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Abstract
Many recommendation tasks are formulated as
top-N item recommendation problems based on
users’ implicit feedback instead of explicit feed-
back. Here explicit feedback refers to users’ rat-
ings to items while implicit feedback is derived
from users’ interactions with items, e.g., number of
times a user plays a song. In this paper, we propose
a boosting algorithm named AdaBPR (Adaptive
Boosting Personalized Ranking) for top-N item
recommendation using users’ implicit feedback. In
the proposed framework, multiple homogeneous
component recommenders are linearly combined to
create an ensemble model, for better recommen-
dation accuracy. The component recommenders
are constructed based on a fixed collaborative fil-
tering algorithm by using a re-weighting strategy,
which assigns a dynamic weight distribution on the
observed user-item interactions. AdaBPR demon-
strates its effectiveness on three datasets compared
with strong baseline algorithms.

1 Introduction
In recent years, recommender systems have been widely
adopted to help users discover most useful information from
a massive amount of data. Lots of algorithms have been pro-
posed and many of them are used to power recommender sys-
tems in various application domains [Su and Khoshgoftaar,
2009]. Generally speaking, there are two main categories of
recommendation tasks: rating prediction and item recommen-
dation. The objective of rating prediction is to predict the
rating that a user may give to an item that she has not inter-
acted with before. Examples include movie rating prediction
in Netflix [Bell and Koren, 2007] and business rating pre-
diction in Yelp [Hu et al., 2014]. For item recommendation,
recommender system recommends a user a list of items that
she might prefer. Product recommendation in Amazon [Lin-
den et al., 2003], friend recommendation in online social net-
works [Chen et al., 2009], and location recommendation in
Foursquare [Liu et al., 2014] are examples of item recom-
mendation tasks.

For item recommendation with implicit feedback, users’
preferences on items are unobservable. For example, in the

music recommendation task1, the number of times a user
plays a song is observable (i.e., implicit feedback) but not her
preference rating to the song (i.e., explicit feedback). Recom-
mendation models are then built based on some pre-defined
preference assumptions, e.g., the more number of times a user
plays a song, the more the user likes the song. Such assump-
tions may not accurately describe users’ preferences. More-
over, the observed user-item interaction data is generally very
sparse, which makes the preference modeling even more chal-
lenging. As the result, existing solutions often deliver unsat-
isfactory recommendation accuracies.

Instead of directly addressing these challenges in item rec-
ommendation with implicit feedback, we consider an alter-
native approach in this paper. We exploit boosting tech-
nique to improve the recommendation accuracy by combin-
ing the recommendation power of multiple “weak recom-
menders”. Boosting technique was originally proposed to
improve the accuracy of classification models by combining
multiple weak classifiers [Freund and Schapire, 1995]. It was
then extended to solve ranking tasks. For example, AdaRank
is a boosting framework that optimizes ranking metrics such
as the Area Under the ROC Curve (AUC), the Mean Average
Precision (MAP), and the Normalized Discounted Cumula-
tive Gain (NDCG) [Xu and Li, 2007]. Recent studies show
that accuracies of previous recommendation methods can be
improved by utilizing boosting techniques [Jiang et al., 2013;
Cheng et al., 2014; Wang et al., 2014]. However, all existing
solutions are based on the recommendation models designed
for rating prediction tasks, which are not optimal for item rec-
ommendation with implicit feedback.

In this paper, we propose a boosting framework, namely
Adaptive Boosting Personalized Ranking (AdaBPR), for item
recommendation with users’ implicit feedback. In this frame-
work, multiple homogeneous component recommenders are
linearly combined to achieve more accurate recommenda-
tion. The component recommenders are learned based on a
re-weighting strategy that assigns a dynamic weight to each
observed user-item interaction. We evaluated AdaBPR and
four baseline methods on three datasets, namely MovieLens-
100K, MovieLens-1M, and the Taste Profile Subset of the
Million Song Dataset. AdaBPR achieves the best recommen-
dation accuracy on all the three datasets, evaluated on three

1http://labrosa.ee.columbia.edu/millionsong/challenge



widely adopted measures, MAP, AUC, and NDCG@10.

2 Related Work
Collaborative Filtering (CF) is arguably the most widely
adopted technique in recommendation and has been applied
to address both rating prediction and item recommendation
tasks [Su and Khoshgoftaar, 2009]. There are two kinds of
CF approaches, i.e., memory-based and model-based CF. Our
proposed AdaBPR is based on model-based CF. Next, we first
review model-based CF for item recommendation with im-
plicit feedback and then review boosting techniques.

2.1 Item Recommendation with Implicit Feedback
Previous recommendation models are proposed mainly for
rating prediction problems. The latent factor model imple-
mented by matrix factorization is the most successful ap-
proach and has been applied to various rating prediction
tasks [Bell and Koren, 2007; Wang et al., 2013; Lu et al.,
2013; Hu et al., 2014].

For item recommendation based on users’ implicit feed-
back, model-based approaches aim to learn a personalized
ranking function for each individual user. These approaches
can be mainly categorized into three groups, i.e., pointwise,
pairwise, and listwise approaches, based on the loss func-
tions used to learn the model parameters [Karatzoglou et
al., 2013]. The weighted regularized matrix factorization
is a representative pointwise approach [Pan et al., 2008;
Hu et al., 2008], which treats all observed entries in the user-
item interaction matrix as positive examples and all miss-
ing entries as negative examples. Different confidence lev-
els are assigned to the positive and negative examples. A
least square loss function is then used to learn the latent fea-
tures of users and items by approximating the pre-defined rat-
ings. The PureSVD method [Cremonesi et al., 2010] models
each user as a combination of the item features. It does not
need to learn user-specific parameters thus it can offer conve-
nient optimization. The Sparse LInear Method (SLIM) [Ning
and Karypis, 2011] employs a sparse linear model for item
recommendation. In SLIM, the recommendation score for
a new item is calculated as an aggregation of other items.
For pairwise approaches, a common assumption is that a
user prefers the items that she has interacted with than those
items that she has not interacted with. The Bayesian Person-
alized Ranking (BPR) based methods [Rendle et al., 2009;
Pan and Chen, 2013] are representative pairwise approaches.
Their objective is to rank the interacted items higher than the
un-interacted items in the ranked list of items for each user.
These approaches optimize the ranking metric AUC of the
model on the tasks [Rendle et al., 2009]. The listwise ap-
proaches aim to optimize the loss function defined on more
complex ranking metrics. For example, the Tensor Factoriza-
tion for MAP maximization (TFMAP) proposed in [Shi et al.,
2012a] optimizes the ranking metric MAP. It tries to create an
optimally ranked item list for an individual user under a given
context. Similarly, the Collaborative Less-is-More Filtering
(CLiMF) model introduced in [Shi et al., 2012b] explores the
optimization of Mean Reciprocal Rank (MRR), which is a
metric for measuring top-N item recommendation.

2.2 Boosting
Boosting is a general technique that can improve the accuracy
of a given weak learning algorithm [Freund and Schapire,
1995]. The basic idea is to repeatedly construct a set of weak
models using the weak learning algorithm on re-weighted
training data. The weak models are then linearly combined
to form a strong model, for better accuracy. The boosting
technique was originally developed for the binary classifica-
tion setting, where AdaBoost [Freund and Schapire, 1995] is
the most well-known algorithm. It has also been extended
to deal with other problems, including multi-class classifi-
cation [Schapire and Singer, 1999], regression [Duffy and
Helmbold, 2002], and ranking [Xu and Li, 2007].

Recently, the boosting technique has also been intro-
duced to solve recommendation problems. Two boosting
frameworks based on AdaBoost have been proposed to en-
hance the performances of CF approaches in rating prediction
tasks [Jiang et al., 2013]. Each framework consists of a set
of homogeneous recommenders created by the same CF algo-
rithm with different sample weights. The recent work [Cheng
et al., 2014] exploited the gradient boosting for context-aware
recommendation. Specifically, a Gradient Boosting Factor-
ization Machine (GBFM) model was proposed to select ef-
fective interaction features for rating prediction. The Adap-
tive Boosting Matrix Factorization (AdaMF) model in [Wang
et al., 2014] extended AdaRank for item recommendation,
where the sample weights are assigned to individual users,
and the component recommenders are constructed using the
CF algorithm for rating prediction.

Among the exiting recommendation frameworks, the pro-
posed AdaBPR is most related to AdaMF, but with two sig-
nificant differences. First, in AdaBPR, a sample weight is
assigned to each observed user-item interaction, but not an
individual user as in AdaMF. Second, the component rec-
ommenders of AdaBPR are created by directly optimizing
the weighted ranking metric (i.e., AUC), not approximating
users’ ratings in AdaMF. Our empirical evaluations show that
these two differences make AdaBPR much more effective for
item recommendation tasks.

3 The Boosting Recommendation Framework
Given the historical interactions between m users and n
items, the task of item recommendation is to recommend a
target user u a list of items that she may prefer but has not
interacted with before [Deshpande and Karypis, 2004]. In
many real-world scenarios, the item recommendation tasks
are based on users’ implicit preference feedback, e.g., the
number of times that a user has interacted with an item. This
kind of feedback is usually represented using a set of binary
variables yui ∈ {0, 1}. If a user u has interacted with an item
i, yui is set to 1, and 0 otherwise. Note that yui = 0 does not
explicitly indicate that u is not interested in i. It may be the
result that user u does not even know the existence of i. In
this paper, we denote the set of users and items by U and V ,
respectively. For a user u, we denote her historical items by
V +
u = {i|yui = 1, i ∈ V } and define V −u = V \ V +

u . More-
over, the set of all observed user-item interactions is denoted
by D = {(u, i)|u ∈ U, i ∈ V +

u }.



For item recommendation tasks, the accuracy of a recom-
mendation model is usually evaluated using the ranking met-
rics, e.g., AUC, MAP, NDCG, Precision, and Recall. The
definitions of AUC and MAP are given below.

AUC =
1

|U |
∑
u∈U

1

|V +
u |

∑
i∈V +

u

1

|V −u |
∑
j∈V −u

I(πui < πuj) (1)

MAP =
1

|U |
∑
u∈U

∑
i∈V +

u

∑
j∈V I(yuj>0)I(πuj≤πui)

πui

|V +
u |

(2)

where |X | denotes the cardinality of the set X , πui is the rank
position of i in the ranked item list that is created by sort-
ing items according to u’s preferences on them in descending
order, and I(·) = 1 if the condition is true, and 0 otherwise.

3.1 AdaBPR
The proposed AdaBPR framework aims to optimize the loss
function defined based on a personalized ranking metric.

Observe from Eq. 1 and 2 that the accuracy of a recom-
mendation model is determined by the rank positions of the
historical items V +

u of each user u. Thus, we use a general
function E[π(u, i, f)] to denote the ranking accuracy associ-
ated with each observed interaction pair (u, i) where i ∈ V +

u .
The argument of the general function π(u, i, f) is the rank
position of item i in the ranked item list of u, resulted by a
learned ranking model f . Then, the ranking accuracy in terms
of a ranking metric, e.g., AUC or MAP, on the training data
is rewritten as below, where βu = 1

|V +
u |

.

1

|U |
∑
u∈U

1

|V +
u |

∑
i∈V +

u

E[π(u, i, f)] ∝
∑

(u,i)∈D

βuE[π(u, i, f)].

To maximize the ranking accuracy, we propose to minimize
the following loss function:

arg min
f∈F

∑
(u,i)∈D

βu{1− E[π(u, i, f)]}, (3)

where F is the set of possible ranking functions. Observa-
tion that this minimization is equivalent to maximizing the
performance measures (e.g., AUC or MAP). Because E is a
non-continuous function, it is difficult to optimize the loss
function defined in Eq. 3. To solve this issue, we propose to
minimize its upper bound as follows:

arg min
f∈F

∑
(u,i)∈D

βu exp{−E[π(u, i, f)]}. (4)

The primary idea of applying boosting for item recom-
mendation is to learn a set of homogeneous component rec-
ommenders and then create an ensemble of the component
recommenders to predict users’ preferences. Here, we use a
linear combination of component recommenders as the final
recommendation model:

f =

T∑
t=1

αth
(t), (5)

where h(t) is the tth component recommender and αt is a pos-
itive weight assigned to h(t) to determine its contribution in

Algorithm 1: The AdaBPR Algorithm

Input : The observed user-item interactions D, and
parameters E and T

Output: The ensemble recommender f (T ).
1 Initialize w(1)

ui = βu/
∑

(u,i)∈D βu,∀(u, i) ∈ D;
2 for t = 1, . . . , T do
3 Create the component recommender h(t) using

Alg. 2, based on D and the dynamic weights
w

(t)
ui ,∀(u, i) ∈ D;

4 Compute the ranking accuracy measure
E[π(u, i, h(t))], ∀(u, i) ∈ D;

5 Compute the weight αt assigned to h(t),

αt = 1
2 ln

∑
(u,i)∈D w

(t)
ui {1+E[π(u,i,h(t))]}∑

(u,i)∈D w
(t)
ui {1−E[π(u,i,h(t))]}

;

6 Create the ensemble recommender f (t),
f (t) =

∑t
k=1 αkh

(k);
7 foreach (u, i) ∈ D do
8 w

(t+1)
ui = βu exp{−E[π(u,i,f(t))]}∑

(u,i)∈D βu exp{−E[π(u,i,f(t))]} ;

the final recommendation model. In the training process, Ad-
aBPR runs for T rounds, and one component recommender
is created at each round. At the tth round, given the former
t− 1 component recommenders, the optimization problem in
Eq. 4 is converted to

arg min
αt,h(t)∈H

∑
(u,i)∈D

βu exp{−E[π(u, i, f (t−1)+αth
(t))]}, (6)

whereH is the set of possible component recommenders and
f (t−1) =

∑t−1
k=1 αkh

(k). To solve Eq. 6, we first create an op-
timal component recommender h(t) by using a re-weighting
strategy, which assigns a dynamic weight w(t)

ui on each ob-
served user-item interaction (u, i) ∈ D. At each round, Ad-
aBPR increases the weights of the observed user-item interac-
tions that are not ranked well by the ensemble recommender
created so far. The learning of the next component recom-
mender will then pay more attention to those “hard” inter-
actions. Suppose h(t) is given, its weight αt can be solved.
The details of the AdaBPR framework is presented in Alg. 1.
A lower bound on the personalized ranking accuracy for Ad-
aBPR is presented in Theorem 1. This bound is derived fol-
lowing similar techniques for AdaRank in [Xu and Li, 2007].

Theorem 1 The following bound holds on the personalized
ranking accuracy of the AdaBPR algorithm on training data:

1

|U |
∑
u∈U

1

|V +
u |

∑
i∈V +

u

E[π(u, i, f)] ≥

∑
(u,i)∈D βu

|U |

[
1−

T∏
t=1

e−δ
t
min

√
1− ϕ(t)2

]
,

where ϕ(t) =
∑

(u,i)∈D w
(t)
ui E[π(u, i, h(t))], δtmin =

min(u,i)∈D δ
t
ui, and δtui = E[π(u, i, f (t−1) + αth

(t))] −



Algorithm 2: Component Recommender Construction

Input : The observed interactions D, the weight
distribution w(t)

ui , the learning rate η, and the
regularization parameter λ.

Output: The learned user latent factors P(t) and item
latent factors Q(t).

1 Initialize P(t) and Q(t) randomly;
2 for e = 1, . . . ,max iter do
3 Randomly permutate the observed interactions D;
4 foreach (u, i) ∈ D do
5 Randomly draw an item j from V −u ;
6 Update the model parameters θ as follows,

θ ← θ − η
[
ŵ

(t)
ui ·

∂`(∆
(t)
uij)

∂∆
(t)
uij

· ∂∆
(t)
uij

∂θ + λθ

]
,

where θ = p
(t)
u , q(t)

i , and q
(t)
j ;

E[π(u, i, f (t−1))]−αtE[π(u, i, h(t))], for all (u, i) ∈ D and
t = 1, 2, · · · , T .

3.2 Constructing Component Recommender
To construct component recommenders, we adopt the latent
factor based models, which are the most successful recom-
mendation models in literature [Su and Khoshgoftaar, 2009].
The objective of latent factor model is to map both users
and items into a shared latent space, with a low dimension-
ality d � min(|U |, |V |). Specifically, two latent vectors
p

(t)
u ∈ R1×d and q

(t)
i ∈ R1×d are used to denote the prop-

erties of u and i respectively, in a component recommender
h(t). The preference score of u to i is approximated by:

h
(t)
ui = p(t)

u q
(t)>
i . (7)

Biases for users and items can also be incorporated in Eq. 7 to
produce more accurate models. We further denote the latent
factors of all users and all items by P(t) ∈ R|U |×d and Q(t) ∈
R|V |×d respectively.

At each round, the accuracy of the component recom-
mender h(t) can be evaluated by the ranking performance
measure E weighted by w(t)

ui . The optimal h(t) is then ob-
tained by consistently optimizing the weighted ranking mea-
sure. In our implementation, we choose AUC as the ranking
metric to learn AdaBPR, considering both the effectiveness
and efficiency factors. Note that AUC may be replaced by
other ranking metrics whose range is within [−1,+1], e.g.,
MAP and NDCG [Xu and Li, 2007].

Given the weight distribution w
(t)
ui , the accuracy of the

component recommender h(t), measured by weighted AUC,
is defined as follows:

wAUC =
∑

(u,i)∈D

w
(t)
ui

1

|V −u |
∑
j∈V −u

I(π(t)
ui < π

(t)
uj )

=
∑

(u,i)∈D

w
(t)
ui

1

|V −u |
∑
j∈V −u

I(h(t)
ui > h

(t)
uj ), (8)

Table 1: The statistics of the experimental datasets
Datasets #users #items #user-item pairs

Movielens-100K 943 1,574 82,520
Movielens-1M 6,039 3,628 836,478
TPMSD-790K 27,216 9,994 789,915

where π(t)
ui denotes the rank position of the item i in the list

ranked by h(t) for u. Maximizing of the weighted AUC is
equivalent to minimizing the following loss function:

min
P(t),Q(t)

∑
(u,i)∈D

w
(t)
ui

1

|V −u |
∑
j∈V −u

I(h(t)
ui ≤ h

(t)
uj ). (9)

To solve this problem, we replace the indicator function with
a convex surrogate, i.e., the hinge loss function, as follows:

`(∆
(t)
uij) = max(0, 1−∆

(t)
uij), (10)

where ∆
(t)
uij = h

(t)
ui − h

(t)
uj . The optimal component recom-

mender h(t) is found by optimizing the following objective
function:

min
P(t),Q(t)

∑
(u,i)∈D

ŵ
(t)
ui

∑
j∈V −u

1

|V −u |
`(∆

(t)
uij)

+
λ

2

(∥∥∥P(t)
∥∥∥2

F
+
∥∥∥Q(t)

∥∥∥2

F

)
, (11)

where ŵ(t)
ui = w

(t)
ui · |D|, λ is a regularization parameter, and

‖·‖F denotes the Frobenius norm of a matrix. The problem in
Eq. 11 can be solved by stochastic gradient descent, detailed
in Alg. 2. Note that in Line 6, the component 1

|V −u |
does not

appear in the updating of model parameter θ. The reason is
that for a given observed interaction (u, i) ∈ D, an item j is
sampled from V −u with uniform probability 1

|V −u |
to form a

triplet (u, i, j) used to train the component recommender.

4 Experiments
In this section, we first empirically evaluate AdaBPR against
state-of-the-art methods. We then study the impact of differ-
ent parameter settings to the performances of AdaBPR.

4.1 Experimental Settings
Dataset Description
The experiments are conducted on three public datasets:
the MovieLens-100K2, MovieLens-1M, and the Taste Pro-
file Subset of the Million Song Dataset (TPMSD) [Bertin-
Mahieux et al., 2011]. MovieLens-100K contains 100, 000
ratings given by 943 users to 1, 682 movies. MovieLens-1M
contains 1, 000, 209 ratings given by 6, 040 users to 3, 952
movies. For these two datasets, we keep the ratings larger
than 3 as observed preference feedback, to simulate the im-
plicit feedback scenario. Similar settings have been used in
earlier studies [Pan and Chen, 2013]. The TPMSD contains
48, 373, 586 listening records made by 1, 019, 318 users over

2http://grouplens.org/datasets/movielens/



Table 2: The recommendation accuracies of PopRank, BPRMF, GBPR, AdaMFexp, AdaMFimp, and AdaBPR, measured by
MAP, AUC, and NDCG@10. The best results are in bold faces and the second best results are underlined.

Datasets Metrics PopRank BPRMF GBPR AdaMFexp AdaMFimp AdaBPR

Movielens-100k
MAP 0.1485 0.2780±0.0029 0.2907±0.0017 0.1296±0.0009 0.2893±0.0004 0.3132±0.0007
AUC 0.8541 0.9320±0.0005 0.9338±0.0006 0.8288±0.0014 0.9322±0.0002 0.9365±0.0002

NDCG 0.4962 0.6705±0.0005 0.6942±0.0031 0.4601±0.0076 0.6928±0.0037 0.7310±0.0040

Movielens-1M
MAP 0.1206 0.2172±0.0005 0.2295±0.0010 0.1097±0.0004 0.2286±0.0004 0.2629±0.0004
AUC 0.8649 0.9277±0.0002 0.9315±0.0002 0.8458±0.0007 0.9318±0.0001 0.9395±0.0001

NDCG 0.4875 0.6352±0.0005 0.6617±0.0022 0.4541±0.0009 0.6417±0.0015 0.7124±0.0015

TPMSD-790K
MAP 0.0466 0.0723±0.0012 0.0792±0.0017 N.A. 0.0735±0.0006 0.1032±0.0002
AUC 0.8345 0.9048±0.0007 0.9065±0.0016 N.A. 0.9079±0.0004 0.9190±0.0001

NDCG 0.1609 0.2624±0.0027 0.2795±0.0038 N.A. 0.2501±0.0021 0.3474±0.0007

384, 546 songs. In our evaluation, a subset of TPMSD is used
with the following sampling strategy. We first randomly sam-
ple 10, 000 songs that have been listened by at least 50 differ-
ent users. We then extract the users who have listened 20 or
more different sampled songs and their listening history over
the sampled songs. As the result, we have about 790K inter-
actions made by 27, 216 users to 9, 994 songs and we denote
this dataset by TPMSD-790K. Table 1 summarizes the three
datasets where the movies and songs are “items”.

Setup and Metrics
Each dataset is randomly partitioned into two non-
overlapping sets for training and testing. For each user u,
70% of her historical items V +

u are randomly chosen as train-
ing data, and the remaining 30% of V +

u are used for test-
ing. The densities of the user-item interaction matrix gener-
ated from the training data of the three datasets MovieLens-
100K, MovieLens-1M, and TPMSD-790K are 4.05 × 10−2,
2.70× 10−2, and 2.08× 10−3, respectively.

The accuracy of a recommendation model is measured by
using three metrics, namely MAP, AUC, and NDCG@10.
The former two metrics are widely adopted for evaluation of
ranking accuracy. Because users are usually interested in a
few top-ranked items, NDCG@N is also used to compare the
top-N recommendation performance. In our experiments, we
set N = 10. For each metric, we first compute the accuracy
for each user on the testing data, and then report the averaged
accuracy over all users.

Evaluated Recommendation Algorithms
We evaluate AdaBPR and 4 baseline algorithms: PopRank,
BPRMF, GBPR, and AdaMF.

• PopRank is a naı̈ve baseline that recommends items to
users purely based on the popularity of items.

• BPRMF is a state-of-the-art approach designed for item
recommendation with users’ implicit feedback [Rendle et
al., 2009]. It is a pairwise approach and has outperformed
pointwise methods [Pan et al., 2008; Hu et al., 2008], es-
pecially in terms of the ranking metric AUC.

• GBPR is an extension of BPRMF. It combines both the
pairwise preference and group preference for item recom-
mendation [Pan and Chen, 2013].

• AdaMF is a boosting approach that extends AdaRank for
item recommendation [Wang et al., 2014]. It generates

item recommendations by approximating the explicit rat-
ings (e.g., 1-5) given by users. We denote this origi-
nal AdaMF algorithm by AdaMFexp. We also evaluated
AdaMFimp which is AdaMF with implicit feedback. The
rating of an observed user-item interaction pair is set to 1
and the rating of an un-observed interaction pair is 0. For
a user u with item history V +

u , the same number of items
are uniformed sampled from V −u to train the model.
We adopt cross-validation to choose the parameters for all

the evaluated algorithms. Similar to that in [Pan and Chen,
2013], the validation data are constructed by randomly tak-
ing 1 historical item of each user from the training data. For
AdaBPR, the dimensionality of the latent space d is selected
from {10, 30, 50} (see Section 3.2), and for the other mod-
els, d is chosen from {10, 30, 50, 70, 90}. The regularization
parameters are chosen from 10[−6 : 1 : 0] (see Eq. 11), and
the optimal learning rates are selected from 2[−10 : 1 : 0] (see
Alg. 2). For GBPR, the group size is chosen from {2, 3, 4, 5}
and the parameter ρ is chosen from {0.2, 0.4, 0.6, 0.8, 1.0}.
The number of component models in AdaMFexp, AdaMFimp,
and AdaBPR are all set to 30. All experiments are repeated
for 5 times, each with a different random seed. The results
reported are average of the 5 runs.

4.2 Performance Evaluation
The recommendation accuracies of AdaBPR and other base-
line methods are summarized in Table 2. We make the fol-
lowing observations:
• On all three datasets, the proposed AdaBPR algorithm sig-

nificantly outperforms all the other baseline algorithms,
measured by the three metrics. The improvements over
the baselines are statistically significant with p < 0.001
using Wilcoxon signed rank significance test [Shani and
Gunawardana, 2011].

• The proposed AdaBPR attains significant improvement
over other pairwise approaches without boosting, i.e.,
BPRMF and GBPR. For instance, in terms of NDCG@10,
AdaBPR outperforms BPRMF and GBPR by 32.39% and
24.29%, respectively, on TPMSD-790K dataset. This re-
sult shows that the accuracy of item recommendation can
be largely improved by using boosting technique.

• Compared with AdaMFimp, AdaBPR achieves much bet-
ter results on all datasets for all the metrics. For example,
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Figure 1: Performance trend of AdaBPR measured by MAP, AUC, and NDCG@10. The number of the component recom-
menders ranges from 1 to 50, and the dimensionality of the latent space d ∈ {10, 30, 50} in each component recommender.

in terms of NDCG@10, AdaBPR outperforms AdaMFimp

by 5.51%, 11.02%, and 38.90%, respectively, on the three
datasets. This result clearly demonstrates the effectiveness
of our proposed algorithm. The main reason is that the
component recommenders in AdaBPR are learnt by using
the algorithm designed for personalized ranking problems,
while the component recommenders in AdaMF are built
based on the algorithms for rating prediction tasks.

• AdaMFexp performs much poorer than AdaMFimp and
other baseline methods. This suggests that AdaMF is more
effective with implicit feedback than with explicit feed-
back, for item recommendation tasks.
To evaluate the sensitivity to parameters for AdaBPR, we

study its performance with respect to different parameter set-
tings. The number of component recommenders is adjusted
from 1 to 50 and the dimensionality of the latent space d
of each component recommender is varied in {10, 30, 50}.
The results on all the three datasets are summarized in Fig-
ure 1, in terms of MAP, AUC, and NDCG@10. Observed
that the ranking performance generally improves with the in-

crease of number of component recommenders, particularly
when the number of component recommenders are fewer
than 10. When there are more than 10 component recom-
menders, introducing more component recommenders leads
to marginal improvements. Regarding the dimensionality of
latent space factor d, larger d generally achieves better results.
The only exception is the NDCG@10 measure on TPSMD-
790K dataset where d=10 leads to better result than d = 30.
Nevertheless, d = 50 achieves the best results or the second
best results in all the experiment settings.

5 Conclusion and Future Work
In this paper, we propose a novel boosting algorithm, named
AdaBPR (Adaptive Boosting Personalized Ranking), for the
item recommendation tasks with users’ implicit feedback.
AdaBPR creates an ensemble of a set of homogeneous com-
ponent recommenders built by the same CF algorithm, to pre-
dict users’ preferences on items. Empirical results on three
datasets demonstrate the effectiveness of the proposed algo-
rithm in comparison with a few strong baseline methods.



As a part of future work, we would like to construct
component recommenders that directly optimize more com-
plex ranking metrics, such as MAP [Shi et al., 2012a] and
MRR [Shi et al., 2012b]. We are also interested in extending
AdaBPR to build live recommender systems that can evolve
on-the-fly over time. In this scenario, a component recom-
mender may be built using the online AUC maximization
(OAM) method proposed in [Zhao et al., 2011], which can
directly optimize the ranking metric AUC under the online
learning settings.
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