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Tweet Segmentation and its Application to
Named Entity Recognition

Chenliang Li, Aixin Sun, Jianshu Weng, and Qi He

Abstract—Twitter has attracted millions of users to share and disseminate most up-to-date information, resulting in large volumes
of data produced everyday. However, many applications in Information Retrieval (IR) and Natural Language Processing (NLP)
suffer severely from the noisy and short nature of tweets. In this paper, we propose a novel framework for tweet segmentation
in a batch mode, called HybridSeg. By splitting tweets into meaningful segments, the semantic or context information is well
preserved and easily extracted by the downstream applications. HybridSeg finds the optimal segmentation of a tweet by
maximizing the sum of the stickiness scores of its candidate segments. The stickiness score considers the probability of a
segment being a phrase in English (i.e., global context) and the probability of a segment being a phrase within the batch of
tweets (i.e., local context). For the latter, we propose and evaluate two models to derive local context by considering the linguistic
features and term-dependency in a batch of tweets, respectively. HybridSeg is also designed to iteratively learn from confident
segments as pseudo feedback. Experiments on two tweet datasets show that tweet segmentation quality is significantly improved
by learning both global and local contexts compared with using global context alone. Through analysis and comparison, we show
that local linguistic features are more reliable for learning local context compared with term-dependency. As an application, we
show that high accuracy is achieved in named entity recognition by applying segment-based part-of-speech (POS) tagging.

Index Terms—Twitter Stream, Tweet Segmentation, Named Entity Recognition, Linguistic Processing, Wikipedia
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1 INTRODUCTION

M ICROBLOGGING sites such as Twitter have re-
shaped the way people find, share, and dissem-

inate timely information. Many organizations have
been reported to create and monitor targeted Twit-
ter streams to collect and understand users’ opin-
ions. Targeted Twitter stream is usually constructed
by filtering tweets with predefined selection criteria
(e.g., tweets published by users from a geographical
region, tweets that match one or more predefined
keywords). Due to its invaluable business value of
timely information from these tweets, it is impera-
tive to understand tweets’ language for a large body
of downstream applications, such as named entity
recognition (NER) [1], [3], [4], event detection and
summarization [5], [6], [7], opinion mining [8], [9],
sentiment analysis [10], [11], and many others.

Given the limited length of a tweet (i.e., 140 charac-
ters) and no restrictions on its writing styles, tweets
often contain grammatical errors, misspellings, and
informal abbreviations. The error-prone and short
nature of tweets often make the word-level language
models for tweets less reliable. For example, given a
tweet “I call her, no answer. Her phone in the bag,
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she dancin.”, there is no clue to guess its true theme
by disregarding word order (i.e., bag-of-word model).
The situation is further exacerbated with the limited
context provided by the tweet. That is, more than one
explanation for this tweet could be derived by differ-
ent readers if the tweet is considered in isolation. On
the other hand, despite the noisy nature of tweets, the
core semantic information is well preserved in tweets
in the form of named entities or semantic phrases.
For example, the emerging phrase “she dancin” in the
related tweets indicates that it is a key concept – it
classifies this tweet into the family of tweets talking
about the song “She Dancin”, a trend topic in Bay
Area in Jan, 2013.

In this paper, we focus on the task of tweet segmen-
tation. The goal of this task is to split a tweet into
a sequence of consecutive n-grams (n ≥ 1), each of
which is called a segment. A segment can be a named
entity (e.g., a movie title “finding nemo”), a seman-
tically meaningful information unit (e.g., “officially
released”), or any other types of phrases which appear
“more than by chance” [1]. Figure 1 gives an example.
In this example, a tweet “They said to spare no effort
to increase traffic throughput on circle line.” is split into
eight segments. Semantically meaningful segments
“spare on effort”, “traffic throughput” and “circle
line” are preserved. Because these segments preserve
semantic meaning of the tweet more precisely than
each of its constituent words does, the topic of this
tweet can be better captured in the subsequent pro-
cessing of this tweet. For instance, this segment-based
representation could be used to enhance the extrac-
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Fig. 1: Example of Tweet Segmentation

tion of geographical location from tweets because of
the segment “circle line” [12]. In fact, segment-based
representation has shown its effectiveness over word-
based representation in the tasks of named entity
recognition and event detection [1], [2], [13]. Note that,
a named entity is valid segment; but a segment may
not necessarily be a named entity. In [6] the segment
“korea vs greece” is detected for the event related to
the world cup match between Korea and Greece.

To achieve high quality tweet segmentation, we
propose a generic tweet segmentation framework,
named HybridSeg. HybridSeg learns from both global
and local contexts, and has the ability of learning from
pseudo feedback.

Global context. Tweets are posted for information
sharing and communication. The named entities and
semantic phrases are well preserved in tweets. The
global context derived from Web pages (e.g., Microsoft
Web N-Gram corpus) or Wikipedia therefore helps
identifying the meaningful segments in tweets. The
method realizing the proposed framework that solely
relies on global context is denoted by HybridSegWeb.

Local context. Tweets are highly time-sensitive so that
many emerging phrases like “She Dancin” cannot be
found in external knowledge bases. However, consid-
ering a large number of tweets published within a
short time period (e.g., a day) containing the phrase,
it is not difficult to recognize “She Dancin” as a valid
and meaningful segment. We therefore investigate
two local contexts, namely local linguistic features
and local collocation. Observe that tweets from many
official accounts of news agencies, organizations, and
advertisers are likely well written. The well preserved
linguistic features in these tweets facilitate named
entity recognition with high accuracy. Each named
entity is a valid segment. The method utilizing lo-
cal linguistic features is denoted by HybridSegNER.
It obtains confident segments based on the voting
results of multiple off-the-shelf NER tools. Another
method utilizing local collocation knowledge, denot-
ed by HybridSegNGram, is proposed based on the ob-
servation that many tweets published within a short
time period are about the same topic. HybridSegNGram
segments tweets by estimating the term-dependency
within a batch of tweets.

Pseudo feedback. The segments recognized based
on local context with high confidence serve as good

feedback to extract more meaningful segments. The
learning from pseudo feedback is conducted iterative-
ly and the method implementing the iterative learning
is named HybridSegIter.

We conduct extensive experimental analysis on
HybridSeg1 on two tweet datasets and evaluate the
quality of tweet segmentation against manually an-
notated tweets. Our experimental results show that
HybridSegNER and HybridSegNGram, the two methods
incorporating local context in additional to global con-
text, achieve significant improvement in segmenta-
tion quality over HybridSegWeb, the method use glob-
al context alone. Between the former two methods,
HybridSegNER is less sensitive to parameter settings
than HybridSegNGram and achieves better segmenta-
tion quality. With iterative learning from pseudo feed-
back, HybridSegIter further improves the segmentation
quality.

As an application of tweet segmentation, we pro-
pose and evaluate two segment-based NER algo-
rithms. Both algorithms are unsupervised in nature
and take tweet segments as input. One algorithm
exploits co-occurrence of named entities in targeted
Twitter streams by applying random walk (RW) with
the assumption that named entities are more like-
ly to co-occur together. The other algorithm utilizes
Part-of-Speech (POS) tags of the constituent words
in segments. The segments that are likely to be a
noun phrase are considered as named entities. Our
experimental results show that (i) the quality of tweet
segmentation significantly affects the accuracy of N-
ER, and (ii) POS-based NER method outperforms RW-
based method on both datasets.

The rest of this paper is organized as follows. Sec-
tion 2 surveys related works on tweet segmentation.
Section 3 defines tweet segmentation and describes
the proposed framework. Section 4 details how the lo-
cal context is exploited in the framework. In Section 5,
the segment-based NER methods are investigated.
In Section 6, we evaluate the proposed HybridSeg
framework and the two segment-based NER methods.
Section 7 concludes this paper.

2 RELATED WORK

Both tweet segmentation and named entity recogni-
tion are considered important subtasks in NLP. Many
existing NLP techniques heavily rely on linguistic
features, such as POS tags of the surrounding words,
word capitalization, trigger words (e.g., Mr., Dr.), and
gazetteers. These linguistic features, together with
effective supervised learning algorithms (e.g., hidden
markov model (HMM) and conditional random field
(CRF)), achieve very good performance on formal text

1. HybridSeg refers to HybridSegWeb, HybridSegNER,
HybridSegNGram and HybridSegIter or one of them based on
the context. We do not distinguish this when the context is clear
and discriminative.
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corpus [14], [15], [16]. However, these techniques ex-
perience severe performance deterioration on tweets
because of the noisy and short nature of the latter.

There have been a lot of attempts to incorporate
tweet’s unique characteristics into the conventional
NLP techniques. To improve POS tagging on tweets,
Ritter et al. train a POS tagger by using CRF mod-
el with conventional and tweet-specific features [3].
Brown clustering is applied in their work to deal
with the ill-formed words. Gimple et al. incorporate
tweet-specific features including at-mentions, hash-
tags, URLs, and emotions [17] with the help of a new
labeling scheme. In their approach, they measure the
confidence of capitalized words and apply phonetic
normalization to ill-formed words to address possible
peculiar writings in tweets. It was reported to out-
perform the state-of-the-art Stanford POS tagger on
tweets. Normalization of ill-formed words in tweets
has established itself as an important research prob-
lem [18]. A supervised approach is employed in [18]
to first identify the ill-formed words. Then, the correct
normalization of the ill-formed word is selected based
on a number of lexical similarity measures.

Both supervised and unsupervised approaches
have been proposed for named entity recognition
in tweets. T-NER, a part of the tweet-specific NLP
framework in [3], first segments named entities using
a CRF model with orthographic, contextual, dictio-
nary and tweet-specific features. It then labels the
named entities by applying Labeled-LDA with the
external knowledge base Freebase.2 The NER solution
proposed in [4] is also based on a CRF model. It is
a two-stage prediction aggregation model. In the first
stage, a KNN-based classifier is used to conduct word-
level classification, leveraging the similar and recently
labeled tweets. In the second stage, those predictions,
along with other linguistic features, are fed into a CRF
model for finer-grained classification. Chua et al. [19]
propose to extract noun phrases from tweets using an
unsupervised approach which is mainly based on POS
tagging. Each extracted noun phrase is a candidate
named entity.

Our work is also related to entity linking (EL). EL
is to identify the mention of a named entity and link
it to an entry in a knowledge base like Wikipedi-
a [20], [21], [22], [23]. Conventionally, EL involves a
NER system followed by a linking system [20], [21].
Recently, Sil and Yates propose to combine named
entity recognition and linking into a joint model [23].
Similarly, Guo et al. propose a structural SVM solution
to simultaneously recognize mention and resolve the
linking [22]. While entity linking aims to identify the
boundary of a named entity and resolve its meaning
based on an external knowledge base, a typical NER
system identifies entity mentions only, like the work
presented here. It is difficult to make a fair comparison

2. http://www.freebase.com/
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Fig. 2: HybridSeg framework without learning from
pseudo feedback

between these two techniques.
Tweet segmentation is conceptually similar to Chi-

nese word segmentation (CSW). Text in Chinese is a
continuous sequence of characters. Segmenting the se-
quence into meaningful words is the first step in most
applications. State-of-the-art CSW methods are mostly
developed using supervised learning techniques like
perceptron learning and CRF model [24], [25], [26],
[27], [28]. Both linguistic and lexicon features are
used in the supervised learning in CSW. Tweets are
extremely noisy with misspellings, informal abbrevi-
ations, and grammatical errors. These adverse prop-
erties lead to a huge number of training samples for
applying a supervised learning technique. Here, we
exploit the semantic information of external knowl-
edge bases and local contexts to recognize meaningful
segments like named entities and semantic phrases
in Tweets. Very recently, similar idea has also been
explored for CSW by Jiang et al. [28]. They propose
to prune the search space in CSW by exploiting the
natural annotations in the Web. Their experimental
results show significant improvement by using simple
local features.

3 HybridSeg FRAMEWORK

The proposed HybridSeg framework segments tweets
in batch mode. Tweets from a targeted Twitter stream
are grouped into batches by their publication time
using a fixed time interval (e.g., a day). Each batch of
tweets are then segmented by HybridSeg collectively.

3.1 Tweet Segmentation
Given a tweet t from batch T , the problem of tweet
segmentation is to split the ` words in t = w1w2 . . . w`
into m ≤ ` consecutive segments, t = s1s2...sm, where
each segment si contains one or more words. We
formulate the tweet segmentation problem as an op-
timization problem to maximize the sum of stickiness
scores of the m segments, shown in Figure 2.3 A high

3. For clarity, we do not show the iterative learning from pseudo
feedback in this figure.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2013 4

stickiness score of segment s indicates that it is a phrase
which appears “more than by chance”, and further
splitting it could break the correct word collocation
or the semantic meaning of the phrase. Formally, let
C(s) denote the stickiness function of segment s. The
optimal segmentation is defined in the following:

arg max
s1,...,sm

m∑
i=1

C(si) (1)

The optimal segmentation can be derived by using
dynamic programming with a time complexity of O(`)
(rf. [1] for detail).

As shown in Figure 2, the stickiness function of a
segment takes in three factors: (i) length normalization
L(s), (ii) the segment’s presence in Wikipedia Q(s),
and (iii) the segment’s phraseness Pr(s), or the prob-
ability of s being a phrase based on global and local
contexts. The stickiness of s, C(s), is formally defined
in Eq. 2, which captures the three factors:

C(s) = L(s) · eQ(s) · 2

1 + e−SCP (s)
(2)

Length normalization. As the key of tweet segmenta-
tion is to extract meaningful phrases, longer segments
are preferred for preserving more topically specific
meanings. Let |s| be number of words in segment s.
The normalized segment length L(s) = 1 if |s| = 1 and
L(s) = |s|−1

|s| if |s| > 1, which moderately alleviates the
penalty on long segments.

Presence in Wikipedia. In our framework, Wikipedia
serves as an external dictionary of valid names or
phrases. Specifically, Q(s) in Eq. 2 is the probability
that s is an anchor text in Wikipedia, also known as
keyphraseness in [21], [29]. Let wiki(s) and wikia(s) be
the number of Wikipedia entries where s appears in
any form and s appears in the form of anchor text,
respectively, Q(s) = wikia(s)/wiki(s). Each anchor
text in Wikipedia refers to a Wikipedia entry even if
the entry has not been created. The segment that is
often used as anchor text in Wikipedia is preferred
in our segmentation. Note that Wikipedia here can
be replaced with any other external knowledge base
by redefining Q(s). Example knowledge bases include
Freebase, Probase [30], or domain-specific knowledge
base like GeoNames4 if the targeted Twitter stream is
domain-specific.

Segment phraseness. The last component of Eq. 2 is
to estimate the probability of a segment being a valid
phrase using Symmetric Conditional Probability (SCP)

4. http://www.geonames.org/

measure,5 defined in Eq. 3.

SCP (s) = log
Pr(s)2

1
|s|−1

∑|s|−1
i=1 Pr(w1 . . . wi) Pr(wi+1 . . . w|s|)

(3)
In Eq. 3, Pr(s) or Pr(w1 . . . wi) is the approximated
n-gram probability of a segment. If s contains a single
word w, SCP (s) = 2 logPr(w).

The estimation of Pr(s) is the key challenge in
our framework. In the following, we present three
observations, which are also the rationales why Pr(s)
can be estimated from global and local contexts.

3.2 Observations for Tweet Segmentation

Tweets are considered noisy with lots of informal ab-
breviations and grammatical errors. However, tweets
are posted mainly for information sharing and com-
munication among many purposes.

Observation 1: Word collocations of named entities
and common phrases in English are well preserved in
Tweets.
Many named entities and common phrases are pre-
served in tweets for information sharing and dissem-
ination. In this sense, Pr(s) can be estimated by count-
ing a segment’s appearances in a very large English
corpus (i.e., global context). In our implementation,
we turn to Microsoft Web N-Gram corpus [31]. This
N-Gram corpus is derived from all Web documents
indexed by Microsoft Bing in the EN-US market. It
provides a good estimate of the statistics of commonly
used phrases in English.

Observation 2: Many tweets contain useful linguis-
tic features.
Although many tweets contain unreliable linguistic
features like misspellings and unreliable capitaliza-
tions [3], there exist tweets composed in proper En-
glish. For example, tweets published by official ac-
counts of news agencies, organizations, and adver-
tisers are often well written. The linguistic features
in these tweets enable named entity recognition with
relatively high accuracy.

Observation 3: Tweets in a targeted stream are not
topically independent to each other within a time
window.
Many tweets published within a short time period
talk about the same theme. These similar tweets large-
ly share the same segments. For example, similar
tweets have been grouped together to collectively
detect events, and an event can be represented by the
common discriminative segments across tweets [13].

The latter two observations essentially reveal the
same phenomenon: local context in a batch of tweets
complements global context in segmenting tweets. For

5. In our earlier work [1], we have evaluated two collocation
measures, SCP and Pointwise Mutual Information (PMI). Our exper-
imental results show that SCP is much more effective than PMI for
tweet segmentation.
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example, person names emerging from bursty events
may not be recorded in Wikipedia. However, if the
names are reported in tweets by news agencies or
mentioned in many tweets, there is a good chance to
segment these names correctly based on local linguis-
tic features or local word collocation from the batch
of tweets. In the next section, we detail learning from
local context to estimate Pr(s).

4 LEARNING FROM LOCAL CONTEXT

Illustrated in Figure 2, the segment phraseness Pr(s)
is computed based on both global and local contexts.
Based on Observation 1, Pr(s) is estimated using the
n-gram probability provided by Microsoft Web N-
Gram service, derived from English Web pages. We
now detail the estimation of Pr(s) by learning from
local context based on Observations 2 and 3. Specif-
ically, we propose learning Pr(s) from the results of
using off-the-shelf Named Entity Recognizers (NERs),
and learning Pr(s) from local word collocation in a
batch of tweets. The two corresponding methods uti-
lizing the local context are denoted by HybridSegNER
and HybridSegNGram respectively.

4.1 Learning from Weak NERs
To leverage the local linguistic features of well-written
tweets, we apply multiple off-the-shelf NERs trained
on formal texts to detect named entities in a batch of
tweets T by voting. Voting by multiple NERs partially
alleviates the errors due to noise in tweets. Because
these NERs are not specifically trained on tweets, we
also call them weak NERs. Recall that each named
entity is a valid segment, the detected named entities
are valid segments.

Given a candidate segment s, let fs be its total
frequency in T . A NER ri may recognize s as a named
entity fri,s times. Note that fri,s ≤ fs since a NER
may only recognize some of s’s occurrences as named
entity in all tweets of T . Assuming there are m off-the-
shelf NERs r1, r2, . . . , rm, we further denote fRs to be
the number of NERs that have detected at least one
occurrence of s as named entity, fRs =

∑m
i I(fri,s):

I(fri,s) = 1 if fri,s > 0; I(fri,s) = 0 otherwise.
We approximate the probability of s being a valid

name entity (i.e., a valid segment) using a voting
algorithm defined by Eq. 4:

P̂ rNER(s) = w(s,m) · 1

m

m∑
i

P̂ rri(s) (4)

w(s,m) = 1/
(

1 + e−β(fRs −m/2)
)

(5)

P̂ rri(s) =

(
1 +

α

fri,s + ε

)− fs
fri,s

+ε

(6)

Our approximation contains two parts. The right part
of Eq. 4 (rf. Eq. 6) is the average confidence that one
weak NER recognizes s as named entity. A biased

estimation is simply 1/m ·
∑m
i=1 fri,s/fs because each

fri,s/fs is a noisy version of the true probability.
However, such simple average ignores the absolute
value of fri,s which can also play an important role
here. For example, a party’s name in an election
event may appear hundreds of times in a tweet batch.
However, due to the free writing styles of tweets, only
tens of the party name’s occurrences are recognized
by weak NERs as named entity. In this case, fri,s/fs
is relatively small yet fri,s is relatively high. Thus,
we design Eq. 6 that favors both fri,s/fs and fri,s.
The favor scale is controlled by a factor α. When α
is large, our function is more sensitive to the change
of fri,s/fs; when α is small, a reasonably large fri,s
leads P̂ rri(s) to be close to 1 despite of a relatively
small value of fri,s/fs. In this paper we empirically
set α = 0.2 in experiments. A small constant ε is set
to avoid dividing by zero.

The left part of Eq. 4, w(s,m) (rf. Eq. 5) uses a
sigmoid function to control the impact of the majority
degree of m weak NERs on the segment, which is
tuned by a factor β. For example, in our paper we
set β = 10 so that as long as more than half of weak
NERs recognize s as named entity, w(s,m) is close to
1. With a small β, w(s,m) gets closer to 1 when more
weak NERs recognize s as named entity.

Considering both global context and the local con-
text by NER voting, we approximate Pr(s) using a
linear combination:

Pr(s) = (1− λ)PrMS(s) + λP̂ rNER(s) (7)

where P̂ rNER(s) is defined by Eq. 4 with a coupling
factor λ ∈ [0, 1), and PrMS(·) is the n-gram probabil-
ity provided by Microsoft Web N-Gram service. The
learning of λ will be detailed in Section 4.3.

4.2 Learning from Local Collocation

Collocation is defined as an arbitrary and recurrent word
combination in [32]. Let w1w2w3 be a valid segment, it
is expected that sub-n-grams {w1, w2, w3, w1w2, w2w3}
are positively correlated with one another. Thus, we
need a measure that captures the extent to which
the sub-n-grams of a n-gram are correlated with one
another, so as to estimate the probability of the n-gram
being a valid segment.

Statistical n-gram language modeling is to estimate
the probability of n-gram w1w2 . . . wn, which has been
extensively studied in speech recognition and text
mining [33], [34], [35], [36]. By using the chain rule,
we express the n-gram probability in Eq. 8:

P̂ rNGram(w1 . . . wn) =

n∏
i=1

P̂ r(wi|w1 . . . wi−1) (8)

where P̂ r(wi|w1 . . . wi−1) is the conditional probability
of word wi following word sequence w1 . . . wi−1. Here,
we aim to quantify the strength of a n-gram being
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a valid segment based on the n-gram distribution in
the batch of tweets. That is, we try to capture the
dependencies between the sub-n-grams of a n-gram.
In this sense, we set P̂ r(w1) to be 1 in Eq. 8.

Absolute Discounting Smoothing. At first glance, it
seems that applying maximum likelihood estimation
is straightforward. However, because Pr(w1) is set
to 1, then P̂ rNGram(w1 . . . wn) = fw1...wn/fw1

. More
importantly, due to the informal writing style and
limited length of tweets, people often use a sub-n-
gram to refer to a n-gram. For example, either first
name or last name is often used in tweets to refer to
the same person instead of her full name. We therefore
adopt absolute discounting smoothing method [33],
[34] to boost up the likelihood of a valid segment.
That is, the conditional probability Pr(wi|w1 . . . wi−1)
is estimated by Eq. 9, where d(w1 . . . wi−1) is the
number of distinct words following word sequence
w1 . . . wi−1, and κ is the discounting factor.

Right-to-left Smoothing. Like most n-gram models,
the model in Eq. 8 follows the writing order of left-
to-right. However, it is reported that the latter words
in a n-gram often carry more information [37]. For
example, ”justin bieber” is a bursty segment in some
days of tweets data in our pilot study. Since ”justin”
is far more prominent than word ”bieber”, the n-
gram probability of the segment is relative small.
However, we observe that ”justin” almost always
precedes ”bieber” when the latter occurs. Given this,
we introduce a right-to-left smoothing (RLS) method
mainly for name detection. Using RLS, the conditional
likelihood Pr(w2|w1) is calculated by Eq. 10, where
fw1w2/fw2 is the conditional likelihood of w1 preced-
ing w2, and θ is a coupling factor which balances
the two parts (θ is empirically set to 0.5 in our
experiments). Note that, RLS is only applied when
calculating the conditional probabilities of 2-grams,
because higher order n-grams have more specific
information. For example, ”social network” is more
specific than word ”social” for the estimation of the
valid segment ”social network analysis”.

Bursty-based Weighting. Similar to that in Eq. 7,
the estimation of local collocation can be combined
with global context using a linear combination with a
coupling factor λ:

Pr(s) = (1− λ)PrMS(s) + λP̂ rNGram(s) (11)

However, because tweets are noisy, the estimation of a
n-gram being a valid segment is confident only when
there are a lot of samples. Hence, we prefer global
context in tweet segmentation when the frequency of
a n-gram is relatively small. Therefore, we introduce
a bursty-based weighting scheme for combining local
collocation and global context.

Pr(s) = (1− λ)PrMS(s) + λB(s)P̂ rNGram(s) (12)

T Weak NERs
Seed

segments
HybridSeg All segments

Fig. 3: The iterative process of HybridSegIter

B(s), in a range of (0, 1), quantifies the burstiness of
segment s. It satisfies two constraints: a) B(s1) ≥ B(s2)
if fs1 ≥ fs2 and s1 and s2 are both i-gram segments; b)
B(s1) ≥ B(s2) if fs1 = fs2 and s1 is a i-gram segment
and s2 is a j-gram segment and i > j. We define B(s)
for segment s of i-gram as:

B(s) = 1/(1 + e−τ(i)(fs−f̄(i))) (13)

where f̄(i) is the average frequency of all i-grams in
the batch T , and τ(i) is a scaling function τ(i) =
5/σ(i), and σ(i) is the standard deviation of the
frequency of all i-grams in the batch. That is, the
local collocation measure is reliable if there is enough
samples of a segment in the batch.

4.3 Learning from Pseudo Feedback

As shown in Figure 2, so far in the proposed HybridSeg
framework, each tweet is segmented independently
from other tweets in a batch, though local context are
derived from all tweets in the same batch. Recall that
segmenting a tweet is an optimization problem. The
probability of phraseness of any candidate segment
in a tweet could affect its segmentation result. We
therefore design an iterative process in the HybridSeg
framework to learn from the most confident segments
in the batch from the previous iteration. Figure 3
illustrates the iterative process where the confident
named entities voted by weak NERs are considered
as the most confident segments (or seed segments)
in the 0th iteration. In the subsequent iterations, the
confident segments from the previous iteration be-
come the seed segments and the same process repeats
until the segmentation results of HybridSeg do not
change significantly. We define the stop criterion using
Jensen-Shannon divergence (JSD) of the frequency dis-
tributions of segments in two consecutive iterations.

Suppose at iteration i, HybridSeg outputs a set of
segments {〈s, f is〉}, where f is is the number of times
s is a segment at iteration i. Then, f is/fs relative-
ly records the segmentation confidence of HybridSeg
about s at iteration i (recall that fs denotes the fre-
quency of s in batch T ). Similar to Eq. 6, we define

P̂ r
i
(s) =

(
1 +

α

f is + ε

)− fs

fis+ε

Following the same combination strategy defined
by Eq. 7, we have the following iterative updating
function:

Pri+1(s) = (1− λ)PrMS(s) + λP̂ r
i
(s), (14)
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P̂ r(wi|w1 . . . wi−1) =
max{fw1...wi − κ, 0}

fw1...wi−1

+
κ · d(w1 . . . wi−1)

fw1...wi−1

· Pr(wi|w2 . . . wi−1) (9)

P̂ r(w2|w1) = θ{max{fw1w2
− κ, 0}

fw1

+
κ · d(w1)

fw1

· Pr(w2|w1)}+ (1− θ)fw1w2

fw2

(10)

In the 0th iteration, P̂ r
0
(s) can be estimated based on

the voting results of weak NERs or the confident n-
grams learned from the batch of tweets.

Learning the parameter λ. The coupling factor λ
in Eq. 14 is crucial for the convergence of Hybrid-
Seg. A good λ should ensure that the top confident
segments from the previous iteration are detected
more times in the next iteration. This is equivalent
to maximizing the sum of detected frequency of the
top confident segments (weighted by their stickiness
scores, rf. Eq. 2) extracted from the previous iteration.
Accordingly, learning the parameter λ is converted to
an optimization problem as follows:

λ̂ = arg max
λ

µIter(λ)

= arg max
λ

∑
s∈top-k at iteration i

Ci(s) · f i+1(s) (15)

Ci(s) is the stickiness score of s computed by Hy-
bridSeg in the previous iteration. Based on it, top-
k segments can be retrieved. f i+1(s) is the detected
frequency of s in the current iteration, which is an un-
known function to variable λ. Therefore, the optimal λ
is intractable. In our experiments, we use brute-force
search strategy to find the optimal λ for each iteration
and for each tweet batch. Since the update for Eq. 2
with a new λ can be easily calculated, the efficiency
is not a major concern for a fixed number of λ values.

Learning λ for the 0th iteration. Note that for the 0th

iteration, λ is learned differently because there is no
segments detected from the previous iteration.

For HybridSegNER, a good λ shall ensure that the
confident segments voted by m weak NERs can be
detected more times in the next iteration. Let N∩
be the segments that are recognized by all m NER
systems (i.e., N∩ = {s|fRs = m}). For each segment
s ∈ N∩, we consider its confident frequency to be
the minimum number of times that s is recognized as
named entity by one of the m NERs. Let the confident
frequency of s be fc,s, i.e., fc,s = minmi fri,s. Then λ is
learned as follows in the 0th iteration:

λ̂ = arg max
λ

µNER(λ) = arg max
λ

∑
s∈N∩

P̂ r
0
(s) · fc,s · f0

s

(16)
In this equation, P̂ r

0
(s) is the value computed using

Eq. 4; P̂ r
0
(s)·fc,s serves as a weighting factor to adjust

the importance of f0
s in learning λ. If segment s is very

likely to be a named entity (i.e., P̂ r
0
(s) is high) and

it has been detected many times by all NERs (i.e., fc,s

is large), then the number of times s is successfully
segmented f0

s has a big impact on the selection of λ.
On the other hand, if P̂ r

0
(s) is low, or fc,s is small,

or both conditions hold, then f0
s is less important

to λ selection. By defining fc,s = minmi fri,s, Eq. 16
conservatively considers segments recognized by all
weak NERs because of the noisy nature of tweets.
This helps to reduce the possible oscillations resulted
from different λ settings, since λ is a global factor (i.e.,
not per-tweet dependent). On the other hand, we also
assume that all the off-the-shelf NERs are reasonably
good, e.g., when they are applied on formal text. If
there is a large number of NERs, then the definition
of fc,s could be relaxed to reduce the impact of one
or two poor-performing NERs among them.

For HybridSegNGram, because there is no initial set
of confident segments, any heuristic approach may
make the adaption of λ drifting away from its optimal
range. Given that HybridSegNGram exploits the local
collocation based on n-gram statistical model, we ar-
gue that a common range could exist for most targeted
Twitter streams. We empirically study the impact of
λ to HybridSegNGram in Section 6.

5 SEGMENT-BASED NAMED ENTITY
RECOGNITION
In this paper, we select named entity recognition as
a downstream application to demonstrate the benefit
of tweet segmentation. We investigate two segment-
based NER algorithms. The first one identifies named
entities from a pool of segments (extracted by Hy-
bridSeg) by exploiting the co-occurrences of named
entities. The second one does so based on the POS
tags of the constituent words of the segments.

5.1 NER by Random Walk
The first NER algorithm is based on the observation
that a named entity often co-occurs with other named
entities in a batch of tweets (i.e., the gregarious prop-
erty).

Based on this observation, we build a segment
graph. A node in this graph is a segment identified
by HybridSeg. An edge exists between two nodes if
they co-occur in some tweets; and the weight of the
edge is measured by Jaccard Coefficient between the
two corresponding segments. A random walk model
is then applied to the segment graph. Let ρs be the
stationary probability of segment s after applying
random walk, the segment is then weighted by:

y(s) = eQ(s) · ρs (17)
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TABLE 1: Three POS tags as the indicator of a segment
being a noun phrase, reproduced from [17]

Tag Definition Examples
N common noun (NN, NNS) books; someone
ˆ proper noun (NNP, NNPS) lebron; usa; iPad
$ numeral (CD) 2010; four; 9:30

In this equation, eQ(s) carries the same semantic as
in Eq. 2. It indicates that a segment that frequently
appears in Wikipedia as an anchor text is more likely
to be a named entity. With the weighting y(s), the top
K segments are chosen as named entities.

5.2 NER by POS Tagger
Due to the short nature of tweets, the gregarious
property may be weak. The second algorithm then
explores the part-of-speech tags in tweets for NER
by considering noun phrases as named entities using
segment instead of word as a unit.

A segment may appear in different tweets and
its constituent words may be assigned different POS
tags in these tweets. We estimate the likelihood of a
segment being a noun phrase (NP) by considering the
POS tags of its constituent words of all appearances.
Table 1 lists three POS tags that are considered as the
indicators of a segment being a noun phrase.

Let wsi,j be the jth word of segment s in its i-th
occurrence, we calculate the probability of segment s
being an noun phrase as follow:

P̂NP (s) =

∑
i

∑
j [w

s
i,j ]

|s| · fs
· 1

1 + e−5
(fs−f̄s)
σ(fs)

(18)

This equation considers two factors. The first factor
estimates the probability as the percentage of the
constituent words being labeled with an NP tag for
all the occurrences of segment s, where [w] is 1 if w is
labeled as one of the three POS tags in Table 1, and 0
otherwise; For example, “chiam see tong”, the name
of a Singaporean politician and lawyer,6 is labeled
as ˆˆˆ (66.67%), NVV (3.70%), ˆVˆ (7.41%) and ˆVN
(22.22%)7. By considering the types of all words in a
segment, we can obtain a high probability of 0.877 for
“chiam see tong”. The second factor of the equation
introduces a scaling factor to give more preference to
frequent segments, where f̄s and σ(fs) are the mean
and standard deviation of segment frequency. The
segments are then ranked by y(s) = eQ(s) · P̂NP (s),
i.e., replacing ρs in Eq 17 by P̂NP (s).

6 EXPERIMENT

We report two sets of experiments. The first set of
experiments (Sections 6.1 to 6.3) aims to answer three
questions: (i) does incorporating local context improve

6. http://en.wikipedia.org/wiki/Chiam See Tong
7. V:verb including copula, auxiliaries; for example, might, gonna, ought,

is, eats.

tweet segmentation quality compared to using global
context alone? (ii) between learning from weak NERs
and learning from local collocation, which one is
more effective, and (iii) does iterative learning fur-
ther improves segmentation accuracy? The second set
of experiments (Section 6.4) evaluates segment-based
named entity recognition.

6.1 Experiment Setting

Tweet Datasets. We used two tweet datasets in our
experiments: SIN and SGE. The two datasets were
used for simulating two targeted Twitter streams. The
former was a stream consisting of tweets from users
in a specific geographical region (i.e., Singapore in this
case), and the latter was a stream consisting of tweets
matching some predefined keywords and hashtags for
a major event (i.e., Singapore General Election 2011).

We randomly selected 5, 000 tweets published on
one random day in each tweet collection. Named en-
tities were annotated by using BILOU schema [4], [14].
After discarding retweets and tweets with inconsistent
annotations, 4, 422 tweets from SIN and 3, 328 tweets
from SGE are used for evaluation. The agreement of
annotation on tweet level is 81% and 62% for SIN
and SGE respectively. The relatively low agreement
for SGE is mainly due to the strategy of handling
concepts of GRC and SMC, which refer to different
types of electoral divisions in Singapore.8 Annotators
did not reach a consensus on whether a GRC/SMC
should be labeled as a location name (e.g., “aljunied
grc” vs “aljunied”). Table 2 reports the statistics of
the annotated NEs in the two datasets where fgs
denotes the number of occurrences (or frequency) of
named entity s (which is also a valid segment) in the
annotated ground truth G. Figure 4 plots the NEs’
frequency distribution.

Wikipedia dump. We use the Wikipedia dump re-
leased on 30 Jan, 2010.9 This dump contains 3, 246, 821
articles and there are 4, 342, 732 distinct entities ap-
peared as anchor texts in these articles.

MS Web N-Gram. The Web N-Gram service provides
access to three content types: document body, doc-
ument titles and anchor texts. We use the statistics
derived from document body as at April 2010.

Evaluation Metric. Recall that the task of tweet seg-
mentation is to split a tweet into semantically mean-
ingful segments. Ideally, a tweet segmentation method
shall be evaluated by comparing its segmentation
result against manually segmented tweets. However,
manual segmentation of a reasonably sized data col-
lection is extremely expensive. We choose to evaluate
a tweet segmentation method based on whether the
manually annotated named entities are correctly split

8. http://en.wikipedia.org/wiki/Group Representation Constituency
9. http://dumps.wikimedia.org/enwiki/
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TABLE 2: The annotated named entities in SIN and
SGE datasets, where fgs denotes the frequency of
named entity s in the annotated ground truth.

Dataset #NEs min fg
s max fg

s

∑
fg
s #NEs s.t. fg

s > 1
SIN 746 1 49 1234 136
SGE 413 1 1644 4073 161

as segments [1]. Because each named entity is a valid
segment, the annotated named entities serve as partial
ground truth in the evaluation.

We use the Recall measure, denoted by Re, which
is the percentage of the manually annotated named
entities that are correctly split as segments. Because
a segmentation method outputs exactly one possible
segmentation for each tweet, recall measure is the
same as precision in this setting.

Methods. We evaluate 4 segmentation methods in
the experiments: (i) HybridSegWeb learns from global
context only, (ii) HybridSegNER learns from global
context and local context through three weak NER-
s, (iii) HybridSegNGram learns from global context
and local context through local collocation, and (iv)
HybridSegIter learns from pseudo feedback iteratively
on top of HybridSegNER.

The HybridSegNER method employs three weak
NERs (i.e., m = 3) to detect named entities in tweets,
namely, LBJ-NER [14], Standford-NER [15], and T-
NER [3].10 Note that, the three NERs used in our
experiments are not trained using our tweets data but
downloaded from their corresponding websites. The
output of the three NERs over the annotated tweets
are used in HybridSegNER. That is, the additional
context from other unlabeled tweets published on the
same day are not taken for a fair comparison.

Parameter Setting. HybridSegWeb is parameter-free.
For HybridSegNER, α = 0.2 in Eq. 6 and β = 10 in
Eq. 5. The λ value in Eq. 7 is learned using an objective
function in Eq. 16. Regarding parameter settings for
HybridSegNGram, θ = 0.5 in Eq. 10, κ = 1.0 in Eq. 9
and 10. Different values of λ in Eq. 12 are evaluated.
For HybridSegIter, the top-K segments in Eq. 15 for λ
adaption is set to K = 50. The search space for λ is
set to be [0, 0.95] with a step 0.05.

10. Due to space constraint, readers are referred to [3], [14], [15] for details
of respective NERs

TABLE 3: Recall of the 4 segmentation methods

Method SIN SGE
HybridSegWeb 0.758 0.874
HybridSegNGram 0.806 0.907
HybridSegNER 0.857 0.942
HybridSegIter 0.858 0.946

6.2 Segmentation Accuracy

Table 3 reports the segmentation accuracy achieved
by the four methods on the two datasets. The results
reported for HybridSegNGram and HybridSegNER are
achieved with their best λ settings for fair comparison.
We make three observations from the results.
(i) Both HybridSegNGram and HybridSegNER achieve

significantly better segmentation accuracy than
HybridSegWeb. It shows that local context does
help to improve tweet segmentation quality
largely.

(ii) Learning local context through weak NERs is
more effective than learning from local word
collocation in improving segmentation accu-
racy; in particular, HybridSegNER outperforms
HybridSegNGram on both datasets.

(iii) Iterative learning from pseudo feedback further
improves the segmentation accuracy. The scale
of improvement, however, is marginal. The next
sub-section presents a detailed analysis of Hybrid-
Seg for possible reasons.

We also investigate the impact of Web N-Gram
statistics for HybridSegWeb by using the other two
content types: document titles and anchor texts. While
the segmentation accuracy is improved up to 0.797
and 0.801 on SIN, the performance is degraded to
0.832 and 0.821 on SGE. The significant difference in
performance indicates the language mismatch prob-
lem. Since the topics in SIN are more general [1], the
specific source like document titles and anchor texts
could be more discriminative for the segmentation.
For the twitter streams that are topic specific like
SGE, the language mismatch problem could become
an important concern.

6.3 Method Analysis and Comparison

We first analyze and compare HybridSegNER and
HybridSegNgram because both learn from local con-
text. Following this, we analyze HybridSegIter for the
possible reasons of the marginal improvement over
HybridSegNER.

HybridSegNER. This method learns λ (rf Eq. 7)
through objective function (rf Eq. 16). λ controls the
combination of global and local contexts. To verify
that λ can be learned through this objective function,
we plot Re and µNER(λ) (rf Eq. 16) in Figure 5.
For easy demonstration, we plot the normalized score
of µNER(λ) in the figure. Observe that µNER(λ) is
positively correlated with the performance metrics
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Fig. 5: Re and normalized µNER(λ) values of HybridSegNER with varying λ in the range of [0, 0.95]
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Fig. 6: The impact of λ on HybridSegNGram on the two datasets

Re on both datasets. In our experiments, we set the
parameter λ to be the smallest value leading to the
best µNER(λ), i.e., λ = 0.5 on SIN and λ = 0.7 on
SGE. Because λ is a global factor for all tweets in
a batch and µNER(λ) is computed based on a small
set of seed segments. A larger λ may not affect the
segmentation of the seed segments because of their
confident local context. But it may cause some other
segments to be wrongly split due to their noisy local
context. Observe there is minor degradation for Re on
SIN dataset when λ > 0.45 although µNER(λ) remains
the maximum.

HybridSegNGram. This method exploits the local collo-
cation by using an variant of the absolute discounting
based n-gram model with RLS smoothing (rf. Eq. 10)
and bursty-based weighting (rf. Eq. 12). We now
study the impact of the RLS smoothing and bursty-
based weighting against different coupling factor λ
for HybridSegNGram. Specifically, we investigate three
methods with different λ settings:
• HybridSegNGram: The method with RLS smooth-

ing and bursty-based weighting.
• HybridSegNGram−weight: The method with RLS

smoothing but without bursty-based weighting.
• HybridSegNGram−RLS : The method with bursty-

based weighting but without RLS smoothing.
Figure 6 reports Re of the three methods with

different λ settings on both datasets. The results
of HybridSegWeb is included as a baseline in the
figure. Observe that with bursty-based weighting
and RLS smoothing, HybridSegNGram outperforms
HybridSegWeb in a much broader range of λ values,
compared to the other two alternatives. Specifical-
ly, HybridSegNGram outperforms HybridSegWeb in the

ranges of [0.06, 0.20] and [0.06, 0.13] on SIN and S-
GE datasets respectively. The figure also shows that
HybridSegNGram achieves more stable results than
HybridSegNGram−RLS and HybridSegNGram−weight on
both datasets indicating that both RLS and bursty-
based weighting are helpful in achieving better seg-
mentation results. HybridSegNGram achieves its best
performance with λ ≈ 0.1 on both datasets.

HybridSegNER vs. HybridSegNGram. In a batch of
tweets, named entities are usually a subset of the
recurrent word combinations (or phrases). Therefore,
HybridSegNGram is expected to detect more segments
with local context than HybridSegNER does. However,
a named entity may appear very few times in a batch.
If the appearances are well formatted, there is a good
chance that HybridSegNER could detect it, but not
so for HybridSegNGram due to the limited number of
appearances. As shown in the results reported earlier,
HybridSegNER does outperform HybridSegNGram.

Furthermore, Table 4 lists the numbers of oc-
currences of the named entities that are correct-
ly detected by HybridSegWeb, HybridSegNER, and
HybridSegNGram respectively, along with the percent-
ages of the changes relative to HybridSegWeb. It shows
that HybridSegNER detects more occurrences of named
entities of n-gram on both datasets when n = 1, 2, 3, 4.
The performance of HybridSegNGram, however, is in-
consistent on the two datasets.

To understand the reasons that cause inconsistent
performance of HybridSegNGram on the two datasets,
we conduct a breakdown of all n-grams in terms
of P̂ rNGram(s). Figure 7 shows the distributions of
P̂ rNGram(s) of the two datasets.11 Observe that there

11. We ignore the n-grams whose P̂ rNGram(s) is below 0.1



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2013 11

TABLE 4: Numbers of the occurrences of named entities that are correctly detected by HybridSegWeb,
HybridSegNER, and HybridSegNGram, and the percentage of change against HybridSegWeb. #Overlap: number
of the occurrences that are both detected by HybridSegNER and HybridSegNGram.

SIN dataset SGE dataset
n HybridSegWeb HybridSegNER HybridSegNGram #Overlap HybridSegWeb HybridSegNER HybridSegNGram #Overlap
1 694 793 (+14.3%) 820 (+18.2%) 767 2889 3006 (+4%) 2932 (+1.5%) 2895
2 232 246 (+6%) 172 (−25.9%) 158 519 580 (+11.8%) 600 (+15.6%) 524
3 7 12 (+71.4%) 5 (−28.6%) 4 149 238 (+59.7%) 161 (+8.1%) 143
4 2 6 (+200%) 1 (−50%) 0 1 4 (+300%) 0 (−100%) N.A
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Fig. 7: The distributions of n-grams by Pr(s) for n = 2, 3, 4

TABLE 5: HybridSegIter up to 4 iterations.

SIN dataset SGE datasetIteration
Re JSD Re JSD

0 0.857 – 0.942 –
1 0.857 0.0059 0.946 0.0183
2 0.858 0.0001 0.946 0.0003
3 0.858 0 0.946 0

are more 2-grams in SGE than in SIN dataset that
have P̂ rNGram(s) > 0.5, particularly in the range
of [0.7, 1.0]. For n = 3, 4, almost no 3 or 4-grams
have P̂ rNGram(s) > 0.4 on SIN dataset. As SIN
contains tweets collected from a region while SGE is
a collection of tweets on a specific topic, the tweets in
SIN are more diverse in topics. This makes local col-
location hard to capture due to their limited number
of occurrences.

In summary, HybridSegNER demonstrates more sta-
ble performance than HybridSegNGram across differ-
ent Twitter streams and achieves better accuracy.
HybridSegNGram is more sensitive to the topic speci-
ficity of Twitter streams.

Moreover, as observed in Table 4, more than 93%
of the named entities detected by HybridSegNGram
are also detected by HybridSegNER. Given this, we
investigate the iterative learning HybridSegIter on top
of HybridSegNER instead of HybridSegNGram.

Iterative Learning with HybridSegIter. As reported
in Table 3, HybridSegIter achieves marginal improve-
ments over HybridSegNER. Table 5 also shows the
results of HybridSegIter in different iterations. It is also
observed that HybridSegIter quickly converges after
two iterations. To understand the reason behind, we
analyze the segments detected in each iteration. There
are three categories of them:

• Fully detected segments (FS): all occurrences of

the segments are detected from the batch of
tweets. Their Pr(s) is further increased by con-
sidering their local context. No more occurrences
can be detected on this category of segments in
the next iteration.

• Missed segments (MS): not a single occurrence
of the segment is detected from the previous
iteration. In this case, no local context information
can be derived for them to increase their Pr(s).
They will be missed in the next iteration.

• Partially detected segments (PS): some but not all
occurrences of the segments are detected. For this
category of segments, local context can be derived
from the detected occurrences. Depending on
the local context, Pr(s) will be adjusted. More
occurrences may be detected or missed in the
next iteration.

Table 6 reports the number of segments and their
number of occurrences in each of the three sets (FS,
MS, and PS). As shown in the table, very few seg-
ments are partially detected after learning from weak
NERs in 0th iteration (19 for SIN and 24 for SGE). The
possible improvement can be made in 1st iteration
is to further detect the total 25 missed occurrences
in SIN (resp. 67 in SGE), which accounts for 2.03%
(resp. 1.64%) of all annotated NEs in the dataset. That
is, the room for further performance improvement by
iterative learning is marginal on both datasets.

Consider the SIN dataset, on average, there are
about 6 detected occurrences to provide local context
for each of the 19 partially detected segments. With
the local context, HybridSegIter manages to reduce the
number of partially detected segments from 19 to 11
in 1st iteration and the total number of their missed
instances are reduced from 25 to 14. No changes
are observed for the remaining 11 partially detected
segments in iteration 2. Interestingly, the number of
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TABLE 6: Fully detected, missed, and partially detected segments for HybridSegIter (3 iterations) and
HybridSegWeb. #NE: number of distinct segments, #Occ: number of occurrences, #Det: number of detected
occurrences, #Miss: number of missed occurrences.

Dataset SIN dataset SGE dataset
Method/ Fully detected Missed Partially detected Fully detected Missed Partially detected
Iteration #NE #Occ #NE #Occ #NE #Det #Miss #NE #Occ #NE #Occ #NE #Det #Miss

0 581 944 146 152 19 113 25 295 1464 94 168 24 2374 67
1 581 959 154 163 11 98 14 291 1858 110 191 12 1996 28
2 583 961 152 161 11 98 14 289 1856 112 193 12 1996 28

HybridSegWeb 504 647 195 214 47 113 85 234 708 140 336 40 2850 179

fully detected instances increased by 2 in 2nd iteration.
The best segmentation of a tweet is the one maximizes
the stickiness of its member segments (rf Eq. 1). The
change in the stickiness of other segments leads to
the detection of these two new segments in the fully
detected category, each occurs once in the dataset.

In SGE dataset, the 24 partially detected segments
reduce to 12 in 1st iteration. No more change to
these 12 partially detected segments are observed in
the following iteration. A manual investigation shows
that the missed occurrences are wrongly detected as
part of some other longer segments. For example,
“NSP”12 becomes part of “NSP Election Rally” and
the latter is not annotated as a named entity. Probably
because of its capitalization, “NSP Election Rally” is
detected by weak NERs with strong confidence (i.e.,
all its occurrences are detected). Due to its strong
confidence, “NSP” therefore cannot be separated from
this longer segment in next iteration regardless λ set-
ting. Although “NSP Election Rally” is not annotated
as a named entity, it is indeed a semantically mean-
ingful phrase. On the other hand, a large portion of
the occurrences for the 12 partially detected segments
have been successfully detected from other tweets.

Compared to the baseline HybridSegWeb which does
not take local context, HybridSegIter significantly re-
duces the number of missed segments, from 195 to
152 or 22% reduction on SIN dataset, and 20% reduc-
tion on SGE dataset from 140 to 112. Many of these
segments are fully detected in HybridSegIter.

6.4 Named Entity Recognition
We next evaluate the accuracy of named entity recog-
nition based on segments. Section 5 presents two NER
methods, namely random walk-based (RW-based) and
POS-based NER. Through experiments, we aim to an-
swer two questions: (i) which one of the two methods
is more effective, and (ii) does better segmentation
lead to better NER accuracy?

We evaluate five variations of the two method-
s, namely GlobalSegRW , HybridSegRW , HybridSegPOS ,
GlobalSegPOS , and UnigramPOS .13 Here GlobalSeg de-
notes HybridSegWeb since it only uses global context,
and HybridSeg refers to HybridSegIter, the best method

12. http://en.wikipedia.org/wiki/National Solidarity Party (Singapore)
13. GlobalSegRW is the method named TwiNER in [1].

TABLE 7: Accuracy of GlobalSeg and HybridSeg with
RW and POS. The best results are in boldface. ∗ indi-
cates the difference against the best F1 is statistically
significant by one-tailed paired t-test with p < 0.01.

SIN dataset SGE datasetMethod
P R F1 P R F1

UnigramPOS 0.516 0.190 0.278∗ 0.845 0.333 0.478∗

GlobalSegRW 0.576 0.335 0.423∗ 0.929 0.646 0.762∗

HybridSegRW 0.618 0.343 0.441∗ 0.907 0.683 0.779∗

GlobalSegPOS 0.647 0.306 0.415∗ 0.903 0.657 0.760∗

HybridSegPOS 0.685 0.352 0.465 0.911 0.686 0.783

TABLE 8: Accuracy of the three weak NERs, where
∗ indicates the difference against the best F1 is sta-
tistically significant by one-tailed paired t-test with
p < 0.01.

SIN dataset SGE datasetMethod
P R F1 P R F1

LBJ-NER 0.335 0.357 0.346∗ 0.674 0.402 0.504∗

T-NER 0.273 0.523 0.359∗ 0.696 0.341 0.458∗

Stanford-NER 0.447 0.448 0.447 0.685 0.623 0.653

using both global and local context. The subscripts
RW and POS refer to the RW-based and POS-based
NER (see Section 5).

The method UnigramPOS is the baseline which
uses words (instead of segments) and POS tagging
for NER. Similar to the work in [19], we extract noun
phrases from the batch of tweets as named entities
using regular expression. The confidence of a noun
phrase is computed using a modified version of Eq. 18
by removing its first component.

Evaluation Metric. The accuracy of NER is eval-
uated by Precision (P ), Recall (R),14 and F1. P is
the percentage of the recognized named entities that
are truly named entities; R is the percentage of the
named entities that are correctly recognized; and F1 =
2 · P · R/(P + R). The type of the named entity (e.g.,
person, location, and organization) is ignored. Similar
to the segmentation recall measure, each occurrence
of a named entity in a specific position of a tweet is
considered as one instance.

NER Results. Table 7 reports the NER accuracy of
the five methods. Because all five methods are unsu-

14. Note R and Re are different: Re defined in Section 6.1
measures the percentage of the manually annotated named entities
that are correctly split as segments.
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Fig. 8: Precision@K on two datasets

pervised and consider the top-K ranked segments as
named entities, the results reported is the highest F1

of each method achieved for varying K > 50 follow-
ing the same setting in [1]. The results show that tweet
segmentation greatly improves NER. UnigramPOS

is the worst performer among all methods. For a
specific NER approach, either Random Walk or POS
based, better segmentation results lead to better N-
ER accuracy. That is, HybridSegRW performs better
than GlobalSegRW and HybridSegPOS performs better
than GlobalSegPOS . Without local context in segmenta-
tion GlobalSegPOS is slightly worse than GlobalSegRW
by F1. However, with better segmentation results,
HybridSegPOS is much better than HybridSegRW . By
F1 measure, HybridSegPOS achieves the best NER
result. We also observe that both the segment-based
approaches HybridSegPOS and HybridSegRW favor the
popular named entities. The average frequency for
correctly/wrongly recognized entities is 4.65 and 1.31
respectively based on results of HybridSegPOS on
SIN. It is reasonable since the higher frequency leads
to strong gregarious property for the random walk
approach. Also, more instances of the named entity
results in a better POS estimation for POS based
approach.

For comparison, Table 8 reports the performance of
the three weak NERs on the two datasets. Compared
with results in Table 7, all three weak NERs perform
poorly on both datasets.

Precision@K. Figure 8 plots the Precision@K for the
five methods on the two datasets with varying K
from 20 to 100. The Precision@K reports the ratio
of named entities among the top-K ranked segments
by each method. Note that, Precision@K measures
the ranking of the segments detected from a batch
of tweets; the individual occurrences of each segment
in the ranking are not considered. This is different
from the measures (e.g., Pr) reported in Table 7 where
the occurrences of the named entities are considered
(i.e., whether a named entity is correctly detected at a
specific position in a given tweet).

As observed in Figure 8, on SIN dataset, all meth-
ods using POS tagging for NER enjoy much better
precision. RW based methods deliver much poorer
precisions due to the lack of co-occurrences in the

tweets. As shown in Table 2, 82% of the annotated
named entities appear only once in SIN. Among the
three POS based methods, HybridSegPOS dominates
the best precisions on all K values from 20 to 100.
On SGE dataset, the differences in precisions between
POS based methods and RW based methods become
smaller compared to those on SIN dataset. The reason
is that in SGE dataset, about 39% of named entities
appear more than once, which gives higher chance
of co-occurrences. Between the two best performing
methods HybridSegPOS and GlobalSegPOS , the former
outperforms the latter on six K values plotted be-
tween 40 and 90.

7 CONCLUSION

In this paper, we present the HybridSeg frame-
work which segments tweets into meaningful phrases
called segments using both global and local context.
Through our framework, we demonstrate that lo-
cal linguistic features are more reliable than term-
dependency in guiding the segmentation process. This
finding opens opportunities for tools developed for
formal text to be applied to tweets which are believed
to be much more noisy than formal text.

Tweet segmentation helps to preserve the semantic
meaning of tweets, which subsequently benefits many
downstream applications, e.g. named entity recogni-
tion. Through experiments, we show that segment-
based named entity recognition methods achieves
much better accuracy than the word-based alternative.

We identify two directions for our future research.
One is to further improve the segmentation quality
by considering more local factors. The other is to
explore the effectiveness of the segmentation-based
representation for tasks like tweets summarization,
search, hashtag recommendation, etc.
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