

Product Name Recognition and Normalization in Internet Forums

Yangjie Yao Aixin Sun

Nanyang Technological University

Singapore

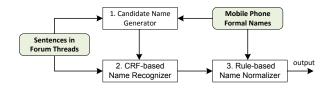
Users' feedback on products in Internet forums

Name variation	#users	Name variation #	users
1. galaxy s3	553	14. Ite s3	46
2. s3 Ite	343	15. galaxy s3 lte	45
3. samsung galaxy s3	284	16. s3 non Ite	32
4. s iii	242	17. samsung galaxy siii	32
5. galaxy s iii	225	18. sgs 3	27
6. samsung s3	219	19. samsung galaxy s3 lte	22
7. sgs3	187	20. sg3	21
8. siii	149	21. gsiii	16
9. samsung galaxy s iii	145	22. samsung galaxy s3 i9300) 15
10. i9300	120	23. samsung i9300 galaxy s	iii 13
11. gs3	82	24. s3 4g	11
12. galaxy siii	61	25. 3g s3	11
13. i9305	52	_	

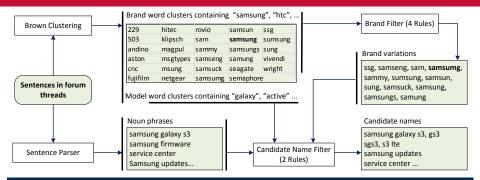
Samsung Galaxy SIII (LTE and Non-LTE versions)

Our target by examples

- True, **Desire** [HTC Desire] might be better if compared to **X10** [Sony Ericsson Xperia X10] but since I am using **HD2** [HTC HD2], it will be a little boring to use back HTC ...
- I just wanna know what problems do users face on the **OneX**[HTC One X] ... of course I know that knowing the problems on **one x**[HTC One X] doesn't mean knowing the problems on **s3**[Samsung Galaxy SIIII]
- 3 Still prefer ip 5 [Apple iPhone 5] then note 2 [Samsung Galaxy Note II] ...
- oh, the mono rich recording at **920** [Nokia Lumia 920] no better than stereo rich recording at **808** [Nokia 808 PureView].

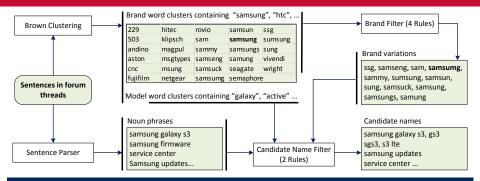

Our approach: generate, recognize, normalize

Input


- Posts or messages from domain-relevant Internet forums
- List of formal names

Approach

- Generate candidate names based on naming convention
- Recognize true product names from candidate names
- Normalize names based on naming convention


Candidate name generation

Word cluster W_b contains brand b. A word $w \in W_b$ is a variation of b if:

- \blacksquare The phonemic edit distance between w and b is 0, or
- The first and the last characters in w and b are the same, or
- The first three characters in w and b are the same, or
- Brand *b* contains more than one upper-case character and the prefix of *w* matches all upper-case characters in *b* in sequence (*e.g.*, bberry).

Candidate name generation

A model word cluster contains at least one word in a phone model. A noun phrase is a candidate mobile phone name if it satisfies both rules:

- 1 The phrase contains a brand variation, or the phrase appears after a brand variation at least once in the whole dataset; and
- 2 At least one word in the phrase appears in a model word cluster and all the remaining words appear in either model word clusters or brand word clusters.

Name recognition: Conditional Random Field

Lexical features, Grammatical features, and Name features

L ₁	The current word and its surrounding two words $w_{i-2}w_{i-1}w_iw_{i+1}w_{i+2}$, and their lower-cased forms.
L ₂	Word surface feature of the current word: Initial capitalization, all capitalization, containing capitalized letters, all digits, containing digits
	and letters.
G_1	POS tagger of the current word and its surrounding two words.
G_2	Path prefixes of length 4, 6, 10, 20 (i.e., maximum length) of the cur-
	rent word by Brown clustering.
N ₁	Flags to indicate whether the current word and its surrounding two
	words are candidate phone names
N_2	The brand entropy of the current word and its surrounding two words.

The key to build the CRF model: training data?

Names as queries for automatic sentence labeling

■ Positive names \mathcal{P} :

- All formal names given as the input
- 2 Formal names by replacing Roman number with Arabic number
- 3 Model names if containing more than one word e.g., "galaxy note"

■ Negative names \mathcal{N} :

Manual annotation from the set of candidate names C, e.g., "service center", "firmware", "update".

- 33,072 sentences selected automatically:
 - 1 The sentence contains at least one entity in either set \mathcal{P} or set \mathcal{N} ;
 - **2** The sentence does not contain any entry appears in $\mathcal{C} \setminus (\mathcal{P} \cup \mathcal{N})$
- Candidate name as "a single token":

Original sentence: Still prefer ip 5 then note 2

Rewritten sentence: Still prefer ip_5 then note_2

Name normalization: Lexical rules

Most phone name variations detected are originated from the candidate name set $\mathcal{C} \to \text{Candidate}$ names in \mathcal{C} can be pre-normalized.

Normalization

- Sequence containment "SGS III" are contained in "Samsung Galaxy SIII"
- Model number containment "i9300", "i9305", "s3 i9300", and "samsung i9300 galaxy s iii"
- Confidence score Number of appearances in threads titled with formal names. "SGS II" matches "Samsung Galaxy SII" and "Samsung Galaxy SIII".

Experiments: Data and ground truth

Forum data:

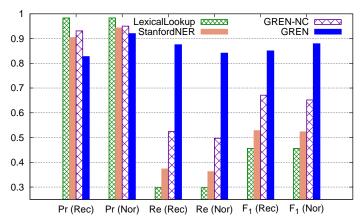
- HardwareZone forum: "Mobile Communication Technology". 1,026,190 posts in 25,251 threads from March 2002 to May 2013.
- Formal names from GSMArena.com

Ground truth labelling:

- 20 most popular phones of 8 brands, one thread per phone
- 4,121 sentences with 946 phone name mentions.

Apple, HTC, LG	-No brand variations-
Nokia	nokia, nokie, nk
BlackBerry	blackberry, bbry, blackbery, bb, bberry
Motorola	motorola, moto, motorolla, mot
Samsung	ssg, samseng, sam, samsumg, sammy, sumsung, sam-
	sun, sung, samsuck, samsung, samsungs, samung
Sony Erricson	sony erricson, sony ericson, sony ericc-
	son, sonyericsson, sony ericssion, sn, sony, sonyeric

Experiments: Methods and evaluation metric


Method comparison: trained on the same set of 33,072 sentences.

- 1 LexicalLookup. Formal names used as a dictionary.
- 2 StanfordNER. Use default features provided by the package
- **GREN**: The proposed method with candidate name generation, CRF-based name recognition, and rule-based normalization.
- 4 **GREN-NC**. Use the same set of features as GREN but not re-writing the sentences.

Evaluation metric

- **Precision (Pr)**: the ratio of true phone name mentions among all mentions that are predicted positively.
- Recall (Re): the ratio of correctly recognized name mentions among all phone name mentions annotated in the ground truth data.
- \blacksquare F_1 : the harmonic mean of precision and recall.

Experimental results

Rec: name recognition Nor: name normalization

Summary

Lessons learnt:

- Brown clustering is effective in "grouping" product name variants
- 2 Rule-based approach is useful in product name recognition if there exist naming convention
- 3 Large number of training examples is necessary for effective NER
- With rule-based approach, training examples can be obtained in semi-automatic manner

Limitations:

- 1 Candidate name set needs to be updated from time to time
- 2 Code name cannot be normalized to phone name e.g., "Nozomi" to "Sony Xperia S"

Dr. Aixin SUN axsun@ntu.edu.sg http://www.ntu.edu.sg/home/axsun/