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Because of Twitter’s popularity and the viral nature of
information dissemination on Twitter, predicting which
Twitter topics will become popular in the near future
becomes a task of considerable economic importance.
Many Twitter topics are annotated by hashtags. In this
article, we propose methods to predict the popularity of
new hashtags on Twitter by formulating the problem as
a classification task. We use five standard classification
models (i.e., Naïve bayes, k-nearest neighbors, decision
trees, support vector machines, and logistic regression)
for prediction. The main challenge is the identification of
effective features for describing new hashtags. We
extract 7 content features from a hashtag string and the
collection of tweets containing the hashtag and 11 con-
textual features from the social graph formed by users
who have adopted the hashtag. We conducted experi-
ments on a Twitter data set consisting of 31 million
tweets from 2 million Singapore-based users. The
experimental results show that the standard classifiers
using the extracted features significantly outperform the
baseline methods that do not use these features. Among
the five classifiers, the logistic regression model per-
forms the best in terms of the Micro-F1 measure. We also
observe that contextual features are more effective than
content features.

1 Introduction

Twitter is a popular microblogging service that allows
users to post short messages called “tweets.” Twitter also
provides social networking features that allow users to
follow other users, to retweet (or repost) their received
tweets, and to reply to other users’ tweets. According to a
Twitter blog post on March 21, 2012, more than 340 million
tweets were posted daily by 140 million active Twitter
users.1 Because of Twitter’s popularity and the viral nature
of information dissemination on Twitter, trending topics

become popular on Twitter in a very short time. In this
article, we study the problem of effectively predicting the
popularity of Twitter topics in the near future based on
hashtags (keywords prefixed with # symbol in tweets). Our
work has a number of practical applications to marketing
and public relations. For example, it can be used by an
advertising or public relations firm to assess the potential for
success of their marketing campaigns (Kasiviswanathan,
Melville, Banerjee, & Sindhwani, 2011; Schultz, Utz, &
Gritz, 2011; Wei, Bu, & Liang, 2012).

Topic or event detection in Twitter remains a challenging
research task because of the overwhelming information flow
as well as the short and noisy content (Li, Sun, & Datta,
2012). However, hashtags are widely used in Twitter to
define shared context for specific events, topics, or memes
(Lehmann, Goncalves, Ramasco, & Cattuto, 2012). Newly
created hashtags are frequently used to annotate emerging
topics or events. In this article, we propose to predict the
popularity of new hashtags in the near future (e.g., 1 day).
The popularity of a hashtag is defined as the number of users
who post at least one tweet containing the hashtag within the
given time period. In our setting, a new hashtag can either be
(a) a newly created hashtag that has not appeared before or
(b) a hashtag created earlier, which was popular, then
unpopular for a predefined time period (e.g., a week), and is
now popular again. For instance, the hashtag #apple gains
popularity from time to time when a new product from
Apple is released.

We argue that predicting hashtag popularity on a daily
basis is important in practice because of how fast informa-
tion spreads on Twitter. However, the prediction task is
also challenging because very limited information can be
obtained for a newly created hashtag. There are at least two
implications: (a) existing approaches on trend predication
(Jeon, Croft, Lee, & Park, 2006; Liu et al., 2011; Liu,
Huang, An, & Yu, 2007) cannot be applied to our problem
because of the lack of historical data for a new hashtag, and
(b) the identification of discriminative features from the
limited information about a new hashtag becomes the key
research issue. Our main focus is, therefore, to identify and

1http://blog.twitter.com/2012/03/twitter-turns-six.html. Accessed Sep-
tember 14, 2012.
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evaluate the effectiveness of various features for the hashtag
popularity prediction task. In particular, we have evaluated
two types of features: content and contextual features.
Content features are derived lexically from the hashtag
string itself (e.g., if the hashtag contains digits) as well as
from the content of the tweets containing the hashtag (e.g.,
the topic vector of the tweets). Contextual features are
mainly derived from the social graphs formed by Twitter
users. In a nutshell, the users who have adopted a hashtag
form a virtual community, and we derive features from both
the community graph and users who are not members of the
community but have some relationships with the community
members.

To the best of our knowledge, our work is the first to use
both content and contextual features to predict the popular-
ity of hashtags on a daily basis. This distinguishes our work
from existing studies that merely consider one type of
feature or predict hashtag popularity at much coarser time
granularity (e.g., weekly popularity; Tsur & Rappoport,
2012). We formulate our problem as a classification task. In
our experiments, we evaluated 7 content features and 11
contextual features extracted from more than 31 million
tweets on their effectiveness for hashtag popularity predic-
tion. We use five commonly used classification models (i.e.,
Naïve bayes [NB], k-nearest neighbors [KNN], decision
trees, support vector machines [SVMs], and logistic regres-
sion [LR]) and three baseline methods. Our experimental
results show that contextual features are more effective than
content features for the prediction task, and that LR and
KNN outperform the other three classification models. We
also conducted experiments to evaluate the effectiveness of
the features for popularity prediction for hashtags that have
been popular for the past 2 days instead of 1 day.

2 Related Work

In this section, we first review existing research work on
the dual role of Twitter as a microblog and social network.
We then give a comprehensive survey on the characteristics
of hashtags. Finally, we briefly introduce two research fields,
graph evolution and statistical prediction, that are related to
our work.

2.1 Twitter as a Microblog and Social Network

Twitter plays a dual role as both a microblog and a social
network (Thelwall, Buckley, & Paltoglou, 2011). On one
hand, posting tweets via the web or mobile interface is the
central activity in Twitter and represents Twitter’s function
as a microblog. On the other hand, the following, retweeting,
and mention behaviors in Twitter reflect its function as
a social network.2 However, unlike social networks such
as Facebook and LinkedIn, the reciprocity in messages

between Twitter users is low, and this skewed structure of
the social network suits its function of information diffusion
(Kwak, Lee, Park, & Moon, 2010). The dual role of Twitter
and its unique characteristics have attracted the attention of
a number of researchers. In the following, we briefly review
some past research work on Twitter. The findings from pre-
vious work may help us in identifying features related to
hashtag popularity prediction.

Twitter is now one of the most popular platforms for
discussing current events for web users. Topic detection and
tracking have become important issues in Twitter research.
Naaman, Becker, and Gravano (2011, p. 908) defined a trend
profile as a “collection of tweets with a topical keyword”
(e.g., earthquake, Obama). The authors characterized the
“exogenous trends” (trends originating from outside of
Twitter, e.g., earthquake, hurricane) and “endogenous
trends” (trends originating from within Twitter, e.g., popular
tweets posted by Obama) using a set of features derived
from a trend profile. Example features include the retweet
fraction, reply fraction, triangles, and components in graph
(see Table 1 for the definitions of these features). Their
experiments show that exogenous and endogenous trends
have different characteristics using Bonferroni correction
based on the feature sets. Sakaki, Okazaki, and Matsuo
(2010) proposed a framework to detect earthquakes in Japan
and constructed a system for earthquake reporting. Treating
each user as a sensor and each tweet as a sensor reading, the
authors used SVMs to classify tweets as positive or negative
(tweets referring to earthquakes are defined as positive).
Then Kalman and particle filters using geographical infor-
mation in tweets were applied to infer the location of an
earthquake. Considering the aforementioned work on topic
detection and tracking in Twitter, bursty hashtags (i.e., hash-
tags whose popularity rise, then fall very quickly) or key-
words are usually treated as candidate topic indicators. Their
goal is to identify whether tweets with a specific keyword or
hashtag are event-related, whereas we aim to predict the
popularity of a given hashtag.

Another interesting research task is sentiment analysis in
Twitter (Calais Guerra, Veloso, Meira, & Almeida, 2011;
Thelwall et al., 2011). Thelwall et al. (2011) proposed a
novel lexicon-based classification model, namely, the Sen-
tiStrength model, to classify short texts like tweets by their
sentiment. The SentiStrength model incorporates rules such
as booster words (e.g., very, so) and emoticons to improve
classification performance. They discovered that negative
sentiment is dominant in tweets about emerging events.
Intuitively, tweets with negative sentiment are more likely to
be retweeted. Therefore, tweet sentiment might affect the
adoption of event-related hashtags.

Because of the 140-character length constraint on tweets,
users favor using short URLs to make their tweets more
informative. Rowlands, Hawking, and Sankaranarayana
(2010) used tweet content as the anchor text to facilitate
Twitter URL searching. Dong et al. (2010) extracted differ-
ent feature sets from Twitter URLs and web URLs, and their
experimental results demonstrate that Twitter URLs linked

2In Twitter, users may repost a tweet to their followers through the
retweet function; users may also reply or mention another user by using
“@” followed by the username of the user.
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to new articles are read and shared by more users. We
observe that, in our data set, 21.7% of hashtags co-occur
with Twitter URLs in tweets. Given that a hashtag poten-
tially is a topic indicator and Twitter URLs enrich tweet
content with more information, the existence of Twitter
URLs can be used as a feature for hashtag popularity
prediction.

One of the key research tasks is identifying influential
Twitter users. Weng, Lim, Jiang, and He (2010) proposed a
framework to discover topically influential users in Twitter
using the topic model (Blei, Ng, & Jordan, 2003) and Pag-
eRank. In Pal and Counts (2011), a set of raw features (e.g.,
number of original tweets, number of retweets, and number
of mentions) from user interactions in Twitter was extracted;
then user profiles consisting of fine-grained features were
formed. After generating a feature vector for each user, users
were clustered via the Gaussian mixture model and ranked
via the Gaussian ranking algorithm. Welch, Schonfeld, He,
and Cho (2011) presented an analysis of the retweeting
graph as compared with the following graph in Twitter.
Using PageRank on both graphs, they discovered that the
retweeting graph can better preserve topical relevance than
the following graph.

2.2 Characteristics of Hashtag

The complicated characteristics of hashtags in Twitter
have sparked researchers’ interest. Several aspects of hash-
tags have been studied in the literature, including hashtag
sentiment analysis (Wang, Wei, Liu, Zhou, & Zhang, 2011),
hashtag retrieval (Efron, 2010), and hashtag adoption (Yang,
Sun, Zhang, & Mei, 2012). It is reported that users might have
different purposes for adopting a hashtag: either to bookmark
the content of tweets or to participate in a community graph
concentrating on the same topic, or both (Yang et al., 2012).

Therefore, both content and contextual features should be
considered in studying hashtags. Most germane to this work
are the studies in hashtag information diffusion (Romero,
Meeder, & Kleinberg, 2011), hashtag popularity evolution
(Lehmann et al., 2012), and content-based hashtag spread
prediction on a weekly basis (Tsur & Rappoport, 2012).

Romero et al. (2011) analyzed differences in the mechan-
ics of information diffusion of hashtags from eight pre-
defined categories (e.g., politics, celebrity, and games) and
discovered that given repeated exposures to a hashtag, poli-
tics hashtags are more likely to be adopted. Meanwhile, the
initial graph for the politics hashtag is denser, illustrating
that the graph on political topics contains more triangles.
The user graph was constructed based on the mention rela-
tionship; namely, if user u1 mentions user u2, there exists a
directed edge from u1 to u2. Note that the mention relation-
ship is the key to studying interaction between users in
Twitter (Huberman, Romero, & Wu, 2009). The authors also
confirmed that there exists a strong relationship between
contextual features and information diffusion. However, the
authors did not use these features to predict the popularity of
hashtags in the near feature. In Lehmann et al. (2012), the
evolution of hashtag popularity over time (e.g., usage
patterns before and after bursty peaks) was analyzed for
hashtags with bursty peaks. Both studies are retrospective
analysis of hashtags using historical data.

Using 25-week Twitter data, Tsur and Rappoport (2012)
reported hashtag frequency prediction on a weekly basis
using a regression model. The features are mainly derived
from the hashtag itself (e.g., orthography, number of char-
acters in a hashtag). In their work, a regression model was
used to predict hashtag frequency (i.e., the number of tweets
containing a hashtag). Their experiments demonstrated that
content features from the hashtag itself improve the model’s
performance.

TABLE 1. The 7 content features (Fc1–Fc7) and the 11 contextual features (Fx1–Fx11).

Feature Description

Fc1 ContainingDigits Binary attribute checking whether a hashtag contains digits
Fc2 SegWordNum Number of segment words from a hashtag
Fc3 URLFrac Fraction of tweets containing URL in Tt

h

Fc4 SentimentVector 3-Dimension vector: ratio of neutral, positive, and negative tweets in Tt
h

Fc5 TopicVector 20-Dimension topic distribution vector derived from Tt
h using topic model

Fc6 HashtagClarity Kullback–Leibler divergence of word distribution between Tt
h and tweets collection T

Fc7 SegWordClarity Kullback–Leibler divergence of word distribution between tweets containing any segment word in h and tweet collection T
Fx1 UserCount Number of users Ut

h

Fx2 TweetsNum Number of tweets Tt
h

Fx3 ReplyFrac Fraction of tweets containing mention @
Fx4 RetweetFrac Fraction of tweets containing RT
Fx5 AveAuthority Average authority of users in Gt

h

Fx6 TriangleFrac Fraction of users forming triangles in Gt
h

Fx7 GraphDensity Density of Gt
h

Fx8 ComponentRatio Ratio between number of connected components and number of nodes in Gt
h

Fx9 AveEdgeStrength Average edge weights in Gt
h

Fx10 BorderUserCount Number of border users
Fx11 ExposureVector 15-Dimension vector of exposure probability P(k)
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2.3 Graph Evolution and Statistical Prediction

As more and more users adopt a hashtag, the community
graph for the hashtag continuously grows. Thus, the popu-
larity prediction problem is also related to graph evolution.
Two models to simulate graph evolution, the community-
guided attachment model and forest fire model, were pro-
posed in Leskovec, Kleinberg, and Faloutsos (2005). Their
models require that the degrees of all nodes are increasing
and the distance between nodes is decreasing over time.
Backstrom, Huttenlocher, Kleinberg, and Lan (2006) inves-
tigated the factors that affect users joining a new community,
the growth of the community, and users’ movement between
communities. They concluded that the fraction of users
having many friends is the most important factor in deter-
mining the growth of the community. Using a maximum-
likelihood method, Leskovec, Backstrom, Kumar, and
Tomkins (2008) modeled the evolution of the graph edge by
edge and measured preferential attachment degree. All of
these aforementioned studies focus on the evolution of the
graph over a long period. However, most graph communities
based on hashtags have an ephemeral lifetime. Hence pre-
vious graph methods cannot be directly applied to solve our
problem. Nevertheless, we will evaluate some of the identi-
fied factors for their effectiveness in predicting hashtag
popularity.

Hashtag popularity prediction can be considered as a
trend/rank prediction task. The task is to predict future out-
comes using historical data and it is often formulated as a
classification task. Jeon et al. (2006) extracted nontext fea-
tures from the data set of a question answering service
and predicted the quality of answers using the maximum
entropy method. Because of the strong relationship
between viewer reviews of a movie and the revenue of the
movie, Liu et al. (2007) analyzed sentiment information
from blogs discussing movies and leveraged the autore-
gressive model to predict movie revenues in the near
future. Liu et al. (2011) proposed using various regression
algorithms to predict the satisfaction of web users who
search with the community-based question-answering
system, and they found that LR yields the best experimen-
tal outcomes.

3 Problem Setting and Prediction Methods

In our problem setting, all tweets received from a Twitter
stream are partitioned into consecutive fixed-time intervals
by their time stamps. The time interval could be an hour, a
few hours, or a day, depending on the number of tweets
received, as well as the time criticality of the prediction. We
define the popularity of a hashtag h in time interval t to be
the number of users who post at least one tweet annotated by
h within the time interval t, and we denote this by Φt

h. Given
a new hashtag at time t, our task is to predict its popularity
at time t + 1, or Φt

h
+1. Note that predicting the exact value of

Φt
h
+1 is extremely difficult and is often not necessary. There-

fore, we relax the problem and predict the range of its

popularity. We define five ranges of an exponentially
increasing size: [0, f], [f, 2f], [2f, 4f], [4f, 8f], and [8f,
+•]. We refer to these as being not popular, marginally
popular, popular, very popular, and extremely popular,
respectively. Note that, depending on the number of tweets
received from the Twitter stream and the requirements of a
specific prediction application, a different number of ranges
may be defined. The value of f controls the relative sizes of
the ranges defined.

With the five ranges defined, our problem can be formu-
lated as a classification problem. Given the features obtained
for a hashtag h at time t, we predict its popularity range (i.e.,
one of the five categories) at time t + 1. Because the key
focus of this research is to identify and evaluate the effec-
tiveness of features for the prediction, we apply five widely
used classifiers in our evaluation: NB, KNN, decision trees
(C4.5), SVM, and LR. We use SVMlight3 to implement a
multiclass SVM where linear kernels are used with all
default parameter settings. For KNN, we use Euclidian dis-
tance and set k = 3. All the remaining classifiers are based on
the Weka implementation using default parameter settings.
In addition to the five standard classification methods,
we have also evaluated three baseline methods, namely,
Random, Lazy, and PriorDist. The three baseline methods
do not use the extracted features.

• Random: Predict the popularity range of Φt
h
+1 randomly

among the five ranges.
• Lazy: Predict the range of Φt

h
+1 to be the same as Φt

h.
• PriorDist: Predict the range of Φt

h
+1 randomly following a

prior probability distribution on the five ranges.

4 Features for Hashtag Popularity Prediction

In this section, we detail the 7 content and 11 contextual
features (see Table 1) that we have evaluated for hashtag
popularity prediction.4 We use Tt

h to denote the collection of
tweets containing hashtag h published in time interval t, and
Ut

h to denote the collection of Twitter users who have pub-
lished at least one tweet containing hashtag h in time interval
t. Thus, Φt

h
t
hU= . Most of content features are derived from

the hashtag itself lexically or Tt
h, and most contextual fea-

tures are derived from Ut
h and the graph, denoted by Gt

h,
constructed based on Ut

h considering the interactions
between users. The interactions between users are quantified
by the number of mentions in their published tweets, which
will be detailed in the following discussion.

4.1 Content Features

In our study, content features are extracted not only lexi-
cally from the hashtag string but also using the collection of
tweets annotated by the hashtag. As reported in Tsur and

3http://svmlight.joachims.org/svm_multiclass.html
4A preliminary study of a subset of the features is reported in Ma, Sun,

and Cong (2012).
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Rappoport (2012), content features derived from a hashtag
string (e.g., the number of words in the hashtag, digits usage
in the hashtag) improve prediction performance. Therefore,
we include these features in our evaluation. Moreover, we
include the collection of tweets to enhance the representa-
tion of the hashtag.

4.1.1 Hashtag lexical features. The first two features, Fc1

and Fc2, are lexical features derived from the hashtag string.
The first is a binary feature to indicate whether the hashtag
contains digits. Digits are widely used as temporal annota-
tions in hashtags (e.g., #sgelection2011, #itshow2011) or for
enumeration in Twitter game hashtags (e.g., #10thingsIlike,
#5excuseforlate ). The second is the number of segment
words contained in a hashtag. Note that a hashtag usually
consists of several words. The appropriate word compound
can make the hashtag clearer, as well as encourage more
users to adopt the hashtag. For example, the #bestthingy-
ouneverheardof called Twitter game hashtag (Lehmann
et al., 2012) can be parsed to “best thing you never heard of.”
Because of its clear meaning, many users put this hashtag in
their tweets to share their experiences. We manually
segment hashtags into separate words and count the number
of separate words. Acronyms such as #sg, #ndp are consid-
ered as one word. Note that because our purpose is to evalu-
ate the effectiveness of the features, manual segmentation
would avoid potential errors introduced by automatic seg-
mentation methods.

4.1.2 Content features from Tt
h. Four features are derived

from Tt
h. The first feature, Fc3, is the fraction of tweets

containing URLs. As discussed earlier in the Related Work
section, Twitter URLs enrich tweet content by linking to a
web page. Consequently, the higher the URL fraction, the
more external information is introduced. Example hashtags
with high URL fraction include #japanlife, #singapore, and
#free . All these hashtags are widely adopted.

It is reported that topics or events expressing negative
sentiments are more prevalent in Twitter (Thelwall et al.,
2011); consequently, a hashtag’s sentiment is a potentially
useful feature for estimating its propagation. We consider
each hashtag as having a neutral/positive/negative three-
dimensional sentiment vector and implement a hierarchical
sentiment classification model. For each tweet in Tt

h, we
first use the subjective/objective model to classify the tweet
as subjective or objective. If the tweet is classified as sub-
jective, we further use the positive/negative model to clas-
sify the tweet as positive or negative. We calculate the
fraction of neutral, positive, and negative sentiment tweets
for Tt

h. The hierarchical sentiment classifier is implemented
via LingPipe.5 Feature Fc4 is the three-dimensional vector
with the fractions of the neutral, positive, and negative
tweets in Tt

h.
Hashtags on similar topics (e.g., politics, music, sports)

may follow similar popularity trends (Lehmann et al.,

2012). For example, #sgelection and #sgpresident both
refer to political events and demonstrate similar popularity
trends in our data set. To identify the topic distribution of
a hashtag, we use Latent Dirichlet Allocation (Blei et al.,
2003). We consider the semantic meaning of a hashtag is
to be defined by the collection of tweets containing the
hashtag in a time interval. We therefore infer the topics of
a hashtag from a virtual document formed by all tweets
containing the hashtag in that time interval. More specifi-
cally, we consider each Tt

h as a virtual document, and
20 topics are inferred from all such documents. A
20-dimension topic vector (i.e., Fc5) is then assigned to
each hashtag, with the entries quantifying the likelihood of
the hashtag belonging to the corresponding topic. Note that
the same hashtag at different time intervals may be
assigned different topic distributions depending on the
content of the tweets in Tt

h.
The hashtag clarity feature Fc6 quantifies the topical

cohesiveness of all tweets in Tt
h. A hashtag ht is described

by a set of words extracted from Tt
h to compute the clarity

score. The word distribution is then compared with that of
the entire tweet collection T . If a hashtag refers to a spe-
cific topic, then the high probabilities of a few topic-
relevant words distinguish its tweets from the background.
For instance, #royalwedding refers to the wedding of
Prince William and Catherine Middleton and has a clarity
of 11.5, whereas a hashtag like #fb has a clarity slightly
more than 2 because its meaning is unclear. Formally
defined in Equation 1, a hashtag’s clarity is the Kullback–
Leibler divergence between the unigram language model
inferred from Tt

h and the background language model from
the entire tweet collection T .

Clarity h P w T log
P w T

P w
t t

h t
h

w Tt
h

( ) ( )
( )

( )
=

∈
∑ |

|

|
2

T
(1)

4.1.3 Segment words clarity. The last feature, Fc7, is an
extension of hashtag clarity. The purpose is to evaluate
whether the segment words in a hashtag are topically cohe-
sive. Recall that we have manually segmented a hashtag into
segment words {w1, w2 . . . wn}. Using the segment words as
a keyword query, we search for the 2,000 most relevant
tweets posted within the time interval t - 7 and t. For
example, for the hashtag #londonriot posted in time interval
t, we first segment #londonriot into words london and riot,
then use london riot as a query to search for the 2,000 most
relevant tweets between t - 7 and t. The clarity score is
computed using these 2,000 tweets, in a similar way to the
hashtag clarity.

4.2 Contextual Features

We use Ut
h to denote the collection of Twitter users who

published at least one tweet containing hashtag h in time
interval t. We consider these users form a virtual community
for ht, and the hashtag adoption could be largely affected by5http://alias-i.com/lingpipe/
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the social relationships among these users, as well as their
followers. Listed in Table 1, the first contextual feature Fx1 is
the number of users in Ut

h, that is, Ut
h . Fx1 captures the

popularity of the hashtag h in time interval t and is consid-
ered as a determined factor affecting the popularity in time
interval t + 1. The next feature, Fx2, number of tweets in Tt

h,
can be considered to be either a content or a contextual
feature. Nevertheless, in our data set, we observe that the
number of tweets and the number of users are highly corre-
lated (>.85 measured by the Pearson correlation) for all ht’s.
We therefore simply put this as a contextual feature.

The next two contextual features, Fx3 and Fx4, are derived
from the social actions among users in Ut

h, that is, replying
to a tweet or retweeting a tweet. Replying or mention is a
key to study interaction behavior between users in Twitter
(Huberman et al., 2009). If user u mentions user v in his or
her tweet annotated by hashtag h, user v is unlikely to miss
the tweet. The retweeting mechanism is another major force
for promoting hashtags. The remaining seven contextual
features are derived from the social graph formed by the
users in the virtual community. To capture the relationships
among users, we first construct a directed weighted graph
G = U E, . In G , a user u ∈ U is a node and a directed edge
e(up, uq) ∈ E from user up to uq is weighted by the number of
times up mentions uq in his or her tweets, similar to that in
Romero et al. (2011). The authority scores of users are com-
puted in this global user graph using the PageRank algo-
rithm. By extracting users’ relationship from the global user
graph, we form a community graph G U Et

h
t
h

t
h= , , from

which we derive the remaining seven contextual features.

4.2.1 Contextual features derived from Gt
h. Feature Fx5,

average authority, is adopted to measure the influential level
of the community Gt

h. Intuitively, if a user is followed or
mentioned by many users, he or she is likely to be influen-
tial. Feature Fx6 is the fraction of users forming triangles in
graph Gt

h, which reflects the strength of the ties among users

in the graph. Three nodes form a triangle if any pair of nodes
is connected by an edge. An example triangle is formed by
nodes 1, 2, and 3, which is illustrated using three red lines in
Figure 1. A higher triangle fraction indicates stronger ties
among users. Different triangle fractions have been
observed for community graphs of hashtags from different
categories (e.g., the community graph for the political
hashtag is denser and contains more triangles; Romero et al.,
2011). Therefore, the triangle fraction feature distinguishes
the category of the hashtag, which could benefit hashtag
popularity prediction because hashtags of the same category
share similar trends.

Graph density (feature Fx7) is a common feature in graph
mining to measure sparsity of the graph. It is defined as
E U Ut

h
t
h

t
h∗ −( )( )1 , which is the ratio of the number of

edges and the number of possible edges in a graph. Average
edge strength (feature Fx8) measures the overall degree of
user interaction in Gt

h. The larger the edge weights, the more
interactions among users. Let Ct

h denote the set of discon-
nected components in Gt

h. Feature Fx9 is computed by
C Ut

h
t
h . Two components formed by nodes {1, 2, 3, 4} and

nodes {5, 6}, respectively, are illustrated in Figure 1 as
examples. Different from triangle fraction, a higher compo-
nent ratio indicates weaker ties among user nodes. It is
considered as a complementary feature to triangle fraction.

Because our task is to predict the users who would adopt
a hashtag, the users who have been “exposed” to the hashtag
through the social relationships in Twitter could be poten-
tially a very important feature. We derive two features for
this purpose: Fx10 and Fx11, known as border user count and
exposure vector, respectively. With respect to the global
graph, border users are those have at least one edge from
users in Gt

h but have not adopted hashtag h, that is,
{ | ( , ), , }u e u u u U u Uq p q p t

h
q t

h∃ ∈ /∈ . Illustrated in Figure 1,
nodes 1 to 6 are the users who have adopted hashtag h and
nodes 7 to 12 are border users. Reported by Romero et al.
(2011), a border user with more exposures to a hashtag is

FIG. 1. Example virtual community of a hashtag. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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expected to be more likely to adopt the hashtag. The number
of exposures of a border user is the number of edges it has
from the users in Gt

h. For example, in Figure 1, node 12 is
exposed twice for having edges from nodes 3 and 6, respec-
tively. The feature exposure vector is the exposure probabil-
ity vector depicting border user distribution in a more
detailed manner. It is a k-dimension vector, and the value for
the k’s dimension P(k) is the ratio of the border users who
have k edges from users in Gt

h. In our data set, we observe
that a user can be exposed by a maximum number of 15
users; we therefore use a 15-dimension vector for the expo-
sure vector and compute P(1) to P(15).

5 Experiments

5.1 Data Collection and Experimental Setting

Our data set consists of more than 31 million tweets from
more than 2 million users. The tweets were published by
Singapore-based users (based on the location specified in
user profile) from January 1, 2011, to August 31, 2011. In
our data set, more than 8.88% tweets contain hashtags, and
the hashtag frequency distribution is plotted in Figure 2a. In
Figure 2a, hashtag frequency refers to the number of tweets
containing the hashtag. Observe from Figure 2a, the hashtag
frequency distribution follows a power–law distribution
similar to observations made in many other social data. Most
hashtags were adopted by only a few users and were not
popular. The global user graph contains 214,000 users and
680,000 edges. Note that only users who participated in
mentions are included in this graph, and edge weight is
proportional to mention times.

In our evaluation, we set the time interval to be a day
and set f = 25; that is, a hashtag used by fewer than 25
users in a day is considered not popular. Note that f = 25
is a subjective setting based on our data set. A large f may
lead to insufficient instances in our evaluation, and a small
f may bring in too many noisy hashtags in the evaluation.
A key issue in the experiments is that, among all new hash-

tags appearing at least once in a day, which hashtags
should be selected for popularity prediction. Figure 2b
plots the number of popular hashtags ( Φt

h ≥ φ) against
their popularity duration in number of days. Observe that a
large number of hashtags are popular for only a day. In
fact, a much larger number of hashtags has never been
popular (see Figure 2a). We therefore choose to predict the
popularity of newly appearing hashtags at time t + 1 that
are at least marginally popular at time t, Φt

h ≥ φ. A
hashtag is considered new if it has not gained marginal
popularity in the past 7 days. Using these two criteria, the
number of hashtag instances (i.e., ht’s) falling into the five
categories are listed in Table 2 under the first row “1-day
prediction.” The meaning of “2-day prediction” will be
presented in our case study. In other words, given a
hashtag that has not been popular in the past 7 days and
has gained marginal popularity in the current day, we aim
to predict its popularity for the next day.

5.2 Impact of Features

We conducted 10-fold cross validation and evaluated pre-
diction accuracy using Micro-F1, Macro-Precision, Macro-
Recall, and Macro-F1. Because each instance has exactly
one correct label, Micro-Precision/Recall is the same as
Micro-F1.

Table 3 reports the prediction accuracies by the eight
methods (see Problem Setting and Prediction Methods
section) in ascending order of Micro-F1. For each method,
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FIG. 2. Hashtag frequency distribution (a) and hashtag popularity duration distribution (b). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

TABLE 2. Hashtag distribution by categories.

Category
Not

popular
Marginally

popular Popular
Very

popular
Extremely

popular

Φt
h range [0, f) [f, 2f) [2f, 4f) [4f, 8f) [8f, +•)

1-Day prediction 1,609 614 353 211 111
2-Day prediction 685 355 186 131 49
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we conducted experiments with content features (Fc), con-
textual features (Fx), and all features (Fc+x). From the table,
we make the following observations: First, three baseline
methods, which do not use any feature, perform the worst.
Second, generally, for a given classification method, contex-
tual features lead to better prediction accuracy than content
features, and the best accuracy is usually achieved using
both content and contextual features. For instance, KNN
using contextual features achieves 16% of increment over
KNN using content features. The only exception is C4.5,
where C4.5 with all features performs worse than that with
contextual features. One possible reason is that high feature
dimension complicates the decision tree model and hurts the
prediction accuracy. Third, LR achieves the best Micro-F1 of
.598, which is triple of random and 55% of increment over
the best baseline PriorDist. SVM is the second best perform-
ing method by Micro-F1. Surprisingly, lazy prediction yields
the best Macro-Re. The main reason is the skewed distribu-
tion of data (see Table 2). Because of the small number of
instances in very popular and extremely popular categories,
most classifiers fail to learn effective patterns for accurate
prediction for these two categories. Lazy prediction enjoys
high accuracy mainly in these two categories: by Macro-F1,
KNN is the best performing method followed by LR.

To better understand the effectiveness of content and
contextual features, we rank all features based on their X 2

scores. The 15 most effective features and 15 least effective
features are listed in Table 4. Because some of the features
listed in Table 1 are multidimensional (e.g., Fx11 exposure
vector is a 15-dimensional vector), the complete feature
space used in our prediction is 53-dimensional.

The main observation made from Table 4 is consistent
with that from Table 3; that is, contextual features are more
effective than content features. Observe that user count is
the most important feature, indicating that Φt

h
+1 has strong

relations with Φt
h. The next most effective feature is border

user count, which is used to estimate the number of potential
users who will adopt a hashtag. Because of the high corre-
lation between user count and number of tweets, number of
tweets plays a similar role as user count in hashtag popular-
ity prediction. In addition to these three contextual features,
TriangleFrac derived from the community graph describing
the connectivity among users is also one of the most effec-
tive features. Among the top 15 most effective features, 9 are
elements of the exposure vector. Recall that exposure vector
is a 15-dimension vector describing the distribution of
border users based on their exposure times. The results in
Table 4 reveal a strong relationship between the times of
exposure and the adoption of the hashtag. In general, larger
exposure probability leads to more attention from users to a
hashtag that increases the probability of hashtag adoption. In
our analysis, average authority, however, is not as effective
as expected. One possible reason is that most hashtags
related to breaking news or ongoing events/topics are not
created or retweeted by influential users. Such hashtags
require no promotion from the influential users before their
wide spread in Twitter.

Among all content features, hashtag clarity is the most
effective one. Discussed earlier in the Features for Hashtag
Popularity Prediction section, hashtag clarity quantifies
topical cohesiveness of tweets in Tt

h. Hashtags with higher
clarity scores usually have clear semantic meanings and
refer to some specific topics or events (e.g., #royalwedding,
#cancer). One dimension of topic vector (topic 13) has fairly
good predicting ability, whereas most other dimensions are
listed under the least effective features. To evaluate the
effectiveness of topic vector, we conducted another set of
experiments using the best performing classifier LR on the

TABLE 3. Hashtag popularity prediction accuracy by eight methods.

Method Features Micro-F1 Macro-Pr Macro-Re Macro-F1

Random – .197 .198 .205 .163
Lazy – .254 .251 .450 .317
PriorDist – .385 .209 .210 .209
NB Fc .326 .263 .337 .235

Fx .345 .351 .367 .310
Fc+x .405 .348 .401 .348

KNN Fc .432 .317 .341 .326
Fx .501 .385 .383 .383
Fc+x .502 .398 .402 .399

C4.5 Fc .488 .350 .332 .339
Fc+x .523 .382 .376 .378
Fx .534 .402 .373 .384

SVM Fc .555 .111 .200 .143
Fx .572 .316 .302 .261
Fc+x .585 .414 .330 .310

LR Fc .535 .235 .211 .174
Fx .592 .439 .346 .347
Fc+x .598 .461 .393 .396

Note. The highest accuracy achieved for each measure is shown in
boldface.

LR = logistic regression; KNN = k-nearest neighbors; NB = Naïve
bayes; SVM = support vector machines.

TABLE 4. The 15 most effective features (rank 1–15) and 15 least
effective features (rank 39–53).

Rank Feature Rank Feature

1 Fx1: UserCount 39 Fc5: TopicVector—T(2)
2 Fx10: BorderUserCount 40 Fc5: TopicVector—T(14)
3 Fx2: TweetsNum 41 Fx9: AveEdgeStrength
4 Fc6: HashtagClarity 42 Fc5: TopicVector—T(17)
5 Fx6: TriangleFrac 43 Fx8: ComponentRatio
6 Fx11: ExposureVector—P(15) 44 Fc5: TopicVector—T(20)
7 Fx11: ExposureVector—P(14) 45 Fc5: TopicVector—T(9)
8 Fx11: ExposureVector—P(9) 46 Fc5: TopicVector—T(1)
9 Fx11: ExposureVector—P(10) 47 Fc4: PosRatio

10 Fc5: TopicVector—T(13) 48 Fx5: AveAuthority
11 Fx11: ExposureVector—P(11) 49 Fc4: NegRatio
12 Fx11: ExposureVector—P(5) 50 Fc7: SegWordClarity
13 Fx11: ExposureVector—P(8) 51 Fc4: NeuRatio
14 Fx11: ExposureVector—P(7) 52 Fc2: SegWordNum
15 Fx11: ExposureVector—P(12) 53 Fc1: ContainingDigits
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feature set without topic vector. The prediction accuracy by
Micro-F1 declines 3% compared with the result of using
topic vector, that is, the full feature set. In short, although
topic vector is not as effective as most contextual features, it
contributes to better prediction accuracy. Listed in Table A1,
the topical keywords (by their generating probability under
each topic) and their related hashtags indicate that the topic
model does capture the general topics of the hashtags
through their annotated tweets. These topics include bursty
events (e.g., presidential election in Singapore, Japan earth-
quake, royal wedding), topics about celebrity (e.g., Lady
Gaga, Taylor Swift, Justin Bieber), and daily life topics (e.g.,
birthday, weather, dinner, home). A closer look at the topics
reveals that words from event-related topics are more cohe-
sive. Listed in Table 4, the least effective features are senti-
ment vector and lexical features extracted from hashtag
itself such as ContainingDigits and SegWordNum.

5.3 Case Study: Bursty Versus Continuous Hashtags

Reported by Lehmann et al. (2012), hashtags of the same
category follow similar trends. Three categories (i.e., bursty,
continuous, and periodic hashtags) are defined in their work.
It is interesting to investigate whether there is any difference
in prediction accuracy for hashtags of different categories.
Because of the relatively small number of periodic hashtags
(e.g., #gossipgirl, #bigbangtheory) in our data set, we
conduct experiments to compare the prediction accuracy for
bursty and continuous hashtags. Following the algorithm
proposed by Lehmann et al. (2012), we chose the top 25
bursty hashtags in our evaluation. For continuous hashtags,
we sorted the hashtags by their repetition frequency6 and
picked the top 25 as continuous hashtags. Table 5 lists the
selected bursty and continuous hashtags. As expected,

bursty hashtags mostly capture some important events
during the 8 months covered by our data set. For example,
#goldenglobe is about Golden Globe Awards, #sgpresident
talks about the president election campaign in Singapore,
and #supportjapan refers to the Japan earthquake. In con-
trast, the continuous hashtags selected likely gain long-
period popularity (e.g., #cancer, #singapore, and #love).

Using all features and LR as the classifier, the Micro-F1

achieved for bursty and continuous hashtags is .640 and
.560, respectively. Compared with the overall prediction
accuracy of .598, we conclude that the popularity of bursty
hashtags can be predicted more effectively than continuous
hashtags using the features evaluated.

5.4 Case Study: 2-Day Prediction

Our task of predicting the popularity of newly popular
hashtag can be easily extended to be predicting popularity of
hashtags that have been popular for 1 or more days. Never-
theless, as shown in Figure 2b, few hashtags are popular for
a long time. Because of the limited number of train/test
instances, we only evaluate the effectiveness of the features
for popularity prediction of hashtags that have been popular
for 2 days. The task then becomes that given hashtag h that
has been at least marginally popular for time t - 1 and t (i.e.,
Φt

h
− >1 φ and Φt

h > φ), we predict the category of Φt
h
+1. The

number of instances by the five categories is reported in
Table 2.

To extract features for ht-1 and ht, there are two straight-
forward approaches: (a) aggregation to consider the tweets
annotated by hashtag h at time t - 1 and time t as one
collection, and derive content and contextual features from
these tweets; and (b) concatenation to extract content/
contextual features for ht-1 and ht, respectively, as we do in
our earlier task and then concatenate the two feature vectors.
In other words, the dimension of concatenated feature vector
is doubled. Compared with the 1-day prediction, the aggre-
gation approach for 2-day prediction extracts features from
a larger sample of tweets (and their users); the concatenation
approach, in contrast, could capture the feature changes
from time t - 1 to time t.

Figure 3 shows the Micro-/Macro-F1 by the eight classi-
fication methods with aggregated features and concatenated
features, respectively. Similar to our earlier observations, all
five classification methods achieve better prediction accu-
racy than the three baseline methods. LR performs the best
by Micro-F1, and C4.5 is the best performing method by
Macro-F1. We also observe that methods with aggregation
features slightly outperform methods with concatenation
features by Micro-F1 measure.

6 Discussion

In this article, we propose methods to predict the popu-
larity of new hashtags on Twitter. We provide a comprehen-
sive evaluation of both content and contextual features for
short-term prediction. Some of the features evaluated in this

6Recall that in the problem setting, a new hashtag is defined as a hashtag
not gaining popularity in the past 7 days at the time of evaluation. The same
hashtag may be considered as “newly popular” hashtag at different time
points.

TABLE 5. Selected continuous and bursty hashtags.

Hashtag category 25 Selected hashtags

Continuous
hashtags

#likeaboss, #cancer, #singapore, #sgpolitics,
#sgedu, #pisces, #sg, #nowplaying, #fail,
#justsaying, #fb, #ge2011, #fml, #badsgjokes,
#mentionto, #greatsingaporesale, #apple,
#disneywords, #ff, #happything, #mydreamjob,
#hardtruths, #life, #love

Bursty hashtags #arsenal, #sgfootball, #tsunami, #bbcwedding,
#goldenglobe, #vma, #americanidol, #ndp2011,
#supermoon, #londonriot, #earthquake,
#sgelections, #happybirthdaychrisbrown,
#sgheatwave, #billboardawards, #sgpresident,
#gleefinale, #supportjapan, #f1, #oscar,
#twittercrush, #ukriots, #ios5, #royalwedding,
#2ne1lonely
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article have been used in other studies (see Related Work
section for a survey). For instance, a subset of the contextual
features, including triangles, density, and exposure, was
used in Romero et al. (2011) to study the differences in the
mechanics of information diffusion of hashtags of different
categories. Our evaluation complements these studies by
showing the effectiveness of these features in short-term
hashtag popularity prediction. On the other hand, to the best
of our knowledge, our work is the first to conduct topic
modeling for hashtag analysis in Twitter and to quantify
hashtag topical cohesiveness using clarity. Our evaluation
results showed that the two novel content features are effec-
tive in hashtag popularity prediction.

We note that our study is significantly different from the
work on hashtag frequency prediction on a weekly basis
(Tsur & Rappoport, 2012) in three aspects. First, we predict
the number of users who will adopt a hashtag, not the
number of tweets annotated by the hashtag. We therefore
derive features from the community graph formed by users
who have adopted a hashtag; these contextual features are
not used in Tsur and Rappoport (2012). Second, our content
features are derived from both a hashtag itself and the
content of the tweets annotated by the hashtag. Almost all
content features in Tsur and Rappoport (2012), however, are
derived from the hashtag itself. Third, we target time-critical
applications by predicting hashtag popularity on a daily
basis rather than a weekly basis. This is important because
most bursty hashtags are popular only for a few days
(Lehmann et al., 2012).

Our technique can benefit advertising and public rela-
tions companies by providing predictions on the popularity
of hashtags related to the organization in a timely manner.
However, as new hashtags are constantly introduced by
Twitter users, determining whether a new hashtag is related
to an organization remains an open problem. Last, we

believe that our techniques can be easily extended to predict
the popularity of any predefined string (e.g., a company
name, brand, or product name) by considering each such
string as a hashtag and monitoring all tweets containing the
strings. For instance, if a tweet contains a predefined product
name, we can consider the tweet contains the product’s
“hashtag.” Together with content and sentiment analysis
of all tweets containing these product hashtags, popularity
prediction can lead to more successful marketing and PR
campaigns.

7 Conclusion and Future Work

In this article, we propose methods to predict the hashtag
popularity of new topics on Twitter by formulating the
problem as a classification task and evaluating three baseline
methods and five classification methods. The main focus of
our work was to identify and evaluate the effectiveness of
content and contextual features derived from tweets anno-
tated with candidate hashtags. Our experiments demon-
strated that contextual features are more effective than
content features. This is consistent with the finding that the
property of the community graph plays a dominant role in
information diffusion. We also show that our prediction
technique is more effective for bursty hashtags than continu-
ous hashtags.

In our future work, we will analyze other potentially
useful features, and more importantly, propose more effec-
tive models for hashtag popularity prediction. As reported in
the Related Work section, 21.7% of hashtags co-occur with
Twitter URLs in tweets in our data set. Each URL links to a
web document. This type of information can be used to
enrich hashtag representation (e.g., by a transfer learning
approach). Content features from web documents will be
presented and evaluated in our future work. In addition, the
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model for 2-day prediction does not outperform that for
1-day prediction as expected. One possible reason is that the
hashtag’s change in popularity over the 2 days is not fully
utilized. Hence we plan to investigate new techniques to
fully use all available information for hashtag popularity
prediction.
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Appendix

List of 20 Topics
TABLE A1. Topics with keywords and example hashtags.

Topic ID Topical keywords and example hashtags

Topic 01 school time life day money homework sleep study late home class hard friends test fun #firstdayofsummer, #thismorning
Topic 02 pap pm lee rally vote party singapore opposition grc singaporeans people george govt #sg, #sgelection, #sgpolitics
Topic 03 mum dad mom teacher bieber justin fat steven lim lesbians loves called #happyfathersday, #happymothersday
Topic 04 singapore day national ndp chinese home happy song proud red free country fun #ndp, #sosingaporean, #happybirthdaysingapore
Topic 05 ipad tak nak kita saf ni aku dah app la ah angry lagi kan kl yang makan macam army #ipadsforsale, #lessstrict
Topic 06 day time morning rain bus sunday night home dinner weekend week weather train car #fb, #fail, #presidentswouldsay
Topic 07 song lady listening taylor time swift gaga ne mars perry justin bruno katy baby #nowplaying, #bornthisday, #vma
Topic 08 sg ah la lol eh omg damn lah leh liao sia time haha call watch die top watching #aprilfool, #badsgjokes
Topic 09 curry bangla love bangala bad lady gaga lol rock run trending rolling day black katy #curryday, #replacesongnameswithbangala
Topic 10 trending happy birthday trend omg love shine tt awesome worldwide singapore day lol #happybaeday, #happywooday
Topic 11 love world heart day life wanna night feel miss girl beautiful perfect cry smile #everygirl, #gladyoucame, #iloveyoubecause
Topic 12 time feel start watch gonna bad damn lol real wtf guess bring hear till reading #ff, #justsaying, #sad
Topic 13 tan tony president cheng vote ah results tt yam votes bock mee cna election win #sgpresident, #sgpresidentialelection
Topic 14 people talk person stop talking bitch twitter ur stupid wrong ppl fucking #beforetwitter, #bigmistake, #mentionto
Topic 15 watching omg watch kate prince wedding game william united goal match live dress #royalwedding, #bbcwedding
Topic 16 pants bacon harry potter voldemort grind days transformers movie lol fast king #moviesilove, #nowwatching
Topic 17 pancakes super generation snsd girls junior lol simple pancake sooyoung time boys #snsdtour2011, #ilovesnsd, #snsdvisualdreams
Topic 18 love hate im friends lol dont eat people food family music lot sleep play school #meatschool, #wheneverimbored
Topic 19 japan hope god people world news safe earthquake pray tsunami stay dead hit stop strong #japan, #helpjapan, #earthquake
Topic 20 duck school students twitter class trending facebook social teachers tv playing top sec school #sgedu, #iftwitterwashighschool
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