimental results. We compare the prediction performance of the 9 methods (KL,
Mean, Pop, TR, ST, HG, W4, EW4

\T , and EW4). The Dis and Acc of each method are reported
in Figure 6. Note that only W4 and EW4 make use of the time information in prediction.

As shown in Figure 6, our preliminary model W4 outperforms the state-of-the-art baseline meth-
ods KL, TR ST and HG significantly in terms of both Acc and Dis. The Acc of W4 on WW and
USA are 0.0792 and 0.2920, outperforming KL in terms of Acc by 88.50% and 3953.04% on the
two data sets, respectively. TheDis of W4 on WW is 100.93 km on USA is and 20.63 km. It reduces
the Dis of TR by 80.73% and 77.02%, and reduce the Dis of HG by 68.09% and 68.02%, on the
two data sets, respectively. The EW4 proposed in this article achieves Acc of 0.1498 and 0.4986
on the two data sets, which are 89.14% and 70.75% greater than that of W4 on WW and USA data
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Fig. 6. Prediction Performance of all methods

sets, respectively. The Dis of EW4 are 78.16 km on WW and 17.47 km on USA, indicating that
EW4 reduces the average error distance against W4 by 22.55% and 15.31% on the two data sets,
respectively.

Mean and Pop are two model-free baselines which do not make use of time and word informa-
tion. Interestingly, they achieve comparable Acc and much better Dis against other baselines, even
include the complex models TR, ST and HG. Potential reason is a user’s mobility is constrained in
a limited region which centers at a specific point, particularly when the user only visited very few
locations. Thus, using their mean coordinates and mostly visited locations as predictions already
achieves satisfactory results. However, compared with them, our proposed model EW4 improves
their Acc by more than 651.30% in Acc, and reduces their Dis by more than 30.27% on both data
sets.

KL is designed to predict the location label for short text. Because it does not exploit geographic
coordinates information, its prediction performance in terms ofDis is much worse than other meth-
ods, i.e., the average error distance of KL is much greater than those of the other methods. In
addition, KL builds language models for locations based on the words posted by all users without
considering the individuals’ visiting history. In other words, it does not consider the preferences
of individual users on locations. Moreover, the number of tweets posted at each location is small
on average as observed from Table II, and thus the language models of location are usually sparse,
limiting the prediction performance of KL.

Different from KL, TR and HG are designed to predict the geographic coordinates for short
text. They return the mean of the Gaussian distribution of the most likely latent region for a given
tweet as the prediction result, but not the location identifier of the prediction. We observe that TR
performs much better than KL in terms of Dis on both data sets. TR is based on topic models
while KL adopts language models. Furthermore, TR incorporates the user preference information
and the geographic coordinates information in its model. Comparing with TR, HG achieves a better
performance, because it exploits the hierarchical relations between regions. However, Acc of TR
and HG are approximate to 0, since the means of the global regions are less likely to be the exact
locations of individuals’ tweets.

ST makes use of both the identifers and geographic coordinates of locations, but its Dis is the
worst among the topic-model based methods, and its Acc is better than TR and HG that do not use
location identifiers. We checked the results, and found ST often returns the same location for the test
tweets posted by the same user. After investigation, we found that many of the returned locations
lie in the centers of regions with a quite large precision value. The large likelihood that the regions’
Gaussian distributions generate the location makes the location always receive the greatest ranking
score among the candidate locations.

Our model EW4
\T utilizes the same types of information as do TR, HG and ST, but it outperforms

the latter three baselines significantly. The reasons are two-fold. First, the latent geographic regions
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in EW4
\T are personal while the latent geographic regions in the three baselines are global for all the

users. Hence, the regions in EW4
\T can describe individuals’ mobility areas more precisely than the

regions in TR, HG and ST. Second, both the location identifiers and the geographic information of
locations are used by EW4

\T to enhance the prediction, while TR and HG only exploit the geographic
coordinates of locations.

EW4 outperforms EW4
\T in terms of both measures. This is because EW4 incorporates the time

factor in its model, which can further improve the prediction results. EW4 is capable of capturing
the user’s mobility patterns in terms of geographic, temporal, and activity aspects.

Comparing with W4, the enhanced version EW4 achieves better results in terms of both Acc and
Dis. The reasons are three-fold: 1) EW4 is designed under the framework of HDP, which is more
robust to the overfitting problem; 2) in EW4, users can have different numbers of regions, which
can be automatically learnt from the data by CRP. The user-specific region number can help better
model users’ mobility regions; 3) the weights of topic and region for the selections of locations and
words are learnt from training data, which are user-specific.

7.3. Requirement-aware location recommendation
Given a user and the user’s specific requirements (represented by a set of words), requirement-
aware location recommendation aims to recommend a ranked list of locations that the user has not
visited but might be interested in. When the target time is available, we can also incorporate the
time as additional contextual information. Although requirement-aware location recommendation
uses the same ranking equation as location prediction for tweets, they are two different tasks: when
predicting locations for tweets, the true locations may be the locations that the users have visited
many times, while for location recommendation, the true locations are new to the users, i.e., the
users have not visited the true locations before.

However, it is hard to evaluate the accuracy of requirement-aware location recommendation. Re-
call the example in Section 5 that a user wants to have pizza at 7:00 PM. To get recommendations,
the user can submit a requirement-aware location recommendation query with word “pizza” and
time “7:00 PM” before the target time (e.g., at 1:00 PM). The only way to verify the recommenda-
tion accuracy is to check whether the user indeed visited one of the recommended locations at 7:00
PM. However, it is very difficult to collect such requirements and ground-truth recommendations
for evaluating the requirement-aware location recommendation task.

In this article, we choose to use the information of a tweet (including user, time, words) in the
test set as a requirement query, and return a ranked list of locations that the user has not been to
(i.e., has not visited in the training set). Here the time indicates the context, and the words describe
the requirement of the user. In fact, we treat a location visit of a tweet query as a future event rather
than a past event, and we use the location of the tweet as the ground-truth for evaluation. We admit
that the tween content my not always reflect the real user requirement.

To evaluate the recommendation performance, we use the same training and development sets
that are used in the task of location prediction for tweets, but only keep the tweets in test set whose
locations do not appear in their users’ tweets in the training set. The number of such tweets is
1,221 and 1,178 in WW and USA data sets, respectively, and they are used as a group of test data,
denoted as “full”. However, many of the tweets do not represent specific requirements. Thus, we
ask two annotators to create another group of data sets by removing non-English (but written in
English alphabets) and requirement-irrelevant tweets. Only those tweets that are validated by both
of the annotators are kept. After annotation, 193 and 219 tweets are left for WW and USA data sets,
respectively, as another group of test data, denoted as “filtered”.

7.3.1. Evaluation Metric. We evaluate the recommendation performance of different models by
Hit ratio @ N (Hit@N ), which measures the percentage of test instances whose true locations are
captured in the top N recommendations. Obviously, larger Hit@N values indicate better perfor-
mance. We set N to be 1, 5, 10, and 20.
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Fig. 7. Recommendation Performance of all methods on both data sets

7.3.2. Methods to be evaluated. We compare the effectiveness of the methods that can utilize text
for recommendation(KL, TR, ST, HG, W4, EW4

\T , and EW4). In order to examine the effectiveness
of text, we remove the word factor from EW4 as another baseline named EW4

\W .

7.3.3. Experimental results. The Hit@N of the 8 methods are reported in Figure 7.
Among these methods, the performance of KL is the worst, because it does not exploit user,

time and geographical information in recommendation. The Hit@N values of TR and HG are also
very low. Because no location identifiers are used in the two models, they are ineffective in recom-
mending the unvisited location identifiers for users. Compared with TR and HG, ST achieves much
better Hit@N values, because it makes use of both the geographical coordinates and identifiers of
locations.

Compared with KL, TR, HG, and ST, our proposed method EW4
\T always achieves much better

Hit@N values on different N , even though it utilizes the same information with TR, HG, and ST.
For example, before removing the requirement-irrelevant tweets, EW4

\T outperforms the best base-
line ST by 283.4% and 466.7% in terms of Hit@10 on WW and USA, respectively, as shown in
Figures 7(a) and 7(b). After the filtering, the improvement becomes 769.0% and 640.0%, respec-
tively, as shown in Figures 7(c) and 7(d). The improvement may be attributed to two reasons: 1)
personal regions that can describe user mobility more precisely, and 2) the consideration of both
identifiers and coordinates of locations. After incorporating time factor, our full model EW4 always
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outperforms EW4
\T , demonstrating the importance of time for requirement-aware location recom-

mendation.
EW4
\W is another simplified version of EW4 that does not consider text. However, the improve-

ment of EW4 over EW4
\W is not very significant, especially when N is large. For example, before

removing the requirement-irrelevant tweets (full), EW4
\W even achieves slightly betterHit@20 than

EW4, as shown in Figures 7(a) and 7(b). The reason would be that the noisy tweet content deteri-
orates the recommendation accuracy. After removing such tweets (filtered), EW4 performs slightly
better than EW4

\W in terms of Hit@20. However, when N is small, the improvement of EW4 over
EW4
\W becomes significant. For example, either before or after removing the requirement-irrelevant

tweets, EW4 always outperforms EW4
\W by more than 19% w.r.t.Hit@1. The results show that text

requirement is important to generate accurate recommendations among the top several results.
In summary, our full model EW4 achieves superior accuracy in recommending locations based

on the target time and specific requirements. In addition, we note that EW4 always outperforms its
preliminary versions W4 on the data sets either before or after removing the requirement-irrelevant
testing tweets. Three reasons contribute to the improvement: (1) the number of personal regions
is user-specific in EW4, which help better understand user mobility; (2) the weights of topics and
regions for selecting words and locations in EW4 are also user-specific; and (3) EW4 is a non-
parametric Bayesian model, which is more robust to overfitting.

7.4. Sample Mobility Pattern
We take the model trained on the WW data set as an example to demonstrate the mobility pattern
discovered by EW4.

We randomly select a user, and plot her personal regions in Figure 8, and the time patterns of each
region in Figure 9. Figure 8 shows that the user has three personal regions centering at different
locations in the city. In addition, the contour lines of the region 3 are more concentrated than that of
region 1, showing that the user usually stays in a small region at the center of region 3, but visits a
relatively larger range of places around region 1.

From Figure 9, we observe that the user has different time patterns over the personal regions on
weekday and weekend: e.g., the user is more likely to stay at region 2 on weekday afternoon, but
to stay at region 2 on weekend evening. In addition, the user is more likely to spend more time in
region 1 in the daytime of weekends, but only visit region 1 at dinner time of weekdays.

7.5. Results of Example Applications
In addition to location prediction for tweets and requirement-aware location recommendation, we
implement another two applications, namely, user prediction and user’s location prediction. We now
present their evaluation results in this subsection.
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Fig. 9. Region distribution over time

Table IV. Location prediction Acc of PMM, W4 and EW4

Acc WW USA
PMM 0.0423 0.1102
W4 0.0776 0.2953
EW4 0.1423 0.5054

Location prediction for user. This task aims to predict the location at which a given user is most
likely to stay at a given time. For each tweet in the test set, its time and user are used as input; if the
predicted location is the true location of the tweet, it is a correct prediction. We employ prediction
accuracy (Acc) as the evaluation metric, which shows the percentage of correct predictions.

We compare the performance of W4 and EW4 with a user mobility model PMM [Cho et al. 2011],
on both data sets. Note that here we do not use the text of tweets. PMM is therefore applicable but
not the other baselines for predicting locations of tweets using text as input [Li et al. 2011; Kinsella
et al. 2011; Hong et al. 2012].

The results are reported in Table V. In location prediction, W4 outperforms PMM by 83.45% and
167.97% on the two data sets, respectively. Potential reasons are two-fold. First, we use a new way
to calculate the probability of latent regions at a given time, which is different from the way used
in PMM. Second, W4 exploits both the functional and geographical information of locations, while
PMM only utilizes the latter. Comparing to W4, the proposed model EW4 improves the accuracy
by 83.38% and 71.15%, respectively. The improvement may come from: (1) the HDP model, which
is more robust to overfitting problem; (2) user-specific number of personal regions, which enables
us to model users’ mobility more precisely; (3) user-specific weight between topics and regions for
location and word generation, which can discover the different preferences between users.

User prediction. User prediction aims to predict the user who is most likely to visit a given location
at a given time. For each tweet in the test set, its time and location are used as input; if the pre-
dicted user is the true user of the tweet, it is a correct prediction. We evaluate the performance using
prediction accuracy. Note that the PMM model proposed in [Cho et al. 2011] can also be used for
user prediction, if we use location and time as input, and find the user who can maximize the like-
lihood. The experimental results are reported in Table V, which show that our method outperforms
the baseline method significantly for similar reasons discussed earlier.

8. CONCLUSION
The availability of geo-tagged tweets enables us to design many appealing applications such as
context-aware recommendation and search. To make accurate recommendations and retrieval, we
need to study individuals’ mobility behaviors from four factors, namely user, geographic informa-
tion, time, and activity. To the best of our knowledge, our preliminary model W4 is the only existing
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Table V. User prediction Acc of PMM, W4 and EW4

Acc WW USA
PMM 0.4163 0.4021
W4 0.5063 0.5863
EW4 0.5351 0.7679

model that considers all of four aspects. In this article, we present its enhanced version, a novel
HDP-based generative model EW4, which is capable of jointly modeling the four factors, and pro-
viding a comprehensive description of user mobility behavior. The proposed model has a variety
of applications in contextual search and recommendation. We evaluate the performance of EW4

for several tasks on two real-world data sets, and the experimental results show that the proposed
method EW4 outperforms state-of-the-art baselines significantly for these applications.
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dictability in human mobility. Science 327, 5968 (2010), 1018–1021.

Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei. 2006. Hi-
erarchical Dirichlet Processes. J. Amer. Statist. Assoc. 101, 476 (2006), 1566–1581.
DOI:http://dx.doi.org/10.1198/016214506000000302

Chong Wang, Jinggang Wang, Xing Xie, and Wei-Ying Ma. 2007. Mining geographic knowl-
edge using location aware topic model. In Proceedings of the 4th ACM Workshop On Ge-
ographic Information Retrieval, GIR 2007, Lisbon, Portugal, November 9, 2007. 65–70.
DOI:http://dx.doi.org/10.1145/1316948.1316967

Benjamin Wing and Jason Baldridge. 2011. Simple supervised document geolocation with geodesic
grids. In The 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon,
USA. 955–964. http://www.aclweb.org/anthology/P11-1096

Jinyun Yan, Wei Chu, and Ryen W. White. 2014. Cohort modeling for enhanced personalized
search. In The 37th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’14, Gold Coast , QLD, Australia - July 06 - 11, 2014. 505–514.
DOI:http://dx.doi.org/10.1145/2600428.2609617

Mao Ye, Peifeng Yin, Wang-Chien Lee, and Dik Lun Lee. 2011. Exploiting geographical influence
for collaborative point-of-interest recommendation. In Proceeding of the 34th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, Beijing,
China, July 25-29, 2011. 325–334. DOI:http://dx.doi.org/10.1145/2009916.2009962

Zhijun Yin, Liangliang Cao, Jiawei Han, Chengxiang Zhai, and Thomas S. Huang. 2011. Ge-
ographical topic discovery and comparison. In Proceedings of the 20th International Confer-
ence on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011. 247–256.
DOI:http://dx.doi.org/10.1145/1963405.1963443

Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat-Thalmann. 2013a. Time-
aware point-of-interest recommendation. In The 36th International ACM SIGIR conference on
research and development in Information Retrieval, SIGIR ’13, Dublin, Ireland - July 28 - August
01, 2013. 363–372. DOI:http://dx.doi.org/10.1145/2484028.2484030

Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat-Thalmann.
2013b. Who, where, when and what: discover spatio-temporal topics for twit-
ter users. In The 19th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013. 605–613.
DOI:http://dx.doi.org/10.1145/2487575.2487576

Quan Yuan, Gao Cong, and Aixin Sun. 2014. Graph-based Point-of-interest Recommendation with
Geographical and Temporal Influences. In Proceedings of the 23rd ACM International Confer-
ence on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China,
November 3-7, 2014. 659–668. DOI:http://dx.doi.org/10.1145/2661829.2661983

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


