Towards Context-Aware Search with Right Click

Aixin Sun

Chii-Hian Lou

School of Computer Engineering, Nanyang Technological University, Singapore axsun@ntu.edu.sg louc0001@e.ntu.edu.sg

- Many queries are submitted to search engines by **right-clicking** some selected words in Web browser.
- Right-click queries are currently processed in the same way by a search engine as queries submitted through other means.
- The source document from which the query is marked for search provides sufficient contextual information to determine the right semantic of the query.

Context-Aware Search Framework

- Contextual information can be extracted to enable Context-Aware Search for better user search experiences
- Two main research questions:
- → Given the source document of a right-click query, which component of the document (*e.g.*, title, full text, paragraph containing the right-click query) is best in providing contextual information for the query?
- → What contextual information (e.g., words, nouns, or noun phrases) shall be extracted to augment the query?

Context Extraction

- Seven text components T1 T7
- T1 Full text of the page
- T2 Paragraph of the selected query word(s)
- T3 Title of the page
- T4 Title, the first and last paragraph
- T5 Paragraphs containing the query word(s)
- T6 Meta description and keyword of the page
- T7 Full text of the current and referenced articles

• Five feature extraction schemes F1–F5

F1 Words
F2 Words
F3 Nouns
F4 Nouns
F5 Noun Phrases
Frequency-based Weighting

Weighting Scheme

- ullet Frequency-based weighting: $TF \cdot IDF$ weighting scheme
- **Proximity-based weighting**: A term is more important if (i) its $TF \cdot IDF$ score is large, (ii) it occurs for multiple times in the selected text component, and (iii) the occurrences are close to the query in terms of proximity distance.

$$p_w(t_i) = \sum_{j=1}^{f_i} \frac{f_w(t_i)}{dist(t^j, q)}$$

• **Phrase weighting**: (i) the phrases's $TF \cdot IDF$ score $f_w(s)$ by treating each phrase as a token, and (ii) the average frequency of all terms contained in the phrase $\sum_{t_i \in s} f_i/|s|$, where |s| is the number of terms in phrase s.

$$s_w(s) = f_w(s) \frac{\sum_{t_i \in s} f_i}{|s|}$$

Evaluation

- **Data collection:** A user study using 20 news articles from Yahoo! News selected mainly based on two criteria: (i) article contains an ambiguous query term; (ii) two or more articles contain the same query term but with different semantics.
- Baseline method: Top-8 keywords recommended by Google search engine for the right-click query.
- Our methods: Top-8 keywords (or at most 8 words from top-N phrases) ranked by the text component T_x and feature extraction scheme F_x
- Evaluation metric: Each of the top-8 ranked words is manually judged to be relevant or irrelevant based on the content of the news article and the right-click query. Precision is used to evaluate the methods.

Observations:

- Noun phrases with phrase weighting (F5) is the best context feature extraction scheme
- Paragraphs containing the query words (T5) are the best text components for query context extraction
- Proximity-based weighting scheme *adversely affects* the precision compared with frequency-based weighting scheme.
- Between nouns and any words, using the same weighting schemes, nouns define better contextual information than any words.