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Abstract Influential nodes with rich connections in

online social networks (OSNs) are of great values to

initiate marketing campaigns. However, the potential

influence spread that can be generated by these influ-

ential nodes is hidden behind the structures of OSNs,

which are often held by OSN providers and unavailable

to advertisers for privacy concerns. A social advertising

model known as influencer marketing is to have OSN

providers offer and price candidate nodes for advertis-

ers to purchase for seeding marketing campaigns. In

this setting, a reasonable price profile for the candidate

nodes should effectively reflect the expected influence

gain they can bring in a marketing campaign.

In this paper, we study the problem of pricing the in-

fluential nodes based on their expected influence spread

to help advertisers select the initiators of marketing

campaigns without the knowledge of OSN structures.

We design a function characterizing the divergence be-

tween the price and the expected influence of the ini-

tiator sets. We formulate the problem to minimize the

divergence and derive an optimal price profile. An ad-

vanced algorithm is developed to estimate the price pro-

file with accuracy guarantees. Experiments with real
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OSN datasets show that our pricing algorithm can sig-

nificantly outperform other baselines.
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1 Introduction

Online Social Networks (OSNs) attract billions of users

to share information and bring new approaches to pro-

mote product sales or activity engagement. Real-world

examples of web-based social networks include Face-

book, Twitter, Orkut, etc. According to Facebook’s of-

ficial statistics1, it has 2.13 billion monthly active users

as of December 31, 2017. Given the tremendous number

of active users, information can be propagated widely

and rapidly through OSNs with the word of mouth ef-

fects. The interpersonal connections between individu-

als can strongly impact their decisions and behaviors.

Applications like social advertising naturally emerge to

make use of OSNs for information diffusion [12]. Nowa-

days, the advertisement market in OSNs is growing at

an amazing speed. For example, eMarketer [13] esti-

mates that advertisers are expected to spend $35.98
billion on social media to promote their products. For-

tune [28] claims that the expenditure of advertisement

on social media will exceed traditional newspapers by

2020, which will be over $50 billion.

In online social advertising, some influencers accept

free products as rewards for running a marketing cam-

paign. The well-known influence maximization problem

emerges from giving a limited number of free samples

to a subset of individuals to trigger a cascade of in-

fluence [21]. Meanwhile, some influencers charge a cer-

tain amount of money from advertisers. According to

1 https://newsroom.fb.com/company-info/
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a survey conducted by an influencer platform named

Klear, brands make an average payment of $114 per

video post on Instagram to nano-influencers who have

between 500 and 5,000 followers, and $775 to power

users with followings between 30,000 and 50,000 for an

Instagram video [15]. The rising cost for doing online

advertising attracts investment in influencers (called in-

fluencer marketing), which often involves buying a list

of influencer contracts and paying them to promote a

product [14]. In 2016, an online celebrity named Papi

Jiang with 10 million fans on Weibo, a Twitter-like mi-

cro blogging site, was valued at around 42 million dol-

lars (300 million RMB) and received 2 million dollars

investment for her potential market value without sell-

ing anything yet. According to a survey conducted by

Influencer Marketing Hub, the majority of advertisers

see influencer marketing as a direction and plan to in-

crease their influencer marketing budget [20].

In practice, the social graph is normally possessed

by OSN providers and kept secret for privacy reasons.

Hence, it is difficult for advertisers to infer the values

of influencers—only 39% of US marketers feel confident

in identifying right influencers according to a Cision

and PRWeek survey [16]. It remains an open question

how to set reasonable prices on the influencers for their

market values. Different from the advertisers, the OSN

providers hold the structure of the networks and can

identify reliable influencers and leverage data to set

the marketing price properly. In other words, the OSN

providers can offer the prices of the influencers to the

advertisers. In fact, the OSN providers have started set-

ting up platforms to facilitate the influencer search and

selection process, as well as making the system more

transparent and easier for both advertisers and influ-

encers [20]. Recently, YouTube offers access to the set

of influencers on the platform FameBit2. On average,

hiring an influencer costs $20 a video per 1,000 sub-

scribers.

Intuitively, the price of seeding any set of users

should effectively reflect the expected influence spread

that these users can generate in the campaigns. In this

way, the advertisers can hold a clear view over the in-

fluence potential of the seeds selected and make more

sensible business decisions. There are several intuitive

ways to price users or nodes in OSNs. A simple strat-

egy is to set the price of each node based on its degree

in the OSN. This strategy is rather primitive since the

degree of a node is not necessarily proportional to its

actual influence spread. Another intuitive strategy is to

set the price of each node according to its expected in-

fluence spread when selected as the only seed. However,

when multiple nodes are selected to seed a campaign,

2 https://famebit.com/

the influence spreads generated by different nodes may

overlap substantially. Thus, the influence spreads of sin-

gleton seeds may not effectively reflect their influence

contributions when they jointly initiate a campaign. A

straightforward solution to precisely describe the influ-

ence contributions of the nodes in various seed sets is to

derive a separate price of each node for including in each

possible seed set. This method is unfortunately com-

putationally expensive to implement due to the huge

numbers of nodes and possible seed sets in real social

networks.

In this paper, we propose a new pricing strategy

that can effectively reflect the value of the nodes in any

seed set. We define a function to measure the difference

of the price of a randomly chosen seed set from its ex-

pected marketing value and formulate an optimization

problem of pricing the nodes to minimize the difference.

The optimization problem is challenging to solve in sev-

eral aspects. First, in order to narrow down the diver-

gence between the price and the expected influence, we

need to calculate the expected influence spread of a seed

set, which is #P-hard even for simple diffusion models

[6, 7]. Second, as the number of possible seed sets grows

exponentially with the number of candidate nodes of-

fered by the OSN provider, it is computationally in-

tractable to compute the expected influence spread for

all possible seed sets. Furthermore, the nodes may have

different contributions to the influence spreads of dif-

ferent seed sets, which makes it even more difficult to

set a reasonable price for each node.

To tackle the pricing problem, we make the following

major contributions in this paper:

– We propose a novel problem domain of pricing the
nodes based on their expected influence spread to

help advertisers select the initiators of marketing

campaigns.

– We design a function to characterize the divergence

between the price and the expected influence of

seed sets and formulate and solve an optimization

problem to minimize the divergence.

– We devise an efficient algorithm based on random

reverse reachable sets [3] to compute the prices for

the nodes. An advanced estimation algorithm is

also developed to ensure that the estimated prices

have accuracy guarantees.

– Extensive experiments based on real OSN datasets

confirm that our pricing algorithm can yield high

quality solutions and significantly outperform other

baselines.

In our preliminary work [39], we studied the bud-

geted pricing problem where the total price of all can-

https://famebit.com/


Optimal Price Profile for Influential Nodes in Online Social Networks 3

didate nodes equals a given budget, whereas the current

paper focuses on the pricing problem without involving

any budget constraint. Our techniques and analysis are

tailored to the pricing problem. For completeness, the

results for the budgeted pricing problem are also in-

cluded in this paper, e.g., Sections 4.3 and 5.4.

The rest of this paper is organized as follows. Sec-

tion 2 reviews the related work. Section 3 introduces

the preliminaries. Section 4 presents the pricing prob-

lem and the solution. Section 5 elaborates the algorithm

to estimate the node prices. Section 6 describes the ex-

perimental evaluation. Finally, Section 7 concludes the

paper.

2 Related Work

Domingos and Richardson [29] were the first to study

viral marketing as an algorithmic problem. They pro-

posed approximation algorithms to determine the in-

fluential users and demonstrated that different sets of

seed users in a marketing campaign can produce sub-

stantially different influence spreads. Kempe et al. [21]

showed that the optimization problem of selecting the

most influential seed set of a given size is NP-hard.

They showed that the influence function is a submod-

ular function under the Independent Cascade and Lin-

ear Threshold diffusion models [21]. They proposed

a (1 − 1/e)-approximation greedy algorithm utilizing

Monte-Carlo simulations. Follow-up work has mostly

focused on improving the efficiency of the algorithm

implementation for large-scale OSNs based on the sub-

modularity property or heuristics [3, 5–7, 10, 24, 26, 31–

33, 37, 38]. Furthermore, some recent work utilized

adaptive algorithms to improve the performance for

various influence based optimization problems, includ-

ing adaptive influence maximization [17, 18] and adap-

tive seed minimization [36], etc. There was also work

studying profit maximization in OSNs to optimize the

profit return of viral marketing. Lu et al. [25] extended

the classical Linear Threshold model to incorporate

product prices and user valuations, and factor them

into the user’s decision process of adopting a product.

They greedily chose the seeds with the greatest profit

potential. Tang et al. [30, 34] defined the profit metric

as the benefit of influence spread less the cost for seed

selection and proposed a general problem of profit max-

imization for viral marketing. Huang et al. [19] stud-

ied adaptive profit maximization. All the above work

focused on designing the seed selection algorithms for

advertisers based on the premise that complete social

network structures are available to advertisers. How-

ever, such information is normally kept secret by OSN

providers for business and privacy reasons [4, 22]. Our

work in this paper aims to offer a seed pricing solution

for seed selection without releasing the social network

structures to the advertisers. Recently, Tang et al. [35]

studied the profit maximization problem from the OSN

provider’s perspective by taking the cost of informa-

tion diffusion over the social network into account. In

addition, Aslay et al. proposed and tackled other prac-

tical problems of regret minimization [1] and revenue

maximization [2] in online social advertising. Neverthe-

less, they did not provide any value-based seed pricing

solution for advertisers. Different from all the above

studies, in this paper, we aim to tighten the relation-

ship between the price setting and the seed’s influence

spread.

3 Preliminaries

3.1 Influence Spread

An OSN can be modeled as a directed graph G = (V,E)

with a set V of nodes and a set E of edges. Users are

represented by the nodes and connections between users

are represented by edges. For each edge (u, v) ∈ E, we

say that v is an out-neighbor of u and u is an in-neighbor

of v.

Many models have been proposed to capture the dif-

fusion process in the OSN. Our problem definition and

solution are general and can be used for various diffu-

sion models. For the purpose of illustrating basic con-

cepts, we briefly introduce a widely used diffusion model

known as Independent Cascade [21]. In this model, each

edge (u, v) is associated with a propagation probability

pu,v denoting the probability that v will be influenced

by u. Initially, a set of seed nodes S are activated while

all the other nodes are inactive. When a node u first

becomes active, it is given a single chance to activate

each inactive out-neighbor v with a probability pu,v.

The diffusion process stops when no more activation

can be made.

Let σ(S) denote the expected number of nodes ac-

tivated by the diffusion process starting with a set of

seed nodes S. σ(S) is known as the influence spread of

the seed set S.

3.2 Influence Spread Estimation

The computational complexity of the exact influence

spread σ(S) for a seed set S is proved to be #P-hard

for several diffusion models including Independent Cas-

cade [6, 7]. As a result, various sampling methods have

been proposed for unbiased estimation of the influence

spread. The RIS method proposed by Borgs et al. [3]
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substantially improved the efficiency to estimate the

influence spread compared to the naive Monte-Carlo

simulation method. Thus, we adopt RIS for influence

spread estimation.

Definition 1 ([3]) A random reverse reachable (RR)

set R for a graph G is generated by the following steps:

1. Select a random node v ∈ V .

2. Sample a random graph g from G according to the

diffusion model.

3. Take the set of nodes in g that can reach v as R.

For example, under the Independent Cascade

model, a random RR set R on G can be constructed

as follows:

1. Select a node v ∈ V uniformly at random.

2. Starting from v, perform a stochastic breadth first

search (BFS) following the incoming edges of each

node. Specifically, for each node u encountered in

the BFS, we examine the in-neighbors of u. For each

in-neighbor w, we allow the BFS to traverse to w

from u with probability pw,u (if w has not been tra-

versed before).

3. Insert all the nodes traversed during the stochastic

BFS into the RR set R.

Random RR sets have the following property [3].

Lemma 1 ([3]) Given a seed set S ⊆ V , for a random

RR set R, we have

σ(S) = n · Pr[S ∩R ̸= ∅], (1)

where n = |V | is the total number of nodes in the graph

G.

According to Lemma 1, the influence spread of a

seed set S is proportional to the probability that S

intersects with a random RR set R. Thus, to estimate

influence spread, we can generate a large number of

RR sets R. Given any seed set S, we can compute the

number of RR sets in R that intersect with S (denoted

by Λ(R, S)) and estimate the influence spread of S by
n
|R| · Λ(R, S).

4 Divergence Function & Optimal Price Profile

In this section, we define a divergence function to mea-

sure the effectiveness of a price profile and derive an

optimal price profile in terms of the function value. For

ease of reference, we list the key notations used in this

paper in Table 1.

Table 1 Frequently used notations.

Notations Description

G = (V,E)
A graph G with a set V of nodes and a set
E of edges

σ(S) Influence spread of seed set S

R A random RR set

R A set of RR sets where |R| = θ

Λ(R, S) Number of RR sets in R intersecting S

C Candidate node set consisting of nc nodes

n Total number of nodes in V , i.e., n = |V |
nc Number of nodes in C, i.e., nc = |C|
nr Number of nodes in C ∩R

pi Price of node si ∈ C

p◦i
Optimal price of node si to the pricing prob-
lem

p∗i
Optimal price of node si to the budgeted
pricing problem

b Total price of the nodes in C

4.1 Divergence Function

The seed users generate revenue from the seed purchase

of the advertiser for initiating the campaigns. The in-

fluence spread, on the other hand, is the reward gained

by the advertiser in the campaigns. Thus, it is impor-

tant to make sure that the influence spread is worth

the cost of seed purchase. In this way, the prices set for

seed purchase can not only minimize the regret in de-

riving the revenue for seeds but also give the advertiser

a more predictable return for its purchase. Therefore,

our objective of pricing is to match the price of any seed

set with the expected marketing value of the seed set

as closely as possible.

Consider a candidate node set C consisting of nc

nodes {s1, s2, . . . , snc} offered by the OSN provider for

the advertisers to choose seeds. Let pi be the price

of the node si in C. We refer to ⟨p1, p2, . . . , pnc
⟩ as

the price profile. For any seed set S ⊆ C, the total

price of the nodes in S is
∑

si∈S pi, and the influ-

ence spread of S is σ(S). Let c represent the revenue

for influencing one user (e.g., purchasing a promoted

product). Then, c · σ(S) is the expected market value

for the seed set S. Thus, the divergence between the

price and the influence spread can be characterized by

(c · σ(S)−
∑

si∈S pi)
2. Since the advertisers can choose

any subset of the nodes in C to initiate campaigns based

on their preferences, we assume that all the subsets of

C are equally likely to be chosen as the seed set. There-

fore, the expected divergence between the price and the

market value of a randomly chosen seed set is given by

1

2nc

∑
S⊆C

(
c·σ(S)−

∑
si∈S

pi

)2

=
c2

2nc

∑
S⊆C

(
σ(S)−

∑
si∈S

pi
c

)2

.
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We aim to find a price profile to minimize the diver-

gence function. Here, pi

c can be understood as the nor-

malized individual node price. Without loss of general-

ity, we can simply assume that c = 1. In the rest of this

paper, we focus on the following divergence function

f(p1, p2, . . . , pnc) :=
1

2nc

∑
S⊆C

(
σ(S)−

∑
si∈S

pi

)2

. (2)

We then formally define the pricing problem that aims

to minimize the divergence function defined in (2) as

follows.

Definition 2 The pricing problem is to find a (non-

negative) price profile for a set C of candidate nodes so

that the divergence function is minimized, i.e.,

argmin
∀i,pi≥0

f(p1, p2, . . . , pnc
).

It is easy to verify that the optimal price profile for a

general c value can be obtained by simply scaling the

solution to the above problem by a multiplicative factor

of c.

4.2 Optimal Price Profile

To solve the pricing problem, we first reformulate the

divergence function.

Lemma 2 Let

g(pi) :=
p2i
4

− pi
2nc−1

∑
S⊆C\{si}

σ(S ∪ {si}). (3)

Then, we have

f(p1, p2, . . . , pnc) =
1

2nc

∑
S⊆C

σ(S)2+
b2

4
+

nc∑
i=1

g(pi), (4)

where b :=
∑nc

i=1 pi.

Proof We prove it by induction. When nc = 1, we have

g(p1) =
p21
4

− p1σ({s1}).

Meanwhile, by definition, we have

f(p1) =
(σ({s1})− p1)

2

2
=

σ({s1})2

2
+

p2i
2

− p1σ({s1}).

Thus, f(p1) = σ({s1})2
2 +

p2
1

4 + g(p1), which indicates

that (4) holds when nc = 1.

Suppose that (4) holds when nc = N for an integer

N ≥ 1. In what follows, we will show that (4) holds

when nc = N + 1.

For any i ∈ [2, nc], let σ̄(S) := σ(S ∪ {s1})− p1,

ḡ(pi) :=
p2i
4

− pi
2N−1

∑
S⊆C\{s1,si}

σ̄(S ∪ {si}),

and ĝ(pi) :=
p2i
4

− pi
2N−1

∑
S⊆C\{s1,si}

σ(S ∪ {si}).

In addition, let

f̄ :=
1

2N

∑
S⊆C\{s1}

((
σ̄(S)−

∑
si∈S

pi

)2

+
(
σ(S)−

∑
si∈S

pi

)2)
.

For any node set S, the node s1 satisfies either s1 ∈ S

or s1 /∈ S. Thus, we have f̄ = 2f(p1, p2, . . . , pnc).

Let b̄ :=
∑nc

i=2 pi = b−p1. Since |C\{s1}| = nc−1 =

N , according to the hypothesis, we have

f̄ =
∑

S⊆C\{s1}

σ̄(S)2 + σ(S)2

2N
+

b̄2

2
+

nc∑
i=2

(
ḡ(pi)+ ĝ(pi)

)
.

For the first part, we have

1

2N

∑
S⊆C\{s1}

(
σ̄(S)2 + σ(S)2

)
=

1

2N

∑
S⊆C\{s1}

((
σ(S ∪ {s1})− p1

)2
+ σ(S)2

)
=

1

2N

∑
S⊆C

σ(S)2 + p21 −
p1

2N−1

∑
S⊆C\{s1}

σ(S ∪ {s1})

=
1

2N

∑
S⊆C

σ(S)2 + 2g(p1) +
p21
2
.

For the third part, we have

ḡ(pi) + ĝ(pi)

=
p2i
2

− pi
2N−1

∑
S⊆C\{s1,si}

(
σ̄(S ∪ {si}) + σ(S ∪ {si})

)
=

p2i
2

− pi
2N−1

∑
S⊆C\{si}

σ(S ∪ {si}) + p1pi

= 2g(pi) + p1pi.

Therefore, we have

f̄ =
1

2N

∑
S⊆C

σ(S)2 + 2g(p1) +
p21
2

+
b̄2

2
+

nc∑
i=2

(
2g(pi) + p1pi

)
=

1

2N

∑
S⊆C

σ(S)2 +
p21 + b̄2 + 2p1b̄

2
+ 2

nc∑
i=1

g(pi)

=
1

2N

∑
S⊆C

σ(S)2 +
b2

2
+ 2

nc∑
i=1

g(pi).

This completes the proof. □
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Based on Lemma 2, we can derive the optimal price

profile as follows.

Theorem 1 For each i = 1, 2, . . . , nc, let

p◦i :=

∑
S⊆C σ(S)

(
1{si∈S} − |S|

nc+1

)
2nc−2

, (5)

where 1{si∈S} is an indicator function such that

1{si∈S} = 1 if si ∈ S and 1{si∈S} = 0 otherwise. Then,

⟨p◦1, p◦2, . . . , p◦nc
⟩ is an optimal price profile to the pricing

problem.

Proof According to Lemma 2, for each i, taking the

partial derivative of f(p1, p2, . . . , pnc
) with respect to

pi gives

df(p1, p2, . . . , pnc
)

dpi
=

b+ pi
2

− ci ≜ 0, (6)

where b =
∑nc

i=1 pi and ci =
∑

S⊆C\{si}
σ(S∪{si})

2nc−1 . It is

trivial to see that the profile ⟨p1, p2, . . . , pnc⟩ satisfying
(6) gives a lower bound f(p1, p2, . . . , pnc

) to the pricing

problem. Summing (6) from i = 1 to i = nc gives

(nc + 1)b

2
−

nc∑
i=1

ci = 0.

As a result, we have

pi = 2ci − b = 2ci −
2

nc + 1
·

nc∑
i=1

ci

=
∑

S⊆C\{si}

σ(S ∪ {si})
2nc−2

− 2

nc + 1
·
∑
S⊆C

σ(S) · |S|
2nc−1

=
∑
S⊆C

σ(S)
(
1{si∈S} − |S|

nc+1

)
2nc−2

= p◦i .

Then, it suffices to show that p◦i is non-negative.

Next, we utilize the RIS method [3] to show the non-

negativity of p◦i . By Lemma 1, for a random RR set R,

we have σ(S) = n · Pr[S ∩ R ̸= ∅] = n · E[1{S∩R ̸=∅}].

Thus,

p◦i = n · E
[∑

S⊆C

(
1{S∩R ̸=∅} ·

(
1{si∈S} − |S|

nc+1

))
2nc−2

]
.

Denote by Ã◦
i an estimate of p◦i using a random RR set

R, i.e.,

Ã◦
i

n
=

∑
S⊆C

(
1{S∩R ̸=∅} ·

(
1{si∈S} − |S|

nc+1

))
2nc−2

.

Then p◦i can be written as E[Ã◦
i ]. Next, we show that

for any RR set R, Ã◦
i ≥ 0, which implies p◦i ≥ 0.

Given an RR set R, let nr := |C∩R|. Then, we have∑
S⊆C

(
1{S∩R ̸=∅} · |S|

)
=

∑
S⊆C

|S| −
∑

S⊆(C\R)

|S|

= nc · 2nc−1 − (nc − nr) · 2nc−nr−1.

In addition, if si ∈ R, we have∑
S⊆C

(
1{S∩R ̸=∅} · 1{si∈S}

)
= 2nc−1,

and thus

Ã◦
i

n
=

2nc−1 − 1
nc+1 · (nc · 2nc−1 − (nc − nr) · 2nc−nr−1)

2nc−2

=
2

nc + 1
+

nc − nr

nc + 1
· 21−nr .

On the other hand, if si /∈ R, we have∑
S⊆C

(
1{S∩R ̸=∅} · 1{si∈S}

)
=

∑
S⊆C\{si}

1{S∩R ̸=∅}

=
∑

S⊆C\{si}

1−
∑

S⊆C\(R∪{si})

1

= 2nc−1 − 2nc−nr−1,

and thus

Ã◦
i

n
=

2

nc + 1
− nr + 1

nc + 1
· 21−nr .

To summarize,

Ã◦
i

n
=

{
2

nc+1 + nc−nr

nc+1 · 21−nr , if si ∈ R,
2

nc+1 − nr+1
nc+1 · 21−nr , otherwise.

(7)

It is easy to verify that

Ã◦
i

n
≥ 2

nc + 1
− nr + 1

nc + 1
· 21−nr

=
2 · (1− (nr + 1) · 2−nr)

nc + 1
≥ 0,

since 2nr − nr − 1 ≥ 0. This completes the proof. □

Hardness Analysis. We present a polynomial closed-

form solution in Theorem 1 to the pricing problem de-

fined in Definition 2. As can be seen from (5), for each

1 ≤ i ≤ nc, computing p◦i in our pricing problem can

be reduced to calculating σ(S) for any S ⊆ C, which is

#P-hard for several diffusion models including the In-

dependent Cascade and Linear Threshold models [6, 7].

Thus, our pricing problem is also #P-hard under these

diffusion models.
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4.3 Pricing Nodes with a Budget Constraint

Furthermore, we also study the budgeted pricing prob-

lem when the total price of all nodes in the candidate

set C is equal to a given value b. The following theorem

gives the optimal price profile to the budgeted pricing

problem.

Theorem 2 Given any price budget b, let

ci :=

∑
S⊆C\{si} σ(S ∪ {si})

2nc−1
, ∀1 ≤ i ≤ nc, (8)

λ be the root of

nc∑
i=1

max{0, 2(λ+ ci)} = b, (9)

and p∗i := max{0, 2(λ+ ci)}, ∀1 ≤ i ≤ nc. (10)

Then, ⟨p∗1, p∗2, . . . , p∗nc
⟩ is an optimal price profile to the

budgeted pricing problem.

Proof According to Karush-Kuhn-Tucker conditions,

the optimal solution ⟨p∗1, p∗2, . . . , p∗nc
⟩ satisfies that

∀i, p
∗
i

2
− ci − λ− λi = 0, (11)

∀i, λip
∗
i = 0, (12)

nc∑
i=1

p∗i = b, (13)

∀i, p∗i ≥ 0, (14)

∀i, λi ≥ 0. (15)

In the above, (11) represents stationarity, (12) shows

complementary slackness, (13) and (14) ensure primal

feasibility, and (15) ensures dual feasibility.

If λ + ci ≤ 0, by (11), we have
p∗
i

2 ≤ λi. By (12),

(14), and (15), we have p∗i = 0. Similarly, if λ+ ci > 0,

we have λi = 0, which indicates that p∗i = 2(λ + ci).

Therefore,

p∗i = max{0, 2(λ+ ci)}. (16)

Then, by (13), λ is the solution for
∑nc

i=1 max{0, 2(λ+

ci)} = b, which completes the proof. □

Theorem 2 states the optimal solution, where λ can

be obtained via water-filling. Specifically, without loss

of generality, we assume that c1 ≥ c2 ≥ · · · ≥ cnc >

cnc+1 = −∞. Then, we can find a unique j ∈ [1, nc]

such that
∑j−1

i=1 2(ci−cj) < b and
∑j

i=1 2(ci−cj+1) ≥ b.

This implies that −cj < λ ≤ −cj+1. Hence, λ is the root

of
∑j

i=1 2(λ+ ci) = b.

Corollary 1 Given any price budget b, for each i =

1, 2, . . . , nc, let

p∗i :=
b

nc
+

∑
S⊆C σ(S)

(
1{si∈S} − |S|

nc

)
2nc−2

, (17)

where 1{si∈S} is an indicator function such that

1{si∈S} = 1 if si ∈ S and 1{si∈S} = 0 otherwise. If

the budget b is no less than the influence spread σ(C)

of the candidate set C, i.e., b ≥ σ(C), ⟨p∗1, p∗2, . . . , p∗nc
⟩

is an optimal price profile to the budgeted pricing prob-

lem.

Proof Let λ be the value such that

nc∑
i=1

2(λ+ ci) = b.

Then,

λ =
b

2nc
− 1

nc

nc∑
i=1

ci =
b

2nc
−

∑
S⊆C

(
σ(S) · |S|

)
nc · 2nc−1

,

and

2(λ+ ci) =
b

nc
+

∑
S⊆C σ(S)

(
1{si∈S} − |S|

nc

)
2nc−2

.

Again, we utilize the RIS method [3] to show that 2(λ+

ci) ≥ 0 to ensure that for each 1 ≤ i ≤ nc, p
∗
i given in

(17) is non-negative when b ≥ σ(C).

Specifically, define

Ai := 2(λ+ ci)−
b

nc
=

∑
S⊆C σ(S)

(
1{si∈S} − |S|

nc

)
2nc−2

.

Let Ãi be an estimate of Ai using a random RR set R,

i.e.,

Ãi

n
=

∑
S⊆C

(
1{S∩R ̸=∅} ·

(
1{si∈S} − |S|

nc

))
2nc−2

.

Analogous to the proof of Theorem 1, it is easy to get

that

Ãi

n
=

{
(1− nr

nc
) · 21−nr , if si ∈ R,

−nr

nc
· 21−nr , otherwise.

(18)

It is trivial to see that

Ãi

n
≥ −nr

nc
· 21−nr ≥ −

1{C∩R ̸=∅}

nc
.

By Lemma 1, we have

2(λ+ ci) =
b

nc
+Ai =

b

nc
+ E[Ãi]

≥ b

nc
− n · Pr[C ∩R ̸= ∅]

nc
=

b− σ(C)

nc
≥ 0.

This completes the proof. □
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Discussion. We also study the variants of the budgeted

pricing problem when the total price of the candidate

nodes is no larger than b or no less than b, which can be

solved by combining the solution to the general pricing

problem and the solution to the budgeted pricing prob-

lem. Specifically, under the assumption that the given

budget b satisfies b ≥ σ(C), by Corollary 1, we have
dp∗

i

db = 1
nc
. Thus,

df(p∗1, p
∗
2, . . . , p

∗
nc
)

db

=
b

2
+

nc∑
i=1

dg(p∗i )

db

=
b

2
+

nc∑
i=1

1

4
· (2p∗i ·

1

nc
)− 1

nc

∑
S⊆C\{si} σ(S ∪ {si})

2nc−1

=
b

2
(
1

nc
+ 1)−

∑
S⊆C σ(S) · |S|
nc · 2nc−1

.

Let
df(p∗

1 ,p
∗
2 ,...,p

∗
nc

)

db = 0. Then, the divergence function

achieves its minimal value at b = 1
nc+1 ·

∑
S⊆C σ(S)·|S|

2nc−2

while satisfying that p◦i is non-negative for each 1 ≤
i ≤ nc. Let b◦ = 1

nc+1 ·
∑

S⊆C σ(S)·|S|
2nc−2 . Take the “less

or equal to b” pricing problem as an example. If the

given budget b satisfies b ≤ b◦, since the divergence

function decreases with the growth of b, the minimal

divergence value is achieved at value b and the opti-

mal pricing solution is given by Theorem 2. Otherwise,

when the given budget b satisfies b ≥ b◦, the divergence

function achieves its minimal value at value b◦ and the

optimal pricing solution is given by Theorem 1. The

solution to the pricing problem where the total price

of the candidate nodes is larger or equal to b can be

derived similarly.

4.4 Discussion on Privacy Issues

Privacy protection is critical for both OSN providers

and influencers. On one hand, our pricing mechanism

intrinsically protects the privacy of OSN providers since

they do not need to unveil the network structures. On

the other hand, as most information posts are publicly

available and designed to attract followers on platforms

such as Instagram and TikTok, many influencers are

willing to monetize their public influence powers. To

minimize the ethical issues, OSN providers can first

confirm influencers’ willingness of engagement in mar-

keting campaigns and then post their prices for mar-

keting campaigns. Furthermore, to protect the privacy

of the candidate seeds, the prices can be posted anony-

mously such that the personal information can be pro-

tected.

5 Estimation of Node Prices

In this section, we focus on the estimation of the node

prices p◦1, p
◦
2, . . . , p

◦
nc

in the optimal price profile to the

pricing problem defined in Definition 2, while the esti-

mation of p∗1, p
∗
2, . . . , p

∗
nc

to the budgeted pricing prob-

lem is similar.

5.1 Unbiased Estimator via RR Sets

When θ RR sets are generated, according to (7), an RR

set R contributes to the estimator Ã◦
i by an additive

factor of ∆(Ã◦
i , R), which is given as follows.

∆(Ã◦
i , R) =

{
n
θ ·

(
2

nc+1 + nc−nr

nc+1 · 21−nr
)
, if si ∈ R,

n
θ ·

(
2

nc+1 − nr+1
nc+1 · 21−nr

)
, otherwise.

Recall that ∆(Ã◦
i , R) is ensured to be non-negative. Let

R1, R2, . . . , Rθ be a sequence of random RR sets. Let

Xi,j be a random variable defined as

Xi,j =


0 if Rj ∩ C = ∅,

2
nc+1 + nc−nr

nc+1 · 21−nr if si ∈ Rj ∩ C,
2

nc+1 − nr+1
nc+1 · 21−nr otherwise,

(19)

where nc = |C| and nr = |Rj ∩ C|. It is easy to verify

that 0 ≤ Xi,j ≤ 1. Then, by definition,

∆(Ã◦
i , Rj) =

n

θ
·Xi,j .

Thus, we have

p◦i =
n

θ
· E

[ θ∑
j=1

Xi,j

]
.

To use n
θ ·

∑θ
j=1 Xi,j as an estimator of p◦i , we need θ

to be large enough in order to ensure that
∑θ

j=1 Xi,j

does not deviate significantly from its expectation.

5.2 Stopping Rule Algorithm

We generalize the stopping rule algorithm [11] to get an

(ε, δ)-approximation of p◦i . Similar to the work [27], we

also use the martingale-based concentration bounds [9]

to tighten the threshold setting in the stopping rule

algorithm. The key differences of our algorithm from

previous work [11, 27] are as follows:

– We invent a tighter threshold setting than previous

work [11, 27] to improve the efficiency of the stop-

ping rule algorithm.

– We construct an algorithm to estimate all the p◦i for

every i = 1, 2, . . . , nc simultaneously.
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Algorithm 1: Stopping Rule Algorithm

Input: number of nodes n, accuracy parameters
ε, δ ∈ (0, 1);

Output: an (ε, δ)-approximation Ã◦
i of p◦i for each

i ≤ nc;

1 Υ ← (1 + ε)(1 + (2 + 2
3
ε) ln( 2

δ
) 1
ε2 ) and θ ← 0;

2 foreach node si ∈ C do
3 initialize Si ← 0;

4 while minSi < Υ do
5 θ ← θ + 1;
6 generate RR set Rθ;
7 foreach node si ∈ C do
8 if Si < Υ then
9 Si ← Si +Xi,θ, where Xi,θ is based on (19);

10 θi ← θ;

11 return {Ã◦
i = n · Υ

θi
: 1 ≤ i ≤ nc};

To obtain an (ε, δ)-approximation of the mean of a

random variable, the stopping rule algorithm first com-

putes a threshold Υ and then continuously generates

samples according to the distribution until their sum

exceeds Υ . Finally, the stopping rule algorithm returns

the average of these samples as the estimate. The basic

stopping rule algorithm can estimate the mean of only

one random variable. In our pricing problem, we need

to estimate all the values p◦i for every i = 1, 2, . . . , nc

in order to derive the optimal price profile. Estimat-

ing each p◦i by a separate invocation of the stopping

rule algorithm can result in generating an unnecessar-

ily large number of samples (RR sets). In the following,

we construct a stopping rule algorithm to estimate all

the values p◦i for every i = 1, 2, . . . , nc simultaneously.

Algorithm 1 shows the details. The algorithm first

calculates the threshold Υ based on the required ap-

proximation parameters ε and δ (line 1). After that,

samples are generated and aggregated until the mini-

mum sum among all the nodes si’s exceeds Υ (Lines

4–10). The number of samples θi is recorded for each

node si until its sum Si exceeds Υ (Line 10). Finally, the

estimate Ã◦
i of the price p◦i for each node si is returned

(Line 11).

5.3 Theoretical Analysis

5.3.1 A Tighter Threshold Setting

The original stopping rule algorithm [11] sets the

threshold Υ as

ΥD = 1 + 4(1 + ε)(e− 2) ln
(2
δ

) 1

ε2

> 1 + 2.87(1 + ε) ln
(2
δ

) 1

ε2
.

In Algorithm 1, we set the threshold Υ as

Υ = (1 + ε)(1 + (2 +
2

3
ε) ln

(2
δ

) 1

ε2
)

< (1 + ε)(1 + 2.67 ln
(2
δ

) 1

ε2
),

since 0 < ε ≤ 1. Hence, the Υ setting in our algorithm

is tighter than that in [11] when 0.2(1+ ε) ln( 2δ )
1
ε2 > ε,

which holds when ε ≤ 0.5 < 3
√
0.2 · ln 2.

Similar to our algorithm, the stopping rule algo-

rithm proposed by Nguyen et al. [27] also uses the

martingale-based concentration bounds [9] to set the

threshold Υ . Since 0 ≤ Xi,j ≤ 1 in our problem, apply-

ing the algorithm in [27], the threshold Υ is set as

ΥN = (1 + ε)
(
2 +

2

3
ε′
)
ln

(2
δ

) 1

ε′2
,

where ε′ = ε(1 − ε
(2+ 2

3 ε) ln(
2
δ )
) < ε. In Algorithm 1,

we replace ε′ with ε in the setting of Υ and add an

additive factor of 1+ε. Next, we show that the Υ value

in our algorithm is smaller than that in Nguyen et al.’s

work [27]. To prove

(1+ε)
(
2+

2

3
ε′
)
ln

(2
δ

) 1

ε′2
> (1+ε)

(
1+

(
2+

2

3
ε
)
ln

(2
δ

) 1

ε2
)
,

it is equivalent to show that

(
1 +

1

3
ε′
) 1

ε′2
−
(
1 +

1

3
ε
) 1

ε2
>

1

2 ln( 2δ )
. (20)

Let α := (2 + 2
3ε) ln(

2
δ ) and β := ε′

ε = 1− ε
α . We have

(
1 +

1

3
ε′
) 1

ε′2
−
(
1 +

1

3
ε
) 1

ε2

=
(
1 +

1

3
βε

) 1

β2ε2
−

(
1 +

1

3
ε
) 1

ε2

=
(1 + β

βε
+

1

3

)
· 1− β

βε

>
2− ε

α

ε(1− ε
α )

·
ε
α

ε(1− ε
α )

=
2α− ε

ε(α− ε)2

>
2

ε(α− ε)
.

Since 4 ln( 2δ ) >
8
3 ln(

2
δ ) ≥ α ≥ α−ε ≥ ε(α−ε), we have

2

ε(α− ε)
>

1

2 ln( 2δ )
.

Thus, (20) holds and the Υ setting in our algorithm is

tighter. So, our algorithm would generate less samples

than that in Nguyen et al.’s work [27].
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5.3.2 Theoretical Guarantee

In the following, we prove that our Υ setting can guar-

antee an (ε, δ)-approximation of estimation. The proof

is similar in spirit to the original stopping rule algo-

rithm [11], but we make use of the martingale-based

concentration bounds [9] in the derivation.

Definition 3 ([9]) A sequence of random variables

Y1, Y2, . . . is a martingale if and only if E[|Yj |] < ∞
and E[Yj | Y1, Y2, . . . , Yj−1] = Yj−1 for any j.

Since each RR set Rj is generated randomly and

independently of all the prior RR sets, we have

E[Xi,j | Xi,1, Xi,2, . . . , Xi,j−1] = E[Xi,j ] =
p◦i
n
. (21)

Let µi =
p◦
i

n and Mi,j = Σj
k=1(Xi,k − µi). Then, we

have E[|Mi,j |] ≤ j < ∞, and

E[Mi,j | Mi,1,Mi,2, . . . ,Mi,j−1] = Mi,j−1.

Therefore, Mi,1,Mi,2, . . . ,Mi,θ is a martingale.

Lemma 3 ([9]) Let Y1, Y2, . . . , Yj be a martingale,

such that Y1 ≤ a, Yk−Yk−1 ≤ a for any 2 ≤ k ≤ j, and

Var[Y1] +
∑j

k=2 Var[Yk | Y1, Y2, . . . , Yk−1] ≤ b. Then,

for any η > 0,

Pr[Yj − E[Yj ] ≥ η] ≤ exp
(
− η2

2
3aη + 2b

)
. (22)

Since 0 ≤ Xi,j ≤ 1 for any 1 ≤ j ≤ θ, we have

Mi,1 = Xi,1−µi ≤ 1 and Mi,j −Mi,j−1 = Xi,j −µi ≤ 1

for any 2 ≤ j ≤ θ. Let Var[·] denote the variance of a

random variable. It follows that Var[Xi,j ] = E[X2
i,j ] −

E[Xi,j ]
2 = E[X2

i,j ] − µ2
i ≤ E[Xi,j ] − µ2

i ≤ µi(1 − µi).

Hence,

Var[Mi,1] +

θ∑
j=2

Var[Mi,j | Mi,1,Mi,2, . . . ,Mi,j−1]

=

θ∑
j=1

Var[Xi,j − µi] ≤ θµi · (1− µi) ≤ θµi.

By Lemma 3, we have Pr[Mi,θ ≥ ε·θµi] ≤ exp
(
− ε2θµi

2+ 2
3 ε

)
.

Similarly, −Mi,1,−Mi,2, . . . ,−Mi,θ is a martingale

such that

−Mi,1 ≤ µi,

−Mi,j +Mi,j−1 ≤ µi,

θ∑
j=2

Var[−Mi,j | −Mi,1,−Mi,2, . . . ,−Mi,j−1]

+ Var[−Mi,1] ≤ θµi · (1− µi).

Then, we have

Pr[−Mi,θ ≥ ε · θµi] = Pr
[ θ∑
j=1

Xi,j − θµi ≤ −ε · θµi

]
≤ exp

(
− ε2θ2µ2

i
2
3εθµ

2
i + 2θµi(1− µi)

)
≤ exp

(
− ε2θµi

2

)
.

To summarize, we have the following corollary.3

Corollary 2 For any ε > 0,

Pr
[ θ∑
j=1

Xi,j − θµi ≥ ε · θµi

]
≤ exp

(
− ε2θµi

2 + 2
3ε

)
, (23)

Pr
[ θ∑
j=1

Xi,j − θµi ≤ −ε · θµi

]
≤ exp

(
− ε2θµi

2

)
. (24)

According to Corollary 2, the following lemma de-

scribes the phenomenon that the failure probability is

independent of the mean of the tested random variable

in the multiplicative-additive error form of martingale-

based concentration bounds.

Lemma 4 Let Z1 − E[Z1], . . . , ZT − E[ZT ] be a mar-

tingale difference sequence such that Zj ∈ [0, 1] for each

j. Let Z̄ = 1
T

∑T
j=1 Zj. If E[Zj ] is identical for every j,

i.e., E[Zj ] = E[Z̄], then,

Pr[Z̄ ≤ (1− ε)E[Z̄]− β] ≤ exp
(
− 2εβT

)
, (25)

Pr[Z̄ ≥ (1 + ε)E[Z̄] + β] ≤ exp
(
− 2εβT

(1 + ε/3)2

)
. (26)

Proof By (24) in Corollary 2, we have

Pr
[
Z̄ ≤ (1− ε)E[Z̄]− β

]
≤ exp

(
− (εE[Z̄] + β)2T

2E[Z̄]

)
≤ exp

(
− (2

√
εE[Z̄]β)2T

2E[Z̄]

)
= exp

(
− 2εβT

)
.

Similarly, by (23) in Corollary 2, we have

Pr[Z̄ ≥ (1 + ε)E[Z̄] + β] ≤ exp
(
− h(λ)

)
,

where h(λ) = (λ2T )
2(λ−β)/ε+2λ/3 and λ = εE[Z̄] + β. Let

dh(λ)

dλ
=

(
2λ((λ− β)/ε+ λ/3)− (1/ε+ 1/3)λ2

)
T

2
(
(λ− β)/ε+ λ/3

)2 ≜ 0.

Thus, h(λ) achieves its minimum at λ = 2β
ε(1/ε+1/3) such

that h(λ) = 2εβT
(1+ε/3)2 . This completes the proof. □

3 Tang et al. [38] directly gave the lower tail result without
providing the detailed proof. Our analysis is based on Lemma
3 requiring Y1 ≤ a and Yk−Yk−1 ≤ a, whereas Tang et al. [38]
utilized a similar lemma requiring |Y1| ≤ a and |Yk−Yk−1| ≤
a, which might be insufficient for deriving the lower tail result.
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Based on Corollary 2, we show that Algorithm 1

returns an (ε, δ)-approximate µ̃i of each µi (1 ≤ i ≤ nc).

Theorem 3 Algorithm 1 returns an (ε, δ)-approximate

µ̃i of µi for each 1 ≤ i ≤ nc, i.e.,

Pr[(1− ε)µi ≤ µ̃i ≤ (1 + ε)µi] ≥ 1− δ. (27)

Proof Given any i where 1 ≤ i ≤ nc, we will prove the

following two probabilistic inequalities:

Pr[µ̃i < (1− ε)µi] ≤
δ

2
, (28)

Pr[µ̃i > (1 + ε)µi] ≤
δ

2
. (29)

First, we prove (28). Since 0 ≤ Xi,j ≤ 1, by the defini-

tion of Algorithm 1, when it terminates, we have

Υ ≤ Si =

θi∑
j=1

Xi,j ≤ Υ + 1.

Let L1 := ⌈ Υ
(1−ε)µi

⌉. Then,

L1 ≥ Υ

(1− ε)µi
,

and hence,

Υ

L1
≤ (1− ε)µi.

Since θi is an integer, we have

Pr[µ̃i < (1− ε)µi]

= Pr[Υ < (1− ε)µiθi]

= Pr
[ Υ

(1− ε) · µi
< θi

]
= Pr[L1 ≤ θi]

≤ Pr
[ L1∑
j=1

Xi,j ≤
θi∑
j=1

Xi,j ]

≤ Pr
[ L1∑
j=1

Xi,j ≤ Υ + 1
]

= Pr
[∑L1

j=1 Xi,j

L1
≤ Υ + 1

L1

]
≤ Pr

[∑L1

j=1 Xi,j

L1
≤ (1− ε)µi +

1

L1

]
.

Moreover, by the definition of L1, we have

1

L1
≤ (1− ε)µi

Υ

=
(1− ε)µi

(1 + ε)(1 + (2 + 2
3ε) ln(

2
δ )

1
ε2 )

<
ε2µi

1 + ε
.

Therefore,

Pr[µ̃i < (1− ε)µi]

≤ Pr
[∑L1

j=1 Xi,j

L1
< (1− ε)µi +

ε2 · µi

1 + ε

]
≤ Pr

[∑L1

j=1 Xi,j

L1
< (1− ε

1 + ε
) · µi

]
= Pr

[ L1∑
j=1

Xi,j − L1µi < − ε

1 + ε
· L1µi

]
.

Meanwhile,

L1 ≥ Υ

(1− ε)µi
>

2(1 + ε) ln( 2δ )

(1− ε)ε2µi
>

2(1 + ε)2 ln( 2δ )

ε2µi
.

Note that
∑L1

j=1 Xi,j

L1
is an estimate of µi using the first

L1 random samples. Applying (24), we obtain

Pr[µ̃i ≤ (1− ε)µi] ≤ exp
(
− ε2L1µi

2(1 + ε)2

)
< exp

(
−

ε2
2(1+ε)2 ln( 2

δ )

ε2µi
µi

2(1 + ε)2

)
=

δ

2
.

This completes the proof of (28).

Next, we prove (29), which is similar. Let L2 :=

⌊ Υ
(1+ε)µi

⌋. Then, we have

Pr[µ̃i > (1 + ε)µi] = Pr[Υ > (1 + ε)µiθi]

= Pr
[ Υ

(1 + ε)µi
> θi

]
= Pr[L2 ≥ θi]

≤ Pr
[ L2∑
j=1

Xi,j ≥
θi∑
j=1

Xi,j

]

≤ Pr
[ L2∑
j=1

Xi,j ≥ Υ
]

= Pr
[∑L2

j=1 Xi,j

L2
≥ Υ

L2

]
.

By the definition of L2, we have

L2 ≤ Υ

(1 + ε)µi
,

which indicates that

Υ

L2
≥ (1 + ε)µi.
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In addition, L2 > Υ
(1+ε)µi

− 1 = 1
µi

+(2+ 2
3ε) ln(

2
δ )

1
ε2 −

1 > (2 + 2
3ε) ln

2
δ · 1

ε2 · 1
µi
. By (23), we obtain

Pr[µ̃i > (1 + ε)µi] ≤ Pr
[∑L2

j=1 Xi,j

L2
≥ (1 + ε)µi

]
= Pr

[ L2∑
j=1

Xi,j − L2µi ≥ ε · L2µi

]
≤ exp

(
− ε2L2µi

2 + 2
3ε

)
< exp

(
−

ε2(2 + 2
3ε) ln

2
δ

1
ε2

1
µi
µi

2 + 2
3ε

)
=

δ

2
.

Combining (28) and (29) gives rise to (27). □

With the values Ã◦
i returned by Algorithm 1, according

to Theorem 3, each value p◦i for i = 1, 2, . . . , nc can

be estimated accurately by Ã◦
i with a high probability,

i.e., Pr[(1− ε)p◦i ≤ Ã◦
i ≤ (1 + ε)p◦i ] ≥ 1− δ. To ensure

all the values p◦i are estimated accurately, by a union

bound, we have

Pr
[ nc∧
i=1

(1− ε)p◦i ≤ Ã◦
i ≤ (1 + ε)p◦i

]
≥ 1− ncδ.

Thus, to ensure the estimation accuracy with a high

probability of 1 − δ, we can simply scale δ by a factor

of 1/nc as an input to Algorithm 1.

5.4 Estimation of Optimal Budgeted Prices

Based on the proof of Corollary 1, under the condition

that b ≥ σ(C), p∗i can be represented as

p∗i = 2(λ+ ci) = Ai +
b

nc
,

whereAi can be estimated using the RIS method. When

θ RR sets are generated, an RR set R contributes to

the estimation Ãi by an additive factor of ∆(Ãi, R).

According to (18), ∆(Ãi, R) can be computed by

∆(Ãi, R) =

{
n
θ · (1− nr

nc
) · 21−nr , if si ∈ R,

−n
θ · nr

nc
· 21−nr , otherwise,

(30)

where nr = |C ∩ R|. Note that the random variables

∆(Ãi, R) may be negative. To tackle this issue, we shift

the random variables to fall in the range of [0, 1] so that

the stopping rule algorithm can be applied.

Inspired by the proof of Corollary 1, ∆(Ãi, R) can

be made non-negative by adding a factor of n
θ ·

1{C∩R ̸=∅}
nc

.

Let

∆(Ã′
i, R) := ∆(Ãi, R) +

n

θ
·
1{C∩R ̸=∅}

nc
.

Table 2 Datasets.

Dataset #nodes #edges Type Avg. deg.

Facebook 4.0K 88.2K Undirected 43.7

Google+ 107.6K 13.7M Directed 254.1

LiveJournal 4.8M 69.0M Directed 28.5

Orkut 3.1M 117.2M Undirected 76.3

Twitter 41.7M 1.5G Directed 70.5

If we aggregate ∆(Ã′
i, R) over θ random RR sets, the

actual value estimated is

A′
i := Ai +

σ(C)

nc
= p∗i +

σ(C)− b

nc
.

Thus, we shall first estimate A′
i using the stopping rule

algorithm and then compute p∗i . Analogous to Xi,j de-

fined in (19), let X ′
i,j be a random variable defined as

X ′
i,j =


0 if Rj ∩ C = ∅,
1
nc

+ 21−nr · (1− nr

nc
) if si ∈ Rj ∩ C,

1
nc

− 21−nr · nr

nc
otherwise,

(31)

where nc = |C| and nr = |Rj ∩ C|. It is easy to verify

that 0 ≤ X ′
i,j ≤ 1, which meets the requirement of our

stopping rule algorithm.

In addition to Ai, we also need to estimate b−σ(C)
nc

in order to compute p∗i as p∗i = A′
i +

b−σ(C)
nc

. According

to Corollary 1, to guarantee p∗i ≥ 0, the total price b of

all the candidate nodes must be set no less than σ(C),

i.e., b ≥ σ(C). In general, we can also use the stop-

ping rule algorithm and the RIS method to estimate

b − σ(C). By the union bound, we can set the failure

probability δ′ = δ
nc+1 in the stopping rule algorithm

so that all the values A′
i and b − σ(C) are estimated

within a multiplicative factor of ε with probability at

least 1− δ, which gives rise to an (ε, δ)-approximation

of all the prices p∗i .

6 Experiments

This section experimentally evaluates the quality and

scalability of our proposed algorithms. We implement

our algorithms using C++. All experiments are run on

a machine with Intel Xeon 2.4GHz CPU and 384GB

memory.

6.1 Experimental Setup

Datasets. We evaluate our algorithms by several real

datasets including Facebook, Google+, LiveJournal,
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Table 3 Running time and number of RR sets generated.

Dataset
Time (s) #RR sets

nc = 200 nc = 500 nc = 1000 nc = 200 nc = 500 nc = 1000

Facebook 10.97 16.95 27.52 2.27E+06 2.97E+06 3.42E+06

Google+ 41.04 73.33 140.14 8.11E+06 1.33E+07 2.20E+07

LiveJournal 528.183 1295.84 1928.26 3.24E+07 7.09E+07 1.08E+08

Orkut 1439.66 3234.26 6027.80 9.83E+06 2.08E+07 3.70E+07

Twitter 4273.82 10869.80 26840.70 3.20E+06 7.49E+06 1.40E+07

Orkut and Twitter. The first four datasets are available

at http://snap.stanford.edu/data and the Twit-

ter dataset is obtained from http://an.kaist.ac.kr/

traces/WWW2010.html [23]. Table 2 gives the details of

these datasets.

Parameter Settings. We adopt the Independent Cas-

cade diffusion model and set the propagation proba-

bility pu,v of each edge (u, v) to the reciprocal of v’s

in-degree which is a commonly used setting by other

studies [34, 35, 37, 38]. We set the number of candidate

nodes nc = 200, 500 or 1000, the failure probability

δ = 1
n (n is the number of nodes in the OSN) and the

error threshold ε = 0.1 by default. We assume that the

candidate node set C includes the top-nc nodes with

the highest out-degrees. These nodes are offered by the

OSN provider to advertisers for seed selection.

Algorithms. We compare the price profile calculated

by our pricing algorithm (Algorithm 1), referred to as

OptPrice, with the following baselines:

– Uniform: The prices of all the candidate nodes are

set the same.

– Degree: The price of each candidate node is set pro-

portional to its out-degree.

– SingletonInf: The price of each candidate node is set

proportional to the influence spread it can produce

when selected as the only seed. We estimate the in-

fluence spread using the RIS method and the stop-

ping rule algorithm.

– IMRank [8]: A ranking of candidate nodes is gener-

ated in decreasing order of their marginal gains in

influence spread. We generate the ranking by apply-

ing the greedy hill-climbing algorithm for influence

maximization [21]. The price of each candidate node

is set proportional to its marginal gain.

Comparison of Time Complexity. In the stopping

rule algorithm (Algorithm 1), by the analysis in Theo-

rem 3, the number of samples θi generated for estimat-

ing µi satisfies

Pr
[ Υ

(1− ε) · µi
< θi

]
= Pr[µ̃i < (1− ε)µi] <

δ

2
.

To estimate all the node prices in the candidate set,

our stopping rule algorithm finishes with O( Υ
minsi∈C µi

)

samples generated with probability at least 1 − δ
2 . In

addition, the expected number of RR sets generated is
Υ

minsi∈C µi
. Let EPT be the expected time complexity to

generate an RR set. According to [37], let v∗ be a ran-

dom node chosen from V with probability proportional

to its in-degree and we have EPT = E[σ({v∗})] · m
n

where the expectation is over the randomness of v∗, n =

|V | is the number of nodes and m = |E| is the number

of edges in the network. The expected time complexity

of our pricing algorithm is then O( Υ
minsi∈C µi

·EPT). Let
αi be the estimation variable for the singleton influence

spread for a seed si ∈ C, i.e., αi =
σ(si)
n . Similarly, the

expected time complexity of the SingletonInf pricing is

O( Υ
minsi∈C αi

·EPT). When using the RR sets generated

by our stopping rule algorithm, the IMRank algorithm

has the same time complexity as our pricing algorithm.

Since the baselines of Degree and Uniform pricing do

not incur computational cost for sampling, their time

complexities are O(|C|).

6.2 Experimental Results

6.2.1 Efficiency of Our Algorithm

Table 3 shows the running time of our pricing algorithm

for computing the optimal price profile ⟨p◦1, p◦2, . . . , p◦nc
⟩

as derived in Section 4.2 and the number of RR sets

generated for various datasets. As can be seen, our Opt-
Price algorithm can compute the price profile within

hours even for large-scale datasets. This demonstrates

the scalability of our OptPrice algorithm.

6.2.2 Evaluation of Divergence Function

A straightforward evaluation is to compare the values

of the divergence function (2) produced by the pricing

profiles of different algorithms. According to Lemma 2,

the divergence function can be divided into three parts:
1

2nc

∑
S⊆C σ(S)2, b2

4 =
(
∑nc

i=1 pi)
2

4 and
∑nc

i=1 g(pi).

http://snap.stanford.edu/data
http://an.kaist.ac.kr/traces/WWW2010.html
http://an.kaist.ac.kr/traces/WWW2010.html
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Fig. 1 Value of divergence function under different price budgets (nc = 200).
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(e) Twitter

Fig. 2 Value of divergence function under different price budgets (nc = 500).
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Fig. 3 Value of divergence function under different price budgets (nc = 1000).

Table 4 Comparison between ω and β · σ(C)2.

Dataset
nc = 200 nc = 500 nc = 1000

ω β · σ(C)2 ω β · σ(C)2 ω β · σ(C)2

Facebook 6.82E+05 3.29E+03 1.43E+06 5.86E+03 2.99E+06 1.09E+04

Google+ 7.34E+07 3.93E+05 1.50E+08 7.32E+05 2.30E+08 1.06E+06

LiveJournal 1.51E+10 7.94E+07 2.92E+10 1.42E+08 4.62E+10 2.14E+08

Orkut 2.83E+10 1.14E+08 4.24E+10 1.63E+08 5.47E+10 2.05E+08

Twitter 8.10E+13 3.24E+11 1.13E+14 4.27E+11 1.29E+14 4.75E+11

For each g(pi), the value of 1
2nc−1

∑
S⊆C\{si} σ(S ∪

{si}) can be estimated using the RIS method and the

stopping rule algorithm. Then,
∑nc

i=1 g(pi) can be com-

puted based on (3). The challenge lies in evaluating
1

2nc

∑
S⊆C σ(S)2. This part is non-linear with respect

to the influence spread. There are an exponential num-

ber of seed sets to measure in order to obtain the sum.

To make the evaluation tractable, we use the sample av-

erage to estimate the value of the sum. Note that this

sum is an additive term in the divergence function that

is independent from the price profile, which indicates

that its estimation accuracy will not affect the relative

performance of different algorithms. Lemma 4 shows

the theoretical guarantees of the estimation accuracy

when a given number of T seed sets are measured.

Let S1, S2, . . . , ST be a sequence of randomly gen-

erated subsets of the candidate node set C. Let ω =

1
T

∑T
j=1 σ(Sj)

2. Then, for each 1 ≤ j ≤ T , we have

E[σ(Sj)
2] = E[ω] = 1

2nc

∑
S⊆C σ(S)2. To make σ(Sj)

2

fall in the range of [0, 1], we normalize the value of

σ(Sj)
2 by σ(C)2 so that 0 ≤ σ(Sj)

2

σ(C)2 ≤ 1.

Suppose that we set T = (1+ε/3)2 ln(2/δ)
2εβ . Then, ac-

cording to Lemma 4, the estimation 1
T

∑T
j=1 σ(Sj)

2 is in

the range of [(1−ε)E[ω]−β·σ(C)2, (1+ε)E[ω]+β·σ(C)2]

with probability at least 1−δ. In the experiments, we set

ε = 0.01, β = 0.002, and δ = 0.01. Then, T = 133,342.

So, we randomly generate 133,342 subsets of C to esti-

mate the value of 1
2nc

∑
S⊆C σ(S)2. As can be seen from

Table 4, under this setting, the additive estimation er-

ror of β ·σ(C)2 is negligible compared to the estimated

value ω.

Figures 1, 2 and 3 show the value of divergence func-

tion (in log scale) produced by different pricing algo-
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Fig. 4 Variance of 10,000 seed sets for different expense limits (nc = 200).
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Fig. 5 Variance of 10,000 seed sets for different expense limits (nc = 500).
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Fig. 6 Variance of 10,000 seed sets for different expense limits (nc = 1000).

rithms under different price budgets and we also high-

light the value delivered by the optimal price profile

under b◦ =
∑nc

i=1 p
◦
i derived in Section 4.2. We can

see that the value of b can significantly affect the di-

vergence value and our optimal price profile under b◦

results in significantly lower divergence values. For ex-

ample, for Twitter, the divergence value produced by

the optimal price profile under b◦ is around 95% less

than that under b = 1.4 · σ(C) when nc = 1000. This

indicates that the value of b is critical in optimizing

the divergence function. In addition, it can also be seen

that our OptPrice algorithm can effectively reduce the

divergence value and dramatically outperforms other

baselines when the price budget b is close to b◦. This

is because our divergence function is a quadratic func-

tion regarding b, i.e., the divergence value is dominated

by b2 or
∑

S⊆C σ(S)2 when b is far from b◦, which in-

dicates that optimizing the price profile can do little

help to bring the divergence value down in these cases.

In summary, our OptPrice algorithm can deliver much

lower divergence values and better reflect the influence

spread of any seed set by optimizing both the price

budget and the price profile.

Discussion. Interestingly, we found that the empir-

ical setting of b in our preliminary work [39] happens

to be rather close to the value of b◦ (but not the same)

derived in this paper and thus the divergence value pro-

duced by the earlier set budget is almost the same as the

divergence value achieved at b◦ in this work. The differ-

ence is insignificant and hard to distinguish when plot-

ted, so we did not mark the divergence value achieved

at the earlier set budget. We think that this observation

provides strong justification for the empirical setting of

b in our preliminary work [39].

6.2.3 Stability of Influence Spread

Recall that the objective of our pricing profile is to min-

imize the divergence between the influence spreads and

the seed prices for all possible seed sets. When such a

divergence is minimized, the influence spread of any

seed set would closely match its price. This implies

that two seed sets with the same price would also be

close in their influence spreads. This property is valu-

able to the advertisers because the advertisers, hold-

ing a given fund to purchase seeds according to their

prices, are expecting to achieve a more predictable in-

fluence spread from the selected seeds. To verify this

property, we design the experiments to construct a col-

lection of seed sets subject to an expense limit and com-

pare their influence spreads. We use the optimal price

profile ⟨p◦1, p◦2, . . . , p◦nc
⟩ derived in Section 4.2. The ex-

pense limit is expressed as a percentage of b◦ =
∑nc

i=1 p
◦
i

(the total price of all the candidate nodes). Given an ex-
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Fig. 7 Average influence spread of 10,000 seed sets for different expense limits (nc = 200).
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Fig. 8 Average influence spread of 10,000 seed sets for different expense limits (nc = 500).
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Fig. 9 Average influence spread of 10,000 seed sets for different expense limits (nc = 1000).

pense limit, we randomly choose seeds among the can-

didate nodes to fill up the limit. We construct 10,000

random seed sets and estimate the influence spreads

achieved by these seed sets using the RIS method with

100,000 RR sets. We test different expense limits from

10% to 90%.

Figures 4, 5 and 6 show the variance of the influence

spreads of the 10,000 seed sets under different pricing

algorithms when there are nc = 200, 500 and 1000 can-

didate nodes respectively. When the expense limit is

very low, only nodes of relatively cheap prices can be

selected within the limit. When the expense limit is very

high, the majority of the candidate nodes need to be se-

lected to fill up the budget. In both cases, the number of

different combinations of the seeds to fill up the expense

limit is relatively small, which gives rise to a relatively

stable influence spread. As a result, the variance of in-

fluence spread is low when the expense limit is very low

or very high and it shows a concave shape. It can be

seen that different pricing algorithms result in quite dif-

ferent variances. In general, our OptPrice algorithm has

significantly lower variance of influence spread than the

baselines. This shows that our OptPrice algorithm can

capture the influence potentials of the candidate nodes

more accurately and give the advertisers a more sta-

ble and predictable return (influence spread) for their

purchasing (seeding) activities.

Figures 7, 8 and 9 show the average influence spread

of the 10,000 seed sets. As can be seen, the average in-

fluence spread increases with the given expense limit of

seed selection for all the datasets. The seed sets cho-

sen under our proposed pricing algorithm achieve com-

parable average influence spreads to those under the

baselines. This shows that our pricing profile is able to

maintain the same expected influence spread as other

baselines under a given expense limit.

7 Conclusion

In this work, we build a bridge between OSN providers

and advertisers by proposing a pricing mechanism to fa-

cilitate the initiator selection of marketing campaigns

without the knowledge of OSN structures. In partic-

ular, we study the problem of minimizing the pricing

divergence from the influence spread and derive an op-

timal price profile. A scalable estimation algorithm is

devised to yield an (ε, δ)-approximation of the optimal

prices. Through extensive experiments, we demonstrate

the performance advantages of our approach over other

baselines.
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