
“Did You Know?” A Rule-based Approach to
Finding Similar Questions on Online Health Forums

Jianglei Han
SAP Research & Innovation

#14, CREATE Tower, 1 Create Way
Singapore 138602

ray.han@sap.com

Naveen Nandan
SAP Research & Innovation

#14, CREATE Tower, 1 Create Way
Singapore 138602

naveen.nandan@sap.com

Aixin Sun
School of Computer Engineering

Nanyang Technological University
Singapore 639798

axsun@ntu.edu.sg

Abstract—This paper describes our system submitted for
the ICHI 2015 Healthcare Data Analytics Challenge. Given a
relatively large corpus of questions posted by users on online
health forums, for a newly posted question (i.e., query question),
our task is to find three most similar questions from the corpus.
Our system employs Elasticsearch, a search server based on
Lucene, at its core. The corpus of existing questions is indexed
with n-grams. To search for most similar questions, the query
question is re-written to a keyword-based query based on rules by
considering multiple text components including title, key phrases,
and noun phrases extracted from the question content.

I. INTRODUCTION

Online social health forums are emerging as most important
sources of medical information for Internet users. Compared
to the traditional content-centric websites, where information
is often static and structured, social forums provide a dynamic
and interactive platform for users to ask and answer ques-
tions. Particularly in healthcare domain, questions asked on
online forums are much longer than keyword-queries issued to
search engines, allowing users to describe their conditions in
much more details. More importantly, questions about similar
medical conditions may have been asked and answered by
other users in the forum. Effectively finding questions for most
similar medical conditions enables users receiving immediate
advices from existing discussions without further waiting.

The ICHI 2015 Healthcare Data Analytics Challenge pro-
vides a sample question corpus of 95 questions. Each question
has a unique ID, a title that summarizes the question, and text
content that details the question. Figure 1 gives an example
question. The length of the questions ranges from 11 to 216
words. An additional set of 10 query questions is provided in
the same format for development and evaluation purposes. As
a challenge, the dataset does not provide groundtruth labels.

Title: Metamorfin Advice Please
Content: I am just wondering if anyone knows if you take more

than one pill of your usual dose of Metamorfin can it
hurt/affect you in any way? I had my tea but I couldn’t
remember if I had my Metamorfin afterwards. Should
I take a pill if I’m not sure. or should I just leave it?

Fig. 1. A sample question with title and content (ID: 101)

The challenge in retrieving similar questions lies in the
different ways each user may use to describe similar prob-
lems and/or symptoms. It has also been identified that the

Index

Title

Content

Customized
Analyzer

RAKE

Title
Content

POS Tagging

Query
Rewriter

Keyphrases

Nouns

Filter
N-gram

N-gram Similar
Questions

Q
u

er
yi

ng
In

de
xi

n
g

Fig. 2. System framework (best viewed in color)

terms used by general users and professionals for the same
symptom varies [1]. Through this challenge, we take a rule-
based approach that mainly focuses on keyword extraction and
query construction to build a system that retrieves most similar
medical questions to existing ones.

II. SYSTEM DESIGN AND IMPLEMENTATION

Our system consists of two main components for indexing
and querying respectively, shown in Figure 2. The question
corpus is indexed as a collection of JSON documents. The
main focus of the system is the querying component, or more
specifically, the extraction of keywords or keyphrases from a
given query question, shown in the upper portion of Figure 2.

The system is built in Python 2.7 with open-source tools/-
packages including Elasticsearch for indexing and searching,
RAKE (Rapid Automatic Keyword Extraction)1 for extracting
keyphrases, and NLTK (Natural Language Toolkit)2 for part of
speech (POS) tagging. Next, we detail the components.

A. Indexing

The question corpus is indexed with Elasticsearch, as a
collection of JSON documents. The indexing process involves
tokenization, lower-casing, and stemming. Existing studies
show importance of n-grams in processing short text [2].
Because questions are usually short, we choose to index word

1https://pypi.python.org/pypi/python-rake/1.0.5
2http://www.nltk.org/



"cu_analyzer": {
"type": "custom",

"tokenizer": "standard",
"filter": [
"lowercase",
"kstem",
"shingle_filter"

]
}

Fig. 3. Customized analyzer used for indexing

n-grams (also known as shingles in Elasticsearch), where
1 ≤ n ≤ 4. Note that, n = 1 means individual words. Figure 3
details the customized analyzer used in our indexing, where
kstem stems a word to a base form which is also a valid
word in the dictionary. We observe that using kstem improves
true positive hits based on manual evaluation of the results.

B. Query Rewriting

Given a query question, the key challenge is extracting
keywords from the question for searching the index, i.e., query
formulation. The selected words should cover the key idea of
the query question, yet too many keywords are likely to result
in a large number of false positives. Illustrated in Figure 2,
we consider the title of a query question as a summary of a
question which usually covers the main topic of the question.
Hence, n-grams in title are considered as part of the query
(recall that we index the question corpus with n-grams). For
the content part of the query question, we extract keyphrases
and nouns based on the assumption that such words contain
more important information than others. For this purpose, we
employ RAKE to extract the keyphrases (including individual
keywords) and use NLTK to obtain the nouns.

RAKE extracts a list of candidate keywords. The list
consists of n-grams up to four words (1 ≤ n ≤ 4), and
each of which is assigned an importance score. From this list,
we first select the words/phrases which appear in the title of
the query question to be query keywords. Next, we select the
words/phrases that are assigned the highest scores by RAKE.
Note that, there could be multiple words/phrases sharing the
same highest score. Among the words/phrases with the highest
score, the phrases with more than 1 word are kept as part of
the query keywords, and the unigrams which are nouns are
also used as query keywords. The nouns are based on POS
tagging by NLTK.

Queries in Elasticsearch are in the format of Query DSL,
defined in JSON. Shown in Figure 4, a document should match
at least one of the two "multi_match" query clauses in the
should block. In the first query clause, the query keywords
are the n-grams obtained from the title of the query question
(through customized analyzer). The default OR operation is
applied to the multiple n-grams. The multi_match indicates
that matching are in both title and content fields. However,
because the title is considered more important than content,
the boosting feature is used to reward documents which
contain matching words in the title [3]. In this case, the
boosting for title is set to 1.5 empirically in the relevance score
computation for a matching document. The most_fields

"query": {"bool": {
"should": [

{ "multi_match" : {
"query": title,
"type": "most_fields",
"fields":["titleˆ1.5", "content"],
"analyzer": "cu_analyzer" }

},
{ "multi_match" : {
"query": " ".join(high_key),
"type": "cross_fields",
"fields": ["titleˆ10", "content"]}

} ]
} }

Fig. 4. Rule-based boolean queries

option indicates that the retrieved documents should have as
many words as possible in the same field, and the relevance
score should come from the best-matching field. In the second
query clause, the query keywords are the keyphrases and
nouns obtained from RAKE and NLTK after filtering. The
cross_fields is used by the keywords in the query to
match as many terms as possible in both fields and the
relevance score is computed by combining the scores from
both fields. The boosting for title is set to 10.

The relevance scores of the matching fields are computed
by Elasticsearch with its default similarity function which is
based on the TF-IDF feature vector representation of the fields
in documents.3 The final score of a matching document is the
sum of the scores from the two query clauses.

III. CONCLUSION

In this paper, we describe a rule-based question retrieval
system that is capable of searching for similar questions. The
index and query logic are optimized for the best possible em-
pirical performance based on manual observation. The method
shows some extent of effectiveness in finding questions with
keywords that match with the title or content. However, our
manual evaluation could be subjective as compared to experts’
opinions.

Acknowledgement: We would like to thank the Economic
Development Board and the National Research Foundation of
Singapore for partially funding this research. This work was
also partially supported by Singapore MOE AcRF Tier-1 Grant
RG142/14.

REFERENCES

[1] Q. T. Zeng, T. Tse, G. Divita, A. Keselman, J. Crowell, and A. C.
Browne, “Exploring lexical forms: First-generation consumer health
vocabularies,” in AMIA Annual Symposium Proceedings, 2006, p. 1155.

[2] X. Wang, A. McCallum, and X. Wei, “Topical n-grams: Phrase and topic
discovery, with an application to information retrieval,” in Proc. IEEE
ICDM, 2007, pp. 697–702.

[3] W. W. Cohen and Y. Singer, “Context-sensitive learning methods for text
categorization,” in Proc. SIGIR, 1996, pp. 307–315.

3https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.
html


