

Fine-Grained Location Extraction from Tweets with Temporal Awareness

Chenliang Li¹, Aixin Sun²

¹Wuhan University, China

²Nanyang Technological University, Singapore

Agenda

Introduction on Twitter

Inferring Locations from Tweets

- Vision for temporal awareness resolution for locations
- Existing related works review

> **Petar** for POI Extraction with Temporal Awareness

- POI Inventory
- Data analysis and observations
- Time-aware POI tagger
- Efficiency issue
- Experimental Results

Introduction on Twitter

Large volume of timely data

- 200+ million active users worldwide every month
- Users share about their mood, activities, and opinions through a short message, called a tweet.

Social and business value

- Event detection and summarization
- Users' opinion, crisis detection and response
- Business marketing and advertising

Challenges

- Grammar errors, misspellings, informal abbreviations...
- Tweets are (very) short
- Effectiveness and Efficiency are both important

Inferring Locations from Tweets

- Through tweets, users casually or implicitly reveal their locations and short term visiting plans
- Extracting fine-grained locations (point-of-interest) from tweets with temporal awareness
 - The user has visited, **is currently at** or **will soon visit** the POI.
 - Support precise location-based services/marketing and personalization

y just back from **L'Artusi**, wonderful dinner :> like to try **the smile** tmr for lunch.

L'Artusi

The Smile

The user has just visited this restaurant

The user **will soon** visit this restaurant

Inferring Locations from Tweets: Existing Studies

Build spatial language model from the spatial usage of words

- [Cheng et al. CIKM10; Chang et al. ASONAM12; Kinsella et al. SMUC11; Li et al. CIKM11]
- Gazetteers and external knowledge like Geonames, DBPedia

Spotlight are used to derive the locations

- [Mahmud et al. ICWSM12; Schulz et al. ICWSM13]
- Latent variable models are used to analyze the interplay between

geographic locations, topics and users' interests

[Eisenstein et al. EMNLP10; Hong et al. WWW12; Yuan et al. KDD13]

sit at <u>mac</u>, enjoying a big <u>mac</u>

Ambiguity of a specific POI ??? Temporal awareness of a specific POI ???

Inferring Locations from Tweets: Challenges

> POI extraction with temporal awareness from tweets is difficult

 POI a focused geographic entity or a specific point location [Lingad et al. WWW13; Rae et al. SIGIR12]

Predominate usage of short names or informal abbreviations

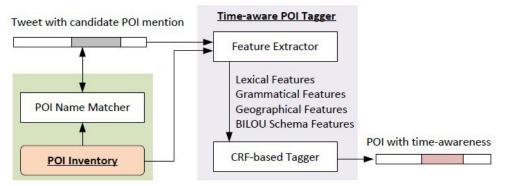
- Existing NER techniques for location detection experience a significant performance degradation.
- Capturing temporal awareness based on existing temporal expression extraction tools become less practical

Many POI names are ambiguous

- Pre-built gazetteer leads to an ineffective solution
 - mac => McDonald's chain restaurant Apple's product McDonald's product

Petar for <u>POI Extraction with Temporal Awar</u>eness

> Overview of *Petar*:



- Focus on a predefined geographical region (e.g., a city)
 - Tweets from Singaporean users
- POI Inventory
 - A collection of candidate POI names, each of which may refer to a POI.
- Time-aware POI Tagger
 - Simultaneously disambiguate the candidate POI name and resolve its temporal awareness.

Wuhan University

POI Inventory: exploiting Foursquare community

- > 239,499 Foursquare check-in tweets made by Singaporean users
- > The POI coverage is **broad** or even **exhaustive** in a fine-grained

POIs covered by 1K sample Foursquare check-ins

 Each check-in tweet is well formatted and associated with a latitude/longitude coordinate

t_1	I'm at Mac @ Bukit Panjang Plaza	
<i>t</i> ₂	I'm at ITE College Central MacPherson Campus Main (201 Circuit Road)	U
t ₃	Birthday dinner (@ Ambush @ JP w/ 2 others)	
<i>t</i> ₄	Watching "Hello Stranger" (@ Golden Village Cinema 9 @ Plaza Singapura)	U

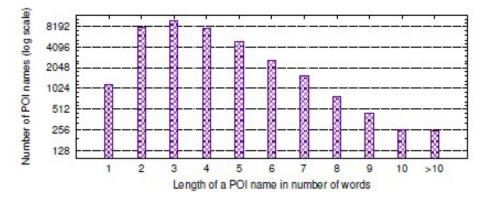
User's current location

User's activities at the location

POI Inventory

POI names are extracted by applying handcrafted rules

37,160 POI names are extracted, the average length is 3.9 words



Most POI names are in the range of 2 to 5 words

 A tweet is very short, people often mention POIs with abbreviations / partial names, assuming the audience's context-awareness [Lieberman et al. ICDE10]

POI Inventory

Partial POI names are extracted by taking all the sub-sequences of the names (up to 5 words)

- Stopwords are ignored and used as separators
- Filtering is conducted to remove infrequent candidate POI names
- Not all candidate POI names are valid
 - noisy data is included as well: "my room", "my work place", "my bed"
 - the candidate POI mention may not be a true POI in a tweet (i.e., ambiguity)

Data Analysis and Observations

Data Sets

- 4.33M tweets from 19,256 unique Singapore-based users during June 2010
- 222,201 tweets mentions at least one candidate POI name (5.1%)
- Observation 1:

Many users reveal their fine-grained locations in their tweets.

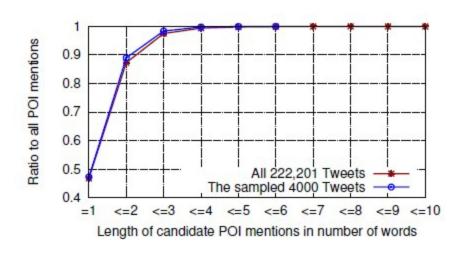
- 71.4% of all users in the dataset
- **91.3%** of the users who had published at least 20 tweets

Casually or implicitly reveal their locations in the form of **fine-grained POIs** like restaurant or shopping mall names

Observation 2:

The candidate POI mentions are mostly very short with one or two words. Many of the mentions are partial location names.

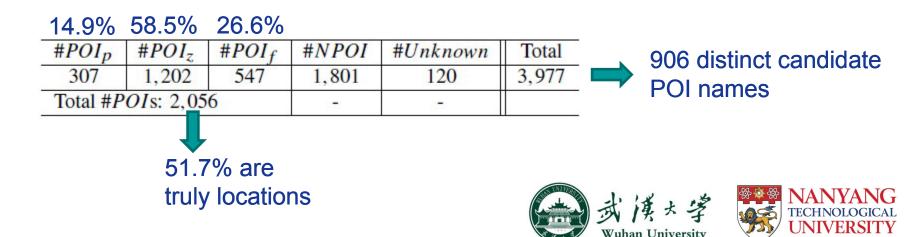
- 46.7% of the candidate POI names are **unigrams** (likely to be ambiguous)
- 41.6%+ of the candidate POI names are **partial POI names**
- POI names with 3 or more words com are about 2.5% only.



Observation 3:

About **half** of the candidate POI mentions indeed refer to locations and their associated temporal awareness can be determined.

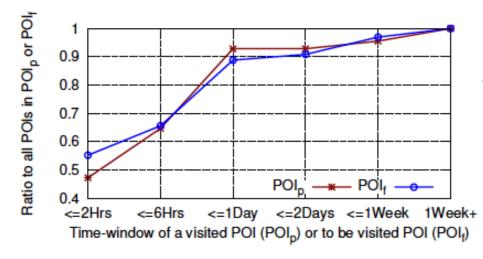
- 4,000 tweets are sampled from these 222,201 tweets for manual annotation
 - The previous and following two tweets (and their timestamps) from the same user are used as context for annotation.
 - Search engine is allowed for context understanding



Observation 4:

Among all POIs that were visited, or to be visited, about **90%** of the visits to these POIs happen **within a day**.

> Temporal awareness of POIs in POI_p and POI_f (854 POIs)



Efficiency is an important factor for fine-grained location-based services/marketing

- Simultaneously disambiguate the candidate POI mentions and resolve the **temporal awareness**
 - Fast learning and inference
- Contextual knowledge is very important

⁶ Off to jp now! Hope it DOESN'T rain *"jp"* is POI_f

- Linear-Chain Conditional Random Field (CRF)
 - Four types of features are investigated
 - lexical, grammatical, geographical and BILOU schema features.

Basic lexical features

- Word itself, lowercase form, prefixes & suffixes;
- Word shape (all-cap., is-cap., all-numeric, alphanumeric);
- Prior probability of being in cap. or all-cap. (discretized as binary features)

Contextual features

BOW of context window up to 5 words;

Off to jp now ! Hope it DOESN't rain

BOW of the preceding 2 words (left-hand side window);

Off to jp now ! Hope it DOESN't rain

BOW of the following 2 words (right-hand side window);

Off to jp now ! Hope it DOESN't rain

Time-Aware POI Tagger: Grammatical Features

- Part-of-speech (POS) (TwitterNLP [Ritter et al. EMNLP11])
- Word group by Brown clustering
- Time-trend score of tweet
 - A dictionary of 36 commonly used English words with their time-trend scores is manually compiled (time-trend dictionary);
- The closest verb.
 - Verb., the tense of the verb., distance, left/right-hand indicator
- The closest time-trend word
 - Word, time-trend score, distance, left/right-hand indicator

Time-Aware POI Tagger

Geographical Features

- Spatial randomness of each candidate POI name
- Location name confidence
- Multiple candidate POI mention
- BILOU Schema Features
 - Identify <u>Beginning</u>, <u>Inside and Last word of a multi-word POI name</u>, and <u>Unit-length POI name</u>, and the words <u>O</u>utside of any POI names
 - Each candidate POI name is pre-labeled with BILOU schema

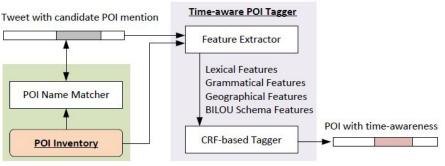
We're all for Asian delights! Thai express today, suki sushi tomorrow

We're\O all\O for\O Asian\O delights\O ! \O Thai\B express\L today\O ,\O suki\B sushi\L tomorrow\O

Time-Aware POI Tagger

Efficiency

- Scan each tweet against POI inventory
 - Prefix-tree algorithm with linear complexity [Li et al. JASIST13]
- Most features are simple to derive
 - Brown clustering, geographical features are pre-computed
 - Linear-chain CRF inference for POS tagging
- Overall linear-chain CRF inference x 2



Quantitative results

- 1.86GHz Xeon quad-core and 12GB RAM
- 400 raw tweets per second (i.e., 1.44M/Hr) by using a single CPU core

Wuhan University

Experiments: settings

Experiment Setup

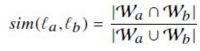
- NPOIs and true POIs with their temporal awareness
- 5-fold cross validation is applied
- Evaluation metrics: Precision, Recall and F1

Comparative Methods

- Random Annotation (RA)
 - A candidate POI mention is randomly assigned as POI_f, POI_z, POI_p, NPOI
- K-Nearest Neighbor (KNN)
 - A candidate POI mention is represented by its surrounding 4 words
- StanfordNER (CRF-Classifier)
 - Mainly lexical features are used in this system.
 - POI inventory is provided as an external gazetteer

INS UNIVERSE	

#POI _p	#POI _z	#POI _f	#NPOI	Total
307	1,202	547	1801	3,857
Total #POIs:	2,056			



Experiments: results

POI extraction with temporal awareness

	Petar >	Stanf	ordNER	>>	KNN	>>	RA
--	---------	-------	--------	----	-----	----	----

Method		POI_f			POI_z	2		POI_p	
Wethou	Pr	Re	F_1	Pr	Re	F_1	Pr	Re	F_1
RA	0.1438	0.2464	0.1816	0.3040	0.2582	0.2792	0.0795	0.2426	0.1197
KNN	0.4622	0.2792	0.3481	0.5685	0.4593	0.5081	0.1333	0.0066	0.0125
StanfordNER	0.5701	0.4526	0.5046	0.5886	0.5264	0.5558	0.3147	0.1475	0.2009
PETAR	0.6895	0.5511	0.6126	0.6752	0.7108	0.6925	0.5266	0.3574	0.4258

POI_f, POI_z >> POI_p

- Disambiguating POIs (ignoring temporal awareness)
 - Petar > StanfordNER

Method		POI			NPOI	
wiethou	Pr	Re	F_1	Pr	Re	F_1
RA	0.5254	0.7419	0.6152	0.4509	0.2428	0.3156
KNN	0.7761	0.4980	0.6067	0.5948	0.8385	0.6959
StanfordNER	0.9397	0.6931	0.7977	0.7308	0.9493	0.8259
PETAR	0.9094	0.8436	0.8753	0.8354	0.9042	0.8684

> Lex features are better for POI mention disambiguation

Feature		POI			NPOI	
reature	Pr	Re	F_1	Pr	Re	F_1
Lexical	0.9161	0.8109	0.8603	0.8095	0.9154	0.8592
Grammatical	0.8688	0.8152	0.8411	0.8033	0.8597	0.8306
Geographical	0.7787	0.5762	0.6624	0.6276	0.8135	0.7085

Gra features are better for resolving temporal awareness

Feature		POI_f			POI_z			POI_p	
reature	Pr	Re	F_1	Pr	Re	F_1	Pr	Re	F_1
Lexical	0.4727	0.2682	0.3423	0.5701	0.6915	0.6250	0.2264	0.0393	0.0670
Grammatical	0.6525	0.5310	0.5855	0.6425	0.6764	0.6590	0.4727	0.3410	0.3962
Geographical	0.1667	0.0055	0.0106	0.4519	0.5666	0.5028	0	0	0

Lex + Gra features are better in most cases

Feature		POIf			POI-		0.0	POIn			POI	
reature	Pr	Re	F_1									
Gra+Geo	0.6453	0.5191	0.5753	0.6480	0.6858	0.6663	0.5026	0.3725	0.4279	0.8741	0.8241	0.8484
Lex+Gra	0.6895	0.5511	0.6126	0.6752	0.7108	0.6925	0.5266	0.3574	0.4258	0.9094	0.8436	0.8753
Lex+Geo	0.4748	0.2755	0.3487	0.5811	0.6873	0.6298	0.2373	0.0459	0.0769	0.9206	0.8045	0.8586
Lex+Gra+Geo	0.6788	0.5438	0.6039	0.6712	0.7083	0.6892	0.5211	0.3639	0.4286	0.8702	0.8709	0.8706

Experiments: Feature Analysis

Effectiveness of individual features in Lex + Gra

• 5 features is considered by removing it from *Lex* + *Gra* combination

Feature	Description
ContextWindow	The BOW of 5-word context window, the preceding two words, and following two words
LRContextWindow	The preceding 2 words, and following 2 words
TimeTrend	The overall time-trend score of the whole tweet
ClosestVerb	The closest verb, its time-trend score, distance, left/right-hand side indicator
ClosestTrend	The closest time-trend word, its time-trend score, distance, left/right-hand side indicator

ClosestTrend > ClosestVerb > ContextWindow > LRContextWindow > TimeTrend

Features	Pr	Re	F_1	-
Lex+Gra	0.6895	0.5511	0.6126	
Lex+Gra - ContextWindow	0.6360	0.5420	0.5852	Impact for POI _f
Lex+Gra - LRContextWindow	0.6520	0.5401	0.5908	
Lex+Gra - TimeTrend	0.6736	0.5310	0.5939	
Lex+Gra - ClosestVerb	0.6628	0.5237	0.5851	
Lex+Gra - ClosestTrend	0.6590	0.5255	0.5848	

Effectiveness of BILOU schema features

Features	Pr	Re	F1
Lex+Gra - BILOU	0.6522	0.5201	0.5787

Conclusion

- Facilitate the fine-grained location-based services/marketing and personalization
- Crowd wisdom of Foursquare community is exploited
 - Exhaustive coverage for fine-grained locations
- > A effective and efficient time-aware POI tagger
 - Enable real-time applications
- > Four types of features are extensively investigated
 - Lexical, grammatical and BILOU schema features are all useful

