
Twevent: Segment-based Event Detection from Tweets

Chenliang Li, Aixin Sun, Anwitaman Datta
School of Computer Engineering, Nanyang Technological University, Singapore

{lich0020,axsun,anwitaman}@ntu.edu.sg

ABSTRACT
Event detection from tweets is an important task to understand the
current events/topics attracting a large number of common users.
However, the unique characteristics of tweets (e.g., short and noisy
content, diverse and fast changing topics, and large data volume)
make event detection a challenging task. Most existing techniques
proposed for well written documents (e.g., news articles) cannot
be directly adopted. In this paper, we propose a segment-based
event detection system for tweets, called Twevent. Twevent first de-
tects bursty tweet segments as event segments and then clusters the
event segments into events considering both their frequency dis-
tribution and content similarity. More specifically, each tweet is
split into non-overlapping segments (i.e., phrases possibly refer to
named entities or semantically meaningful information units). The
bursty segments are identified within a fixed time window based
on their frequency patterns, and each bursty segment is described
by the set of tweets containing the segment published within that
time window. The similarity between a pair of bursty segments
is computed using their associated tweets. After clustering bursty
segments into candidate events, Wikipedia is exploited to identify
the realistic events and to derive the most newsworthy segments
to describe the identified events. We evaluate Twevent and com-
pare it with the state-of-the-art method using 4.3 million tweets
published by Singapore-based users in June 2010. In our experi-
ments, Twevent outperforms the state-of-the-art method by a large
margin in terms of both precision and recall. More importantly,
the events detected by Twevent can be easily interpreted with little
background knowledge because of the newsworthy segments. We
also show that Twevent is efficient and scalable, leading to a desir-
able solution for event detection from tweets.

Categories and Subject Descriptors
H.3.4 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval—Clustering; Information filtering

Keywords
Event detection, Twitter, Microblogging, Tweet segmentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

1. INTRODUCTION
Twitter, as a social networking service and microblogging ser-

vice, has gained great success in recent years. Twitter users not
only share and communicate with friends and family, but also to
the general public. The unique gene of the latter enables Twitter
users to access and contribute “the latest stories, ideas, opinions,
and news1” about what many users find interesting. As a result,
Twitter becomes one of the top-10 most visited website on the In-
ternet2. As of March 2012, there are more than 140 million active
users with over 340 million tweets published a day3.

1.1 Motivation
In Twitter, each user becomes an individual news media that

not only absorbs/assembles information (such as breaking news),
but also publishes/propagates opinions, sentiments, and stories of
themselves [9, 20]. The message unit, called a tweet, is limited to
maximum 140 characters in length. Such a concise unit enables
information updates at extremely low-cost and in realtime, mak-
ing Twitter a timely fresh information resource [3]. Consequently,
the intensive interaction between users in realtime enables timely
event detection by monitoring tweet updates and many prominent
events are timely spotlighted by Twitter users. For example, a
record number of tweet updates per second was set within a 30-
sec period after the 2010 FIFA World Cup match between Japan
and Cameroon on June 14, 2010. Three days later, the record was
broken right after the Lakers’ victory in the 2010 NBA Finals on
June 17, 20104. Other than sports related events, it has been re-
ported that earthquake detection based on Twitter is faster than the
detection based on traditional media [19]. Moreover, event detec-
tion from tweets would help us gain timely understanding of users’
opinion/sentiment with respect to the detected events, making it
possible for company/organization to take a fast response to any
emerging crisis. Event detection from Twitter stream would also
contribute to the study of mass communication by analyzing the
types of events general users are mostly interested in [22] as well
as the reactions by users at different geographical regions [15].

Event detection from Twitter stream is challenging for at least
three reasons: short and noisy content, diverse and fast changing
topics, and large data volume. The task of event detection has been
intensively studied in the past mostly on formal texts, e.g., news
articles, blog posts, or academic papers [4–6, 8]. However, tweets
are significantly different from well written texts because of the
shortness and informal writing style. According to the principle

1https://twitter.com/about
2http://www.alexa.com/siteinfo/twitter.com
3http://blog.twitter.com/2012/03/twitter-turns-six.html
4http://bits.blogs.nytimes.com/2010/06/18/
sports-fans-break-records-on-twitter/

of least effort [26], people used to communicate information with
the least context, especially in the situation where a short message
with free style is allowed. This makes tweets contain a lot of mis-
spellings and informal abbreviations [17]. Because of the noise and
shortness, direct adoption of most existing approaches developed
for formal texts (e.g., clustering bursty features with co-occurrence
measure [5, 6]) is doomed to fail on Twitter streams.

Tweets cover very diverse topics and about half of the tweets
are not event-related according to a study by PearAnalytics [12].
They manually categorized 2, 000 tweets into six categories: news
(3.6%), spam (3.75%), self-promotion (5.85%), pointless babble
(40.55%), conversational (37.55%) and pass-along value (8.7%).
The numbers indicate the percentage of the tweets in each category.
Based on their analysis, about 50% (i.e., spam, self-promotion,
pointless babble) of tweets are not related to events. Similar ob-
servations are also made in our pilot study of the tweets data used
in our experiments. However, a large number of features would
be expected being bursty from tweets of pointless babble category.
Obviously, none of these bursty features would help in detecting
any event, but would mislead the event detection algorithm and
also incur unnecessary computational cost. The situation would
be further exaggerated with the fast changing topics in tweets. For
example, many users would discuss about a football match during
the match or within a few hours right after the match but not for a
few days.

1.2 Overview of Twevent
To address the above challenges, we present Twevent, a novel

segment-based event detection system for tweets. One novel fea-
ture of Twevent is to use the notion of tweet segment instead of
unigram to detect and describe events. A tweet segment is one or
more consecutive words (or phrase) in a tweet message. We ob-
serve that tweet segments contained in a large number of tweets are
likely to be named entities (e.g.,Steve Jobs) or some semantically
meaningful unit (e.g.,Argentina vs Nigeria). Therefore, a tweet seg-
ment often contains much more specific information than any of
the unigrams contained in the segment. The use of tweet segment
instead of unigrams therefore greatly reduces the noise in the event
detection process and also makes the event detected much easier to
be interpreted. For example, Twevent detected an event with the fol-
lowing five segments [south korea, greece, korea vs greece, korea
won, korea] on 12 June 2010; the event is self-explanative. Another
novel feature of Twevent is the utilization of external knowledge
base in guiding the event detection process. In the following, we
brief the main steps in Twevent for event detection from tweets.

Given tweets published in a Twitter stream, Twevent firstly seg-
ments each individual tweet into a sequence of consecutive phrases
(i.e., segments). Then bursty segments are identified by modeling
the frequency of a segment as a Gaussian distribution based on pre-
defined fixed time-window (e.g., a day or an hour). To detect events
attracting a larger number of users, we also utilize user frequency
(or user support) of the tweet segments to identify the event-related
bursty segments, called event segments. After that, we apply an ef-
ficient clustering algorithm to group event-related segments as can-
didate events, which requires only a single pass through each pair of
event segments. To compute the similarity between a pair of event
segments, we consider the frequency distribution and the content of
the tweets containing each of the tweet segments published within
the time-window. The result of event segment clustering is a set
of candidate events detected in that time window. The knowledge
encoded in Wikipedia is then harnessed to help us figure out the
realistic events detected from the trivial ones and to derive the most
representative segments for describing the realistic events. As the

result, each event detected by Twevent is represented by a ranking
list of segments including many named entities for easy interpreta-
tion.

Twevent holds several features to address the challenges of event
detection from tweets. Tweet segmentation employed in Twevent
identifies informative phrases which reduces noise in further pro-
cessing. The use of user frequency in bursty event segment ex-
traction makes Twevent robust to the negative impact of the tweets
of Spam and Self-Promotion. The external knowledge base offers
Twevent the ability to resist the adverse impact of diverse and dy-
namic topics of tweets, such as tweets of Pointless Babble, and
derive interpretable event descriptions. Lastly, Twevent is efficient
and scalable by utilizing only the frequency of segments for bursty
segment extraction and non-iterative clustering algorithm.

We evaluated Twevent with more than 4.3 million tweets pub-
lished by Singapore-based users with one month period. In our
experiments, Twevent achieves much better performance compared
to the state-of-the-art method in terms of both precision and re-
call. More specifically, Twevent achieves a precision of 86.1%, and
a recall of 75 distinct events detected from the one-month data.
Our experimental results also demonstrate the effectiveness of us-
ing tweet segments compared to the same detection process using
unigrams. To illustrate that the events detected by Twevent often
contain named entities or convey concise information, we list the
most newsworthy segments detected by Twevent in Table 2 as part
of the experimental results.

The rest of the paper is organized as follows. Section 2 surveys
related work. Section 3 describes Twevent and its components in
detail. Section 4 presents the experimental results. We conclude
this paper in Section 5.

2. RELATED WORK
Event detection has a long history, which can be traced back

to the Topic Detection and Tracking (TDT) project5, which is to
detect and track events from news stream. Two main approaches
have been studied in the literature: document-pivot and feature-
pivot approaches. The former aims to cluster documents related to
the same events and then extract event-based features from the doc-
ument clusters [1, 2, 23–25]. The latter aims to firstly identify the
representative features of the hidden events from the stream, which
are assumed to have bursty frequency patterns along time. Then
events are detected by clustering these representative features [8].
Because the proposed Twevent is a feature-pivot method, in our lit-
erature survey, we therefore mainly focus on feature-pivot methods
for event detection from formal texts.

2.1 Event Detection from Formal Texts
Kleinberg [8] proposed to detect events by analyzing frequency

patterns along time. An infinite-state automation is used to model
the changes of word frequency, and the state transitions are con-
sidered as events. Fung et al. [5] proposed to identify bursty fea-
tures as representatives for the events hidden in text stream. The
frequency of each feature (i.e., unigram word) is modeled with a
binomial distribution. The bursty feature extraction is then based
on the perspective of statistics. The events are then detected by
maximizing the co-occurrences among documents and the consis-
tence of the frequency distributions for all bursty features within
an event. The timestamp for an event is calculated based on the
bursty periods of the bursty features related to that event. The au-
thors further presented an event-based search framework in [4] to
retrieve groups of documents such that the documents in each group
are about the same event. In their result, the events are organized
5http://projects.ldc.upenn.edu/TDT/

in a time-based hierarchy. In this event-based framework, a set of
related bursty features with similar frequency distributions are re-
trieved firstly. Then, documents related to the bursty features are
extracted and clustered into a hierarchy of events. Instead of using
frequency directly, He et al. [6] proposed to use Discrete Fourier
Transformation (DFT) to extract bursty features. They build a sig-
nal for each feature using document frequency - inverse document
frequency (d f × id f) scheme along time domain. Then, DFT trans-
forms the signal in time domain to frequency domain, i.e., a spike
in frequency domain indicates a corresponding high frequency sig-
nal source. Similar to [5], they group bursty features into events by
considering both features’ co-occurrence and their distributions in
time domain. To estimate the timestamp of the events, they model
a d f × id f signal with a Gaussian mixture.

Unlike formal texts that are formally written and published in
moderate rate, tweets are short, informally written, and published at
an enormous amount. Thus, bursty feature extraction solely based
on statistics would result in a huge number of bursty features, par-
ticulary when unigram feature representation is used. Similarly,
the application of DFT would be dread and prohibited. Further, co-
occurrence measures used in [5,6] may not work well in the context
of twitter due to sparsity.

2.2 Event Detection from Tweets
Recently, event detection on twitter stream becomes a hot re-

search topic. Michael and Nick [11] presented a trend detection
system over twitter stream. They firstly identify the bursty terms
based on queueing theory. Then bursty terms are grouped into the
events based on their co-occurrences. For a detected trend, PCA,
SVD and entity extraction techniques are then applied to derive
contextual information for the trend description. Petrović et al. [13]
tracked events on twitter stream by applying locality sensitive hash-
ing (LSH). LSH is applied to each tweet to measure the similarity
to existing tweets. The tweets similar to each other are grouped as
events. Swit and Tsuyoshi [14] proposed an approach for break-
ing news detection and tracking by clustering the similar tweets
together. The approach only focuses on the tweets with a spe-
cific hashtag #breakingnews. The similarity between two tweets
of breaking news is measured by using a variant of t f · id f scheme
where the named entities detected by a Named Entity Recognizer
(NER) are further boosted. Popescu et al. [16] proposed a method
for entity-based event detection on twitter streams. A set of tweets
containing the predefined target entity are processed and machine
learning techniques are used to predict whether the tweets consti-
tute an event regarding the entity. Very recently, Li et al. [18]
proposed to detect crime and disaster related Events (CDE) from
tweets. Conventional text mining techniques are applied to extract
the meta information (e.g., geo-location names, temporal phrase,
and keywords) for event interpretation. To summarize, most exist-
ing approaches for detecting events from tweets are applicable to
certain types of tweets (e.g., having a specific hashtag, containing
a predefined entity, or related to crime and disaster). The other so-
lutions including [11] and [13] involve complicated processing and
lead to heavy computational cost.

The most related work to ours, is the approach proposed by Weng
and Lee, named EDCoW [21]. There are three steps in their ap-
proach. Firstly wavelet transformation and auto correlation are ap-
plied to measure the bursty energy of each word. The words with
outstanding high energies are retained as event features. Then they
measure the similarity between each pair of event features by us-
ing cross correlation. At last, modularity-based graph partitioning
is used to detect the events, each of which contains a set of words
with high cross correlation. However, several issues get in the way

of the practical application for their approach. Wavelet transfor-
mation and auto correlation for each word of the twitter stream
would require a huge amount of computation, making it not a scal-
able choice. Moreover, utilizing only cross correlation for similar-
ity measure would lead to the resulted event consisting of several
distinct events which happened at the same period by coincidence
(e.g., two football matches hold at the same time during FIFA 2010
World Cup). Thirdly, the detected events with unigram features are
difficult for human interpretation. In Twevent, we segment each
tweet into possible semantic phrases, making the detected events
easy to interpret. During the detection process, we do not employ
computational costly Wavelet transformation and auto correlation
for tweet segments. Instead, only the tweet frequency and user fre-
quency are needed for bursty tweet segment detection. To distin-
guish events that happened at the same period, Twevent computes
content similarity for a pair of tweet segments. Each tweet segment
is described by the content of the tweets containing the segment.
Although pair-wise similarity computation is computational costly,
it is only applied to a relatively small set of bursty tweet segments
detected within one time window.

3. TWEVENT
In this section, we present a feature-pivot event detection frame-

work. Illustrated in Figure 1, our framework consists of three main
components: tweet segmentation, event segment detection, and event
segment clustering. After receiving a tweet from a Tweet stream,
tweet segmentation component splits the tweet into non-overlapping
segments. A tweet segment can be either a unigram or multi-gram
(e.g.,[mtv movie awards], [steve jobs]), and each segment may or
may not represent a semantic unit. The resultant tweet segments
obtained from a tweet, together with the content and timestamp of
the tweet, are indexed in the segment index. The event segment
detection component detects abnormal bursty segments by consid-
ering tweets frequency distribution and user frequency of the seg-
ments. The event segments about the same event are then grouped
together to form the event by the event clustering component. In the
rest of this section, we describe each component in detail following
the order of their usage in our framework.

3.1 Tweet Segmentation
The notion of tweet segment was firstly proposed in our recent

work [10] for named entity recognition, not related to event detec-
tion. In the following, we brief the techniques for tweet segmenta-
tion.

Given a tweet d ∈ T , the problem of tweet segmentation is
to split d into m non-overlapping and consecutive segments, d =

〈s1s2...sm〉, where a segment si is either a word (or unigram) or a
phrase (or multi-gram). We formulate tweet segmentation problem
as an optimization problem with the following objective function,
where C is the function measures the stickiness of a segment or a
tweet.

arg max
s1,...,sm

C(d) =

m∑
i=1

C(si), (1)

A high stickiness score of segment s indicates that further split-
ting segment s would break the correct word collocation. In other
words, segment s cannot be further split at any internal position if
it has a high stickiness score. We define stickiness function by us-
ing the generalized Symmetric Conditional Probability (SCP) for
n-grams with n ≥ 2, supported by statistical information derived
from Microsoft Web N-Gram service6 and Wikipedia.
6http://research.microsoft.com/en-us/collaboration/focus/cs/
web-ngram.aspx

Tweets Stream

Tweet

Segmentation

Events

Microsoft Web

N-Gram
Wikipedia

Event Segment

Detection

Event Segment

Clustering

Segment Index

Figure 1: Segment-based Event Detection System Architecture

SCP is defined to measure the "cohesiveness" of a segment s =

〈w1...wn〉 (n > 1) by considering all possible binary segmentations,
as shown in the following equation, where Pr(·) denotes the prior
probability derived from Microsoft Web N-Gram service.

SCP(s) = log
Pr(s)2

1
n−1

∑n−1
i=1 Pr(w1...wi) Pr(wi+1...wn)

(2)

In this equation, the logarithm value is taken to avoid underflow.
Note that, SCP(s) = 2 log Pr(w) if segment s is of unit length (i.e.,
|s| = 1 or n = 1).

Based on SCP(s), we define the stickiness score of segment s by
considering the high quality semantic resources in Wikipedia. That
is, segments which frequently appear as anchor texts in Wikipedia
are further favored. The stickiness function is then defined as:

C(s) = L(s) · eQ(s) · S(SCP(s)) (3)

L(s) =


|s| − 1
|s|

, for |s| > 1

1, for |s| = 1
(4)

where Q(s) is the probability that s appears as the anchor text in the
Wikipedia articles that contain s, and S(·) is the sigmoid function.
The functionL defined in Equation 4 is used to give moderate pref-
erence for longer segments. With this stickiness function, the tweet
segmentation defined in Equation 1 can be finished efficiently in
linear time with dynamic programming.

3.2 Event Segment Detection
One salient characteristic of emerging events in text streams is

that there is a significant coverage of topics related to an event
within a certain time period. Accordingly, given a collection of seg-
ments of the tweets published within a fixed time window, bursty
segments in terms of frequency would be potentially related to
some hot events talked and shared by Twitter users. However, con-
sidering the dynamic nature and the large volume of tweets pub-
lished everyday, efficiently detecting bursty segments is non-trivial.

Let Nt denote the number of tweets published within time-window
t from Twitter stream, fs,t be the number of tweets containing s
published within t, i.e., the tweet frequency of segment s in time-
window t. The probability of observing frequency fs,t of segment s
in t can be modeled by a binomial distribution [5].

P(fs,t) =

(
Nt

fs,t

)
p fs,t

s (1 − ps)Nt− fs,t (5)

where ps is the expected probability of tweets that contain segment
s in a random time window. Given that Nt is very large in the case of
Twitter stream, it is reasonable to approximate P(fs,t) with Gaussian
distribution:

P(fs,t) ∼ N(Nt ps,Nt ps(1 − ps)). (6)

Thus, given segment s, the expected number of tweets containing
s would be E[s|t] = Nt ps. The more the additional tweets contain-
ing s with respect to E[s|t], the more bursty the segment is. On

the other hand, segment s with frequency fs,t <= E[s|t] is consid-
ered as a non-bursty segment and will not be considered for further
processing. Hence, we define bursty segment as follows.

Definition 1. [Bursty Segment] A segment s is a bursty seg-
ment in time window t if its tweet frequency fs,t > E[s|t].

Next we transfer the frequency of a bursty segment into range of
(0, 1] indicating its bursty probability.

We consider a bursty segment s to be extremely bursty and as-
sign Pb(s, t) = 1 if its tweet frequency fs,t ≥ E[s|t] + 2σ [s|t], where
σ [s|t] =

√
Nt ps(1 − ps) is the standard deviation based on Equa-

tion 6. For a bursty segment whose tweet frequency fs,t falls within
the range (E[s|t],E[s|t] + 2σ [s|t]), we use the following equation to
compute its bursty probability.

Pb(s, t) = S

(
10 ×

fs,t − (E[s|t] + σ [s|t])
σ [s|t]

)
(7)

where S(·) is the sigmoid function, and a constant 10 is introduced
in the equation because the sigmoid function S(x) smooths reason-
able well for x in the range of [−10, 10].

With the above statistical method, we are able to detect the bursty
segments and assign each a bursty probability. However, Twitter
is significantly different from most text streams (e.g., news stream
and blog stream) that have been extensively studied in the literature
for bursty feature/event detection, because of its informal writing
style and topic diversity. Therefore, a large number of tweet seg-
ments would be detected to be bursty segments. A simple statistics
in our study shows that the number of distinct bursty segments is
about 75% of the number of distinct tweets in a randomly chosen
time window. Among the bursty segments detected, many contain
misspelling words and informal abbreviations. These noisy bursty
segments would not only incur unnecessary computational cost but
also hurt the event detection accuracy in the further processing. We
therefore source for the wisdom of the crowds to filter the bursty
segments.

Instead of solely relying on the tweet frequency of a segment,
we believe that a bursty segment has a higher chance to be related
to an event if there are more users post tweets containing the seg-
ment. Hence, we define user frequency us,t of a segment s, which
is the number of users who post tweets containing s during the time
period t.

With the two factors, bursty probability and user frequency, the
most simple approach to detect the event-relatedness of a bursty
segment is to take the product of the two factors. However, this
simple approach would make the top-ranked segments dominated
by the ones used by most users, such as "i’m", "i’ll", and "guys". To
some extent, bursty segments with higher user frequencies are cor-
related with some events. However, considering the limited length
of tweets, the bursty segments with higher user frequencies may not
be semantically meaningful and are often ambiguous. For instance,
"nigeria", "argentina" and "argentina vs nigeria" are all related to
a single event: a 2010 world cup match between nigeria and ar-

gentian. However, the bursty segment "argentina vs nigeria" has
a relatively much lower user frequency due to the principle of the
least effort [26]. In contrast, comparing "argentina vs nigeria" with
either "nigeria" or "argentina", the segment "argentina vs nigeria"
would convey much more information about the event. Based on
this observation, we assign each bursty segment s a weight wb(s, t)
by using a logarithm function.

wb(s, t) = Pb(s, t) log(us,t) (8)

The above weight scheme would keep the more bursty segments of
the higher user frequency being ranked higher and the more bursty
segments of the moderate user frequency being ranked relatively
higher than the others.

By ranking the bursty segments by their weights wb(s, t), we
then retain the top-K bursty segments as potential event-related seg-
ments (or simply event segments) for further processing. The value
of K is non-trivial because a small K would result in a very low
recall of events detected, and a large K may bring in more noise,
leading to much higher computational cost as well as lower preci-
sion on the detected events. In practical, the optimal K value de-
pends on the size of the time window, and requires some expertise
knowledge (e.g.,, users from different regions may be interested in
different topics [15]). In this work, we apply a heuristic strategy to
filter out the bursty segments by setting K to

√
Nt .

Definition 2. [Event Segment] A bursty segment s is a potential
event-related segment (or simply event segment) in time window t
if it is ranked among top-K bursty segments by wb(s, t) in descend-
ing order, where K =

√
Nt .

3.3 Event Segment Clustering
Given a set of event segments detected from the previous step,

we now cluster them into groups, each of which corresponds to a
possible realistic event. Some event segments that cannot be clus-
tered into groups are considered noise or non-event-related. These
non-event-related segments are dropped from further processing.

3.3.1 Event Segment Similarity
Accordingly, we need to derive a similarity measure for each pair

of event segments. Various similarity measures have been used in
the past to cluster bursty features detected in formal texts, mainly
based on co-occurrences of bursty features [5, 6]. However, sim-
ilarity measure based on co-occurrence would not work well on
tweets because they are much shorter in number of words com-
pared to formal documents. Moreover, the topics in tweets are ex-
tremely dynamic and fast changing. Considering these two factors,
we propose to measure similarity between two event segments by
the content of their associated tweets and their temporal frequency
patterns.

For each time window t, we further divide the time period evenly
into M sub-time-window: t = 〈t1...tM〉. The tweet frequency of
an event segment s in sub-window tm is denoted by ft (s,m). Let
Tt (s,m) be the set of tweets that each contains segment s and is
published within sub-window tm. We define the similarity between
a pair of segments sa and sb within time window t as follows:

simt (sa, sb) =

M∑
m=1

wt (sa,m)wt (sb,m)sim (Tt (sa,m),Tt (sb,m)) (9)

where sim(T1,T2) measures the similarity between two sets of tweets
T1 and T2, and wt (s,m) weighs the importance of sub-window tm to
segment s. To compute sim(T1,T2), we concatenate all tweets in T1

(resp. T2) to form a pseudo document, and use cosine similarity

with t f · id f scheme. The importance of sub-window tm to segment
s is the normalized frequency distribution over M sub-windows:

wt (s,m) =
ft (s,m)∑M

m′=1 ft (s,m′)
(10)

Equation 9 illustrates that two event segments are similar if they
have both similar tweet content and consistent frequency patterns
along the time sub-windows. Either dissimilar tweet content or in-
consistent frequency patterns leads to low similarity. More specif-
ically, dissimilar tweet content suggests that two event segments
refer to two distinct events. Inconsistent frequency pattern may
suggest that the two event segments refer to two similar events but
happened at different time points (e.g., two football matches at the
same day).

To be shown in our experiments (Section 4.3) content similarity
is necessary to distinguish segments of different events having very
similar tweet frequency distributions. Note that, because of the
specific information conveyed by tweet segment, we believe that
the content similarity of using all tweets containing the tweet seg-
ment is more meaningful than that using unigram. For example, the
tweets containing segment steve jobs will be very different from the
tweets containing either steve or the tweets containing jobs only.

3.3.2 Clustering by k-Nearest Neighbor Graph
Given the similarity measure in Equation 9, clustering event seg-

ments into possible events become straightforward and many ex-
isting clustering algorithms can be directly applied. We apply an
variant of Jarvis-Patrick algorithm [7] for event segment clustering.

Given a graph of objects with edges indicating the similarity be-
tween any two objects, Jarvis-Patrick clustering algorithm parti-
tions the graph by measuring the number of common neighbors
among the k-nearest neighbors of the two objects. The partition-
ing involves two parameters: k and `. Two objects are put into the
same cluster if: 1) they are in each others’ k-nearest neighbors, and
2) they share at least ` common nearest neighbors among the k-
nearest neighbors. Note that, Jarvis-Patrick requires a single scan
of all pairs of objects for clustering, which offers great scalability
for Twitter stream-based event detection.

Considering the unique properties of short length and informal
writing style of tweets, two event segments referring to the same
event may not share a large number of common k-nearest neighbors
to each other. Nevertheless, an event segment referring to a realis-
tic event would likely appear in another event segment’s k-nearest
neighbors, and vice versa, given that the two event segments refer-
ring to the same event. We therefore relax the clustering criterion
by considering only the first requirement: two event segments ap-
pearing in each others’ k-nearest neighbors are put into the same
cluster. With this relaxation, given a complete graph of event seg-
ments, the clustering becomes to retain any edge between two event
segments sa and sb if and only if they appear in each other’s k-
nearest neighbors. The resultant connected components are con-
sidered as candidate events. If an event segment is in isolation and
not grouped into any cluster, it is considered not event related and
dropped from further processing. The clustering of event segments
therefore requires only one parameter k and we set k = 3 in our
experiments.

3.3.3 Candidate Event Filtering
Cambridge Dictionaries Online defines an event as “anything

that happens, especially something important and unusual”7. How-
ever, we observe that many candidate events detected through clus-
tering event segments are not realistic events. For instance, the
7http://dictionary.cambridge.org/dictionary/british/event?q=event

segments "friday night", "friday", "weekends", "trip" and "enjoy" are
return as a possible event by the above procedures at some Friday
(e.g., Jun 18, 2010 covered in our dataset). More detailed human
investigation shows that the tweets of this candidate event are from
people who were talking about the plan or schedule for the coming
weekend. Apparently, this kind of events can not be considered as
realistic events. This calls for a mechanism to evaluate the “impor-
tant and unusual” aspect of a candidate event obtained from event
segment clustering.

We observe that many events involve well-known entities (e.g.,
person names, locations, festivals) and many of these entities are
documented in Wikipedia. Recall that each segment is produced
in Section 3.1 with the preference towards Wikipedia entities (see
Equation 3). We therefore again utilize Wikipedia to approximately
evaluate “important and unusual” aspect of a candidate event. More
specifically, we define newsworthiness measures for event segment
and candidate event respectively.

Definition 3. [Segment Newsworthiness] The newsworthiness
µ(s) of a segment s is

µ(s) = max
`∈s

eQ(`) − 1

where ` is any sub-phrase of s, and Q(`) is the prior probability that
` appears as anchor text in Wikipedia articles that contain `.

The exponential function is used in the equation since it is an in-
creasing function with an increasing first derivative in the range of
[0, 1]. That is, a segment with a larger Q(`) would gain a relatively
higher newsworthiness value. Next, we define the newsworthiness
of a candidate event as follows.

Definition 4. [Event Newsworthiness] The newsworthiness µ(e)
of an event e containing a set of event segments es = {s} is

µ(e) =

∑
s∈es µ(s)
|es|

·

∑
g∈Ee sim(g)
|es|

where Ee is a set of edges that are retained during applying Jarvis-
Patrick clustering, and sim(g) is the similarity of edge g which is
calculated by using Equation 9.

Observe that newsworthiness of a candidate event considers both
the newsworthiness of its member event segments (i.e., the first
component) and the topology of the connected component formed
by its member event segments (i.e., the second component). The
latter is equivalent to measure the density of the connected compo-
nent in the clustering result. Therefore, a candidate event receives a
high newsworthiness score if some phrases in its member segments
are commonly used as anchor text in Wikipedia (indicating well
known entities) and the member segments are well connected with
strong cohesive topology.

We observe in our experiments, most top-ranked candidate events
by newsworthiness are likely related to realistic events. On the
other hand, noisy events likely have much lower newsworthiness
scores. That is, the distribution of newsworthiness scores has a pos-
itive skewness. Let µx be the highest newsworthiness score among
all candidate events detected in a given time-window. Based on the
above observation, we consider a candidate event e to be a realistic
event if the ratio between µx and µ(e) is smaller than a threshold τ ,
i.e., µx

µ(e) < τ , otherwise noise. Naturally, a lower threshold results
in better precision of the detected events but poorer recall, and vice
versa. We investigate the impact of τ empirically in Section 4.

After filtering away noisy events, we represent each detected
event with its member event segments sorted by newsworthiness
scores. The top-ranked segments are used to describe the event. In
this work, the top-5 segments are used to describe the event.

3.4 Discussion
The efficiency of Twevent is a non-trivial factor from a practical

perspective. Recall that Twevent contains three main components:
tweet segmentation, event segment detection, and event segment
clustering, shown in Figure 1. We next discuss the computational
cost for each component.

The running time of tweet segmentation is linear to the length of
a tweet (in number of the words). As segmentation of one tweet
is independent of segmentation of other tweets, parallel computing
techniques can be easily utilized in this component. More impor-
tantly, tweet segmentation can be considered as a part of preprocess
because all segments are stored in an index for further processing.

Event segment detection only requires one scan of segments’
tweet frequency and user frequency. The time complexity is lin-
ear to the number of segments in each time window.

Most computation time is consumed by calculating the similarity
between two event segments, and event segment clustering. How-
ever, the pair-wised event segment similarity is computed for a rel-
atively small set (e.g., K =

√
Ni) of event segments where Ni is the

number of tweets published within a time window. That is, the time
complexity is O(K2). The Jarvis-Patrick clustering algorithm used
for event segment clustering requires one scan of all pairs of event
segments within a time window. Given the relative small number
of detected events in each time window, the running time for the
candidate event filtering is negligible.

We conducted our experiments on a workstation with a 2.40GHz
Xeon quad-core CPU and 24GB of RAM. Without considering the
time taken for tweet segmentation8, Twevent takes about 18 seconds
to detect events from average 143K tweets published in one day
(i.e., the time window).

4. EXPERIMENTS
In this section, we report our extensive experiments on evaluat-

ing Twevent. We show that Twevent outperforms the state-of-the-
art approach with both better precision and recall. We show that
newsworthy segments make the detected events much easier to be
interpreted by users. Further, we evaluate the usefulness of the no-
tion of tweet segment against unigram, the effect of the parameters
in Twevent.

4.1 Dataset and Experimental Setting
Wikipedia Data. The Wikipedia data used in tweet segmenta-
tion (Section 3.1) and newsworthiness measure (Section 3.3.3) are
based on the Wikipedia dump released on 30 Jan, 2010. It con-
tains 3, 246, 821 articles and 266, 625, 017 hyperlinks. In total,
there are 4, 342, 732 distinct entities appeared as anchor texts in
the Wikipedia dump.

Twitter Stream. A collection of tweets published by Singapore-
based users (based on the location specified in user profile) in June
2010 is used to simulate a Twitter stream. This dataset was built by
Weng and Lee for evaluating the EDCoW event detection method
in [21]. There are a total of 4, 331, 937 tweets published by 19, 256
unique users in the dataset. A number of realistic events happened
in the data collection period, such as FIFA World Cup 2010, WWDC
2010, and MTV Movie Awards 2010.

Figure 2(a) shows the average number of tweets published within
each hour of a day. Most tweets are published within 6AM to 6PM,
with relatively more tweets published in the afternoon.

Parameter Setting. There are several parameters that could affect

8In our experiments, the speed of tweet segmentation relies on Mi-
crosoft Web N-Gram Web service.

Table 1: Detection results of Twevent, Tweventu, and EDCoW.
Method No. events detected Precision Recall DERate
EDCoW 21 76.2% 13 23.1%
Twevent 101 86.1% 75 16.0%
Tweventu 146 75.3% 78 41.0%

the performance of Twevent. The size of the time-window t and the
number of sub-time-windows M are the two basic parameters for
Twevent. In our evaluation, we fix t to be a day and set M = 12.
That is, each sub-time-window is 2 hours.

Recall that we retain only top K =
√

Nt bursty segments as event
segments, where Nt is the number of tweets published in the time
window t; For Jarvis-Patrick clustering, we set k = 3 for the num-
ber of nearest neighbors in the graph; To distinguish realistic events
from noise, we set threshold on the ratio of newsworthiness τ . In
our experiments, we observe that parameter τ affects the event de-
tection accuracy of Twevent more significantly than the other two
parameters K and k. We therefore evaluate the impact of varying τ

and fix K =
√

Nt and k = 3 throughout our evaluation.

Evaluation Metric. The dataset does not come with ground truth
labels on all realistic events within the data collection period. Be-
cause it is infeasible to manually label the over 4 million tweets
in the dataset, we choose to manually evaluate the detected events
returned by Twevent. We use precision and recall to evaluate the
accuracy of the events detected.

We follow the definition of Precision used in [21], which is de-
fined as the fraction of the detected events that are related to a
realistic event. However, recall was not defined in [21] because
of the lack of the ground truth labels in the dataset. In our pa-
per, we choose to report Recall as the number of distinct realistic
events detected from the dataset on daily basis. Note that, if two de-
tected events are both related to the same realistic event within the
same time window (i.e., one day), then both are considered correct
in terms of precision, but only one realistic event is considered in
counting recall. Due to this reason, we also define Duplicate Event
Rate (or simply DERate) to denote the percentage of events that
have been duplicately detected among all realistic events detected.

4.2 Statistics on Tweet Segmentation
We first report statistics on the tweet segments returned by the

tweet segmentation component. After removal of stop-words and
words with non-English characters, there are 662, 088 distinct words
or unigrams retained in the data. Tweet segmentation is then ap-
plied to each tweet. A total of 1, 275, 809 distinct segments are
obtained after segmentation.

Observe from Figure 2(b), the tweet frequency of a segment fol-
lows a power-law distribution. On average, each segment is con-
tained in 19 tweets. In Figure 2(c), we report the distribution of un-
igram and multi-gram segments. The figure shows that about 50%
of the segments are 2-grams; segments with more than 3 grams are
very rare. We observe that 2-gram segments cover a large propor-
tional of named entities, such as "lady gaga" and "justin bieber", or
location name like "orchard road". Moreover, many 3-grams seg-
ments are very informative, like "mtv movie awards" and "penalty
shoot out". More examples are given in Table 2.

4.3 Event Detection Results
We compare Twevent with two methods: EDCoW and Tweventu.

The latter is a variant of Twevent without using tweet segment but
using unigram in the event detection process, with the same param-
eter settings as Twevent except the setting for threshold τ . In this set

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2 4 6 8 10 12 14 16 18 20 22

R
el

at
iv

e
fr

eq
en

cy
 o

f t
w

ee
ts

Hour of a day

Twilight
Park Yong-ha

Figure 3: Comparison of frequency distributions for the two
events: Twilight and Park Yong-ha

of experiments, we set τ = 4 for Twevent and τ = 3 for Tweventu.
The impact of varying τ will be reported in Section 4.4.

Recall that we measure the segment’s newsworthiness using Def-
inition 3. Based on this definition, a unigram is likely to have zero
newsworthiness score. Thus, we change the newsworthiness defini-
tion for unigram to be µ(w) = eQ(w) for a unigram w. The modified
definition strongly favors informative unigrams, leading to better
representations for the detected events. Next, we report the event
detection accuracy of the three methods.

Event detection accuracy. Table 1 reports the number of events
detected, the precision and recall, of the three methods respectively.
The results of EDCoW are reproduced from [21]9. Shown in the
table, our proposed method Twevent yields the best precision of
86.1% which is significantly larger than the precisions achieved
by EDCoW and Tweventu. Observe that our method Twevent de-
tects 101 events with a recall of 75 realistic events. On the same
dataset, EDCoW detects 21 events in total with 13 realistic events.
Tweventu yields a slighter worse precision than EDCoW (75.3%
vs 76.2%) but detects the largest number of realistic events. In
terms of DERate, Twevent achieves the lowest rate despite that our
method detects much more events than EDCoW (101 vs 21). On
the other hand, we observe that Tweventu delivers the worst DER-
ate, more than double of Twevent (41% vs 16.0%). That is, the un-
igrams about the same event are clustered into two or more events.
Because a tweet segment usually conveys very specific informa-
tion, the tweets containing the tweet segment are all about the same
topic (e.g., the event). Two tweet segments about the same event
are therefore have higher chance to be clustered together.

From the list of events detected, we observe that an event is re-
detected mainly because users discuss the event from different per-
spectives, or one event is a sub-event of another. We use the two
events e22 and e20 detected on 12 Jun 2012 as an example for illus-
tration. Listed in Table 2, e22, detected with segments [usa, eng-
land, eng, vs], refers to the football match between England and
USA in 2010 World Cup; e20 with [steven gerrard, captain, score,
scored, gerrard] refers to the caption of England, Steve Gerrard,
scored a goal in this match. Because both events refer to the same
match, we count them as one realistic event in our recall.

Event interpretation. We argue that the notion of tweet segment
not only benefits better precision in event detection, but also makes
the detected events much easier to be interpreted. In above dis-
cussion, we show that person name [steven gerrard] is detected
as an event segment in the result. We now give more examples
by listing all the events detected by Twevent between June 07 to

9All events detected by EDCoW are reported in Table 1, Page 407 in [21].

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

d
nu

m
be

r
of

 tw
ee

ts
 p

ub
lis

he
d

Hour of a day

(a) Tweet volume against hour of day

 1

 10

 100

1K

10K

100K

1M

 1 10 100 1K 10K 100K 1M

N
um

be
r

of
 s

eg
m

en
t

Tweet frequency of segment

(b) Segment tweet frequency distribution

 100

1K

10K

100K

1M

unigram 2-gram 3-gram 4-gram 5-gram

N
um

be
r

of
 tw

ee
t s

eg
m

en
t (

lo
gs

ca
le

)

Length of tweet segment

(c) Segment length distribution

Figure 2: Statistics on tweets and tweet segments

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

P
re

ci
si

on
 /

D
E

R
at

e

Value of τ

Precision Twevent
Precision Tweventu

DERate Twevent
DERate Tweventu

(a) Precision and DERate

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 e

ve
nt

s
de

te
ct

ed
/R

ec
al

l

Value of τ

Recall Twevent
Recall Tweventu

No. Event Twevent
No. Event Tweventu

(b) Recall and number of detected event

Figure 4: Twevent and Tweventu against different τ values

June 12, 201010. This 6-day period is chosen because it covers a
wide range of events that happened in June, 2010, including Apple
WWDC 2010, MTV Movie Awards 2010, and FIFA World Cup 2010,
among others.

From Table 2, we make two observations. First, many event seg-
ments are multi-gram segments such as various types of named
entities [steve jobs], [mtv movie awards], [katy perry], and [karate
kid], and segments conveying concrete information like [argentina
vs nigeria] and [season finale]. These segments make the events
much easier to be interpreted than some unigram keywords. For
comparison, we also list the keywords of all the 8 events detected
by EDCoW, reproduced from [21], and the keywords of all the 40
events detected by Tweventu during the 6-day period in Tables 3

10Due to page list, we do not list all the 101 events detected by Twevent for the whole
month of June 2010. The full list is available at http://www.cais.ntu.edu.sg/
~lichenliang/twevent/eventlist.txt.

Table 3: Events detected by EDCoW in June 07 – June 12, 2010
(reproduced from [21], following their event id.)

Day eID Event keywords
7 e7. kobe, kristen

e8. #iphone4, ios4, iphone
8 e9. reformat, hamilton

e10. avocado, commence, ongoing
9 e11. #failwhale, twitter

10 e12. vuvuzela, soccer
11 e13. #svk, #svn
12 e14. #kor, greec, #gre

and 4, respectively. We can see that the keywords detected by ED-
CoW is relatively hard to interpret than the two methods Twevent
and Tweventu. Compare the latter two methods, we argue that
Twevent detects more semantically meaningful keywords/phrases
than Tweventu. For instance, we use the first two events detected by
both methods as example. Although both methods detect similar
keywords for the WWDC 2010 event, [steve jobs, imovie, wwdc,
iphone, wifi] is more easy to interpret than [wwdc, keynote, live,
jobs, steve]. Similarly, Twevent detects [mtv movie awards, mtv,
new moon, twilight, awards] while Tweventu outputs [mtv, moon,
twilight, movie, awards]; the phrase [mtv movie awards] makes the
event much more easy to interpret. Second, the detected events
by Twevent cover a wide range of events, such as Korea music
bands, Apple WWDC 2010, MTV Movie Awards 2010, release of
music videos and movies, and football matches of World Cup 2010.
That is, Twevent does not favor certain types of events than others.
Among the 22 events listed in Table 2, only 1 event has no cor-
responding real-life events leading to a precision of 95.5% in this
6-day period.

Case study. We use a case study to illustrate the importance of
using content in event detection from tweets. Figure 3 plots the rel-
ative frequency of tweets published on June 30, 2010 related to two
events. The first event with segments [harry potter, twilight, hours,
trailer] is about the movie The Twilight Saga: Eclipse, which was
released on June 30, 2010. The trailer of the Movie Harry Potter
and the Deathly Hallows Part 1 was shown before The Twilight
Saga: Eclipse. The second event, with segments [park yong ha, rip,
peace, hope, park] refers to the suicide case of Korean actor Park
Yong-ha on June 30, 2010. Observe from Figure 3, the two events
have very similar tweet frequency distribution over the 24 hours of
the day. The tweet frequency of an event is defined as the relative
frequency of the tweets published in an hour that contain any event
segment of the event. We argue that it is hard to distinguish the two
events without using content similarity between the event segments
(see Section 3.3).

Table 2: List of the 22 events detected by Twevent during the period of June 07 to June 12, 2010.
Day eID [Event Segments]: Event Description

7
e1. [steve jobs, imovie, wwdc, iphone, wifi]: iPhone4 was released during WWDC 2010.
e2. [mtv movie awards, mtv, new moon, twilight, robe]: The movie The Twilight Saga: New Moon was the biggest winner in

MTV Movie Awards 2010; it took 4 out of 10 "Best" Awards.
e3. [yesung, yesung oppa, kyuhyun, oppa, kyu]: Korean popular band Super Junior’s showcase was held on June 6, 2010 at

Singapore. Yesung Oppa and Kyuhyun Oppa are members of Super Junior.

8
e4. [lady gaga, music video, gaga, mv, alejandro]: The music video Alejandro by Lady GaGa was premiered officially on

June 8, 2010.
e5. [ss501, indonesia, ariel, sama, trend]: No clear corresponding real-life event.
e6. [singapore, iphone 4g, iphone 3gs, iphone, coming out]: Related to event e1. People started to talk about the release

date of iPhone 4 in Singapore.

9

e7. [lady gaga, youtube, youtube video, music video, gaga]: Related to event e4.
e8. [twitter, whale, stupid, capacity, over again]: A number of users complained they could not use twitter due to over-

capacity. A logo with whale is usually used to denote over-capacity.
e9. [ipad, iphone, apple, new]: Related to event e1.
e10. [watching glee, glee, season finale, season, channel]: The season finale of the American TV series Glee was broadcasted

on June 8, 2010.

10

e11. [lady gaga, youtube, youtube video, music video, amber]: Related to event e7.
e12. [justin bieber, try, pa, took, each]: Related to event e15. The song Never Say Never by Justin Bieber serves as the theme

song for the movie The Karate Kid, which was released on June 10, 2010 in Singapore.
e13. [yesung, tweeted]: Super Junior’s Yesung posted a photo about his pet turtles.
e14. [twitter, whale, stupid, capacity, over]: Related to event e8.
e15 [karate kid, watch movie, movie]: The movie The Karate Kid was released on June 10, 2010 in Singapore.

11 e16. [uruguay vs france, uruguay, france, vs]: A match between Uruguay and France in World Cup 2010.
e17. [south africa, vs mexico, mexico, goal, first goal]: A match between South Africa and Mexico in World Cup 2010. And

the first goal of the 2010 World Cup was scored in the match.

12

e18. [arg, argentina, argentina vs nigeria, nigeria, messi]: A match between Argentina and Nigeria in World Cup 2010.
e19. [south korea, greece, korea vs greece, korea won, korea]: A match between South Korea and Greece in World Cup

2010.
e20. [steven gerrard, captain, gerrard, scores]: Related to event e22. The captain of England, Steve Gerrard scored a goal in

the match.
e21. [ji sung, park, scored, jisung]: Related to event e19. Park Ji-Sung, the caption of South Korea, scored a goal against

Greece.
e22. [usa, england, eng, vs]: A match between England and USA in World Cup 2010.

4.4 Impact of τ in Twevent
While event segments are clustered into candidate events, the

ratio threshold τ defines the boundary between the realistic events
and the noisy events. We next analyze the effect of τ value on the
performance of Twevent and Tweventu.

Figure 4(a) plots the precision and DERate of the two methods
when changing τ from 2 to 10. We make the two main observa-
tions. First, for both methods, precision degrades along the increase
of τ as more events are considered as realistic events. Neverthe-
less, the rate of degradation for Twevent is much smaller than that
of Tweventu. Observe that Twevent maintains very good precision
above 80% even when τ = 10, which is better than the best preci-
sion achieved by Tweventu with all τ values. Second, increasing of
τ leading to increase in DERate. Shown in Figure 4(a), the DER-
ate of Twevent is about half of Tweventu for most τ values and stop
increasing when τ > 6. In summary, the use of tweet segmentation
in event detection contribute to much higher precision and much
lower duplicate event detection rate.

Figure 4(b) reports the number of events detected and the recall
values along the change of τ values for the two methods. For both
methods, increase τ leads to better recall. Observe that, although
Tweventu always achieves better recall than Twevent, the differences
between the recall values do not change much along the increase of
τ . However, increment of τ leads to sharp increase of the number of
events detected for Tweventu. But due to the poorer precision along

the increase of τ , the number of realistic events detected does not
increase at the same pace as the number of detected events.

5. CONCLUSION
Twitter, as a new type of social media, has experienced an explo-

sive growth in terms of both users and information volume in re-
cent years. The characteristics of tweets propose severe challenges
to many tasks including event detection. In this paper, we present
a novel event detection system for Twitter stream, called Twevent,
to tackle the adverse impacts of tweets: short and noisy content,
diverse and dynamic topics, and large data volume. One of the key
concept in Twevent is to use tweet segment instead of unigram for
identifying the bursty features and then distinguishing the realistic
events from the noisy ones. Twevent demonstrates outstanding per-
formance in our experiments: effectiveness, informativeness, and
efficiency. As a part of our future work, we will investigate the ef-
fectiveness of utilizing more features from tweets (e.g., retweet rate
and hashtags) in Twevent. Another important task is to investigate
the effectiveness of Twevent when none of the segments of an event
is covered by Wikipedia.

6. ACKNOWLEDGEMENT
This work was partially supported by MOE AcRF Tier-1 Grant

RG13/10, Singapore. We thank Jianshu Weng from HP Labs Sin-
gapore for providing us the dataset used in [21].

Table 4: Events detected by Tweventu in June 07 – June 12, 2010
Day eID Event keywords

7 e1. wwdc, keynote, live, jobs, steve
e2. mtv, moon, twilight, movie, awards
e3. yesung, ryeowook, oppa, hope, welcome
e4. indonesia, blues, rain, weather, star
e5. iphone, apple, video, available, os
e6. singapore, asia, showcase, junior, tickets
e7. check, website, gain, member, site
e8. justin, both, pa, took, each
e9. perry, katy
e10. singtel, samsung, galaxy, cute, aniversary
e11. tumblr, white, black, hair, model

8 e12. gaga, lady, mv, alejandro
e13. singapore, iphone, apple, july, features
e14. wwdc, keynote, jobs, steve
e15. right, think, one, need, know

9 e16. twitter, whale, capacity, fail, over
e17. fan, wish, pretty, follow
e18. youtube, glee, season, video, finale
e19. gaga, lady, mv, alejandro
e20. rice, chicken, eat, food, lunch
e21. mtv, asia, wednesday, awards
e22. try, pa, took
e23. home, out, going, i’m

10 e24. day, work, one, need, know
e25. youtube, gaga, video, lady, liked
e26. twitter, whale, stupid, capacity, fail
e27. radio, station, heard, addicted
e28. justin, try, pa, took
e29. karate, movie, kid, watched
e30. congrats, blue, jay, name, jaywalkers
e31. boss, centre, thursday, suntec, fair
e32. facebook, internet, camera, photo, photos
e33. cup, world, opening

11 e34. mexico, africa, goal, scored, south
e35. uruguay, france

12 e36. park, ji, sung, jisung
e37. argentina, nigeria, usa, england, messi
e38. captain, steve, gerrard, scores
e39. greece, korea, koreans, han, min
e40. goalkeeper, robe, green, ball, mistake

7. REFERENCES
[1] J. Allan, R. Papka, and V. Lavrenko. On-line new event

detection and tracking. In SIGIR, pages 37–45, 1998.
[2] T. Brants, F. Chen, and A. Farahat. A system for new event

detection. In SIGIR, pages 330–337, 2003.
[3] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang,

Z. Zheng, and H. Zha. Time is of the essence: improving
recency ranking using twitter data. In WWW, pages 331–340,
2010.

[4] G. P. C. Fung, J. X. Yu, H. Liu, and P. S. Yu. Time-dependent
event hierarchy construction. In SIGKDD, pages 300–309,
2007.

[5] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free
bursty events detection in text streams. In VLDB, pages
181–192, 2005.

[6] Q. He, K. Chang, and E.-P. Lim. Analyzing feature
trajectories for event detection. In SIGIR, pages 207–214,
2007.

[7] R. A. Jarvis and E. A. Patrick. Clustering using a similarity
measure based on shared near neighbors. IEEE Trans.
Comput., 22(11):1025–1034, Nov. 1973.

[8] J. Kleinberg. Bursty and hierarchical structure in streams. In
SIGKDD, pages 91–101, 2002.

[9] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a
social network or a news media? In WWW, pages 591–600,
2010.

[10] C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and B.-S.
Lee. Twiner: Named entity recognition in targeted twitter
stream. In SIGIR, 2012.

[11] M. Mathioudakis and N. Koudas. Twittermonitor: trend
detection over the twitter stream. In SIGMOD, pages
1155–1158, 2010.

[12] PearAnalytics. Twitter study, August 2009. Available online
http://www.pearanalytics.com/blog/wp-content/
uploads/2010/05/Twitter-Study-August-2009.pdf.

[13] S. Petrović, M. Osborne, and V. Lavrenko. Streaming first
story detection with application to twitter. In HLT-NAACL,
pages 181–189, 2010.

[14] S. Phuvipadawat and T. Murata. Breaking news detection
and tracking in twitter. In WI-IAT, pages 120–123, 2010.

[15] B. Poblete, R. Garcia, M. Mendoza, and A. Jaimes. Do all
birds tweet the same?: characterizing twitter around the
world. In CIKM, pages 1025–1030, 2011.

[16] A.-M. Popescu, M. Pennacchiotti, and D. Paranjpe.
Extracting events and event descriptions from twitter. In
WWW, pages 105–106, 2011.

[17] A. Ritter, S. Clark, Mausam, and O. Etzioni. Named entity
recognition in tweets: An experimental study. In EMNLP,
pages 1524–1534, 2011.

[18] L. Rui, L. Kin, K. Ravi, and C. Kevin. Tedas: a twitter based
event detection and analysis system. In ICDE, pages
1273–1276, 2012.

[19] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes
twitter users: real-time event detection by social sensors. In
WWW, pages 851–860, 2010.

[20] J. Teevan, D. Ramage, and M. R. Morris. #twittersearch: a
comparison of microblog search and web search. In WSDM,
pages 35–44, 2011.

[21] J. Weng and B.-S. Lee. Event detection in twitter. In ICWSM,
pages 401–408, 2011.

[22] S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts. Who
says what to whom on twitter. In WWW, pages 705–714,
2011.

[23] Y. Yang, T. Ault, T. Pierce, and C. W. Lattimer. Improving
text categorization methods for event tracking. In SIGIR,
pages 65–72, 2000.

[24] Y. Yang, J. G. Carbonell, R. D. Brown, T. Pierce, B. T.
Archibald, and X. Liu. Learning approaches for detecting
and tracking news events. IEEE Intelligent Systems,
14(4):32–43, July 1999.

[25] Y. Yang, T. Pierce, and J. Carbonell. A study of retrospective
and on-line event detection. In SIGIR, pages 28–36, 1998.

[26] G. K. Zipf. Human Behavior and the Principle of Least
Effort: An Introduction to Human Ecology. Hafner Pub. Co,
1949.

