
1

Busy-Time Scheduling on Heterogeneous
Machines: Algorithms and Analysis

Mozhengfu Liu and Xueyan Tang

Abstract—We study a generalized busy-time scheduling model on heterogeneous machines. The input to the model includes a set of
jobs and a set of machine types. Each job has a size and a time interval during which it should be processed. Each job is to be placed
on a machine for execution. Different types of machines have distinct capacities and cost rates. The total size of the jobs running on a
machine must always be kept within the machine’s capacity, giving rise to placement restrictions for jobs of various sizes among the
machine types. Each machine used is charged according to the time duration in which it is busy, i.e., it is processing jobs. The objective
is to schedule the jobs into machines to minimize the total cost of all the machines used. We develop an O(1)-approximation algorithm
in the offline setting and an O(µ)-competitive algorithm in the online setting (where µ is the max/min job length ratio), both of which are
asymptotically optimal. This paper significantly improves the analysis of the algorithms over our preliminary work.

Index Terms—busy time; scheduling; analysis of algorithms; approximation ratio; competitive ratio.

✦

1 INTRODUCTION

In this paper, we study generalized busy-time scheduling on
heterogeneous machines. In this model, each job is specified by
a size and a time interval of execution. The job size refers to
the instantaneous resource demand for job execution, while the
duration of the execution interval is called the job length. The jobs
are to be scheduled into machines nonpreemptively. At any time,
the total size of the jobs running on a machine cannot exceed the
machine’s capacity. Each machine used is charged proportional to
its busy time which is the total length of the time periods in which
it is processing jobs. Multiple types of machines with different
capacities and cost rates are available. The goal is to schedule the
jobs into machines to minimize the accumulated cost of all the
machines used. We focus on the algorithmic aspects of the above
model and aim to develop effective solutions in both the offline
and online settings.

Our busy-time scheduling model has useful applications. Ma-
jor cloud providers such as Amazon EC2 [3], Google Cloud [9]
and Microsoft Azure [16] provide different types of predefined
server instances (virtual machines) for customers to rent at dif-
ferent rates. Jobs with various resource demands have placement
constraints among the server types accordingly. The servers rented
from the clouds are charged according to their working hours. It is
critical for cloud users to decide the types and numbers of servers
to rent in order to minimize the total rental cost for processing their
jobs. Our model elegantly captures the “pay-as-you-go” billing
feature of the clouds and the goal of optimizing the monetary
expenses for cloud users.

There have been quite a few studies on busy-time scheduling,
but almost all of them assumed homogeneous machines only.
Earlier work has investigated scheduling interval jobs of uniform
sizes, so that each machine can run at most a fixed number of jobs
simultaneously [25], [2], [11], [8], [21], [15], [7]. This problem

• Mozhengfu Liu and Xueyan Tang are with School of Computer Science
and Engineering, Nanyang Technological University, Singapore 639798.
E-mail: {mozhengfu.liu, asxytang}@ntu.edu.sg.

was termed interval scheduling with bounded parallelism and is
NP-hard. More recent work has addressed scheduling interval
jobs of non-uniform sizes, where the number of jobs that can
share a machine is not fixed [12], [13], [23], [19], [17], [4]. This
problem was termed MinUsageTime dynamic bin packing. For
both problems, the objective is to minimize the total machine busy
time for processing a given set of jobs. In the offline setting where
all the jobs are known, there exist O(1)-approximation algorithms
for both problems [2], [11], [8], [10], [17], [7]. For jobs of uniform
sizes, Flammini et al. [8] presented a 4-approximation First Fit
algorithm that schedules jobs in descending order of length. Chang
et al. [7] showed that the work of Alicherry and Bhatia [2] and
that of Kumar and Rudra [11] imply 2-approximation algorithms.
They also proposed a 3-approximation GreedyTracking algorithm
for a more general case of scheduling flexible jobs that have laxity
in starting. For jobs of non-uniform sizes, Khandekar et al. [10]
gave a 5-approximation algorithm by extending the work of [8].
Ren and Tang [17] presented a 4-approximation dual coloring
algorithm by extending the work of [11]. Very recently, Buch-
binder et al. [6] presented algorithms with improved asymptotic
approximation ratios. In the online setting where jobs are released
when they are to start execution and the job lengths are not known
until they complete execution, the competitiveness of scheduling
is bounded from below by the variation of job lengths for both
problems [12], [13]. That is, the competitive ratio of any online
algorithm is Ω(µ), where µ is the max/min job length ratio among
all the jobs to schedule. It has been shown that the First Fit
algorithm achieves a competitive ratio of µ+3 for scheduling jobs
of non-uniform sizes, closely matching the lower bound [19]. In
the case that the length of a job is revealed when it is released, the
competitiveness of scheduling has a tight bound of Θ(

√
logµ) [4].

In addition, recent work has also considered discrete charging unit
[22], machine launch cost [20], and load predictions [6] in busy-
time scheduling. However, none of the above work has studied
multiple types of machines.

With heterogeneous machines, jobs have different restrictions
on which types of machines can process them. In addition, various
machine types can differ in the normalized cost rate per capacity

2

unit. As a result, the cost of scheduling each job depends on not
only other overlapping jobs scheduled on the same machine but
also the machine type. To the best of our knowledge, the only
work that considered heterogeneous machines was [18], which
investigated just two simple cases in which the normalized cost
rate per capacity unit increases or decreases monotonically with
the machine capacity. In both cases, it was shown that there
exist O(1)-approximation and O(µ)-competitive algorithms. The
authors of [18] conjectured that in the general case, the asymp-
totic approximability and competitiveness of scheduling would be
dependent on the cost and capacity profiles of the machine types.
In this paper, we close this open problem by developing O(1)-
approximation and O(µ)-competitive algorithms in the offline and
online settings respectively for any set of machine types and any
set of jobs, when there are plenty of machines available for each
type.

We note that there has also been considerable research on
power-down mechanisms to transition a machine into low-power
modes for conserving energy and on dynamic speed scaling to ap-
ply low speeds when possible for saving energy [1]. However, the
focuses of these problems are different from busy-time schedul-
ing. The power management problem aims to strike a balance
between the energy consumption in the high-power states and
the energy overheads of power-up operations to transition from
a low-power state to a high-power state when needed. Dynamic
speed scaling assumes that jobs can run at variable speeds and
the power consumption is a function of the machine speed. The
goal is to dynamically set the machine speed to minimize energy
consumption while providing the desired quality of service.

This paper significantly extends a preliminary conference ver-
sion [14]. We streamline the algorithm analysis and considerably
improve the approximation/competitiveness results. The rest of
this paper is organized as follows. Section 2 formally defines
the busy-time scheduling problem on heterogeneous machines.
Section 3 introduces some preliminaries for the algorithm design
and analysis. Sections 4 and 5 present the design and analysis of
the offline and online algorithms respectively.

2 PROBLEM DEFINITION

Formally, the input to the Busy-time Scheduling on Heterogeneous
Machines (BSHM) model includes a set of jobs J and a set of
machine typesM.

Each job J ∈ J has its size s(J) which represents the
resource demand for processing J , and its time interval of exe-
cution I(J) := [I(J)−, I(J)+). We refer to I(J) as J ’s active
interval and say that J is active during I(J). We also refer
to the two endpoints I(J)− and I(J)+ of I(J) as J ’s start
and end times respectively. We denote the length of I(J) by
len(J) := I(J)+ − I(J)− and refer to it as the job length.

Each job needs to be scheduled to run on a single machine.
Let M = {1, 2, . . . , |M|} be the set of the indices of all
machine types available, where every machine type indexed by
z ∈ {1, 2, . . . , |M|} has a cost rate rz (per unit time) and a
resource capacity gz . At any time, the total size of the jobs running
on a machine cannot exceed the machine capacity. Each machine
used is charged at its cost rate for the time duration in which it
is processing at least one job (known as its busy time). There are
sufficient machines of each type available. The objective of BSHM
is to minimize the total cost of machine usage for processing all
the jobs J .

We study both the offline and online settings of BSHM. The
difference between the two settings lies in how much information
about J can be used for scheduling each job. In the offline setting,
all the information about J can be used, while in the online
setting, only the information available before each job J starts
can be used for scheduling J , i.e., this includes the start times and
sizes of the jobs started before I(J)− and the end times of the
jobs ended before I(J)−.

The performance of an offline algorithm or an online algorithm
is often characterized by its approximation ratio or competitive
ratio, i.e., the worst-case ratio between a solution constructed by
the algorithm and an optimal solution over all instances of the
problem [5], [24]. To facilitate algorithm analysis, we assume that
the cost rate of each machine type z is a power of b, where b > 1
is a constant, i.e., rz ∈ {bn : n ∈ Z}, where Z denotes the set
of all integers. This assumption will cause us to lose at most a
factor of b = O(1) in deriving the approximation or competitive
ratio of any algorithm. Specifically, for each z ∈ M, suppose cz
is the real cost rate of machine type z, which can be any positive
value, and rz ∈ {bn : n ∈ Z} is the power of b such that
1
b ·rz < cz ≤ rz , which is the assumed cost rate for machine type
z to be used throughout the rest of this paper. Given a set of jobs
J , the optimal scheduling for machine cost rates rz’s must have a
cost within b times the optimal scheduling for machine cost rates
cz’s. Then, the approximation or competitive ratio of an algorithm
increases by at most a factor of b from cost rates rz’s to cz’s.

For two different machine types i and j, if their capacities
satisfy gi ≤ gj and their cost rates satisfy ri ≥ rj , then type-
i machines will not be needed for processing jobs because any
type-i machine used can be replaced by a type-j machine that has
at least the same capacity but lower or equal cost. Thus, without
loss of generality, we assume that the machine types have distinct
capacities and it holds that g1 < g2 < · · · < g|M| and r1 < r2 <
· · · < r|M|.

To facilitate presentation, we further define some notations.
We denote by OPTBSHM(X) the optimal cost of scheduling
any given set of jobs X for the BSHM problem. For any
job J , m(J) denotes the machine type in {1, 2, . . . , |M|}
such that s(J) ∈ (gm(J)−1, gm(J)], i.e., m(J) is the lowest-
indexed machine type that can accommodate job J . We refer to
m(J) as the exact machine type of J . For any set of jobs X ,
S(X) :=

∑
J∈X s(J) denotes the total size of these jobs, and

span(X) := ∪J∈X I(J) denotes the time interval(s) in which at
least one job in X is active. For any set of jobs X and any time
instant t, X (t) := {J ∈ X : t ∈ I(J)} denotes the active jobs
in X at time t, and S(X , t) := S(X (t)) denotes the total size of
the active jobs at time t.

For ease of reference, Table 1 summarizes the key notations in
this paper (including those to be introduced later).

3 PRELIMINARIES

Our algorithm design and analysis are built upon two basic
concepts: cost-per-capacity graph and one-shot job scheduling.
The cost-per-capacity graph characterizes the cost-effectiveness
of different machine types, which will guide which machine type
to use in scheduling jobs. One-shot job scheduling is a relaxed
problem that focuses on assigning jobs to machines at a single
time instant. It provides a lower bound on the total cost needed
to run the active jobs and facilitates the analysis of approximation
and competitiveness.

3

TABLE 1
Summary of key notations

Notation Definition
s(J) size of job J
I(J) active interval of job J
len(J) length of job J
m(J) exact machine type of job J
span(J) time span of job set J
J (t) active jobs in job set J at time t
S(J) total size of job set J
S(J , t) total size of active jobs in job set J at time t
µ max/min job length ratio
b base value for cost rates of machine types
M set of machine types
rz cost rate of a type-z machine
gz capacity of a type-z machine
p(z) parent of machine type z
P (z) machine type z and all its ancestors
f(z) children of machine type z
A(z) tree rooted at machine type z
y(z) younger siblings of machine type z
e(z) elder siblings of machine type z
T (z) machine type z and all the younger siblings of P (z)
Hz jobs whose exact machine types are in the tree rooted at type z

3.1 Cost-per-capacity graph
A main challenge for the general BSHM problem comes from
the arbitrary order of the normalized cost rates per capacity unit
among different machine types. We construct a directed graph
called the cost-per-capacity graph to describe the relations among
the machine types in terms of their normalized cost rates.

Definition 3.1. In the cost-per-capacity graph, each node i rep-
resents a machine type i ∈ M. Each node i has a directed edge
pointing to node p(i) := min{j : j > i∧rj/gj < ri/gi} if such
p(i) exists (i.e., p(i) is the lowest-indexed machine type above i
that has a lower normalized cost rate than i). By convention, we
define p(i) = ⊥ if the set {j : j > i ∧ rj/gj < ri/gi} is empty.

Since edges always point from lower-indexed nodes to higher-
indexed nodes, there is no cycle in the cost-per-capacity graph.
Moreover, since each node has at most one outgoing edge, for any
two nodes i < j, there is at most one path from i to j. Thus, the
graph must be a forest.

Proposition 3.1.1. The cost-per-capacity graph is a forest.

For simplicity, we shall use the terms “node” and “machine
type” (or “type”) interchangeably. We say that p(i) is the parent
of i, and i is a child of p(i). Let f(i) denote the set of children of
node i: f(i) := {z : p(z) = i}. Let P (i) denote the set of nodes
including node i and all its ancestors p(i), p(p(i)), p(p(p(i))),
. . .. Let A(i) denote the set of nodes in the tree rooted at node i:
A(i) := {z : i ∈ P (z)}.

Let y(i) denote the set of younger siblings of node i:
y(i) := {z : z < i ∧ p(z) = p(i)}, and let e(i) denote the
set of elder siblings of node i: e(i) := {z : z > i∧p(z) = p(i)}.
Furthermore, let T (i) denote the set of nodes including i and all
the younger siblings of P (i): T (i) := {i} ∪

(
∪z∈P (i)y(z)

)
.

Figure 1 shows an example cost-per-capacity graph. By
the above definitions, p(10) = 11, P (10) = {10, 11, 13},
f(11) = {9, 10}, A(11) = {8, 9, 10, 11}, y(11) = {7},
and e(11) = {12}. In Figure 1, the nodes in grey constitute
T (10) = {3, 5, 7, 9, 10}.

The cost-per-capacity graph has several properties useful to
our analysis. The first property below follows directly from the

3

1 2

5

4

13

12117

6 9 10

8

: T (10)

Fig. 1. An example of the cost-per-capacity graph

definition of the graph.

Proposition 3.1.2. For any k ∈ M, rk/gk ≤ ri/gi for each
i ∈ A(k), and rk/gk ≤ rj/gj for each j ∈ e(k).

By the above proposition, the root of the leftmost tree (e.g.,
machine type 3 in the example of Figure 1) has the lowest
normalized cost rate among all machine types.

Proposition 3.1.3. For any k ∈M, the node set A(k) of the tree
rooted at k has consecutive indexes, and k is the highest-indexed
node in A(k).

Proof. Since all the edges point from lower-indexed nodes to
higher-indexed nodes, each node k ∈ M must have the highest
index among all the nodes in the tree rooted at k.

Given any k, let j1 denote the lowest-indexed node in the tree
rooted at k. Let j1 < j2 < · · · < jn = k denote all the nodes
along the path from j1 to k. By definition, we have rk/gk =
rjn/gjn < rjn−1

/gjn−1
< · · · < rj1/gj1 . In addition, for each

q = 1, 2, . . . , n−1, since jq+1 is the lowest-indexed node having
a lower normalized cost rate than jq , for any node i between jq
and jq+1, we have rk/gk < rjq/gjq ≤ ri/gi. This implies that
the parent of i must have an index no higher than k. As a result,
all the nodes between j1 and k have parents indexed no higher
than k. Thus, they must all be in the tree rooted at k.

Proposition 3.1.4. For any k ∈ M and any i1, i2 ∈ T (k), if
i1 < i2, then ri1/gi1 ≤ ri2/gi2 . That is, for the nodes in T (k),
their normalized cost rates are non-decreasing with indexes.

Proof. By definition, T (k) = {k} ∪
(
∪z∈P (k)y(z)

)
. Thus, for

any i ∈ T (k) \ {k}, we have i ∈ y(z) for some z ∈ P (k).
Proposition 3.1.3 implies that i is smaller than all the nodes in
A(z). Since k ∈ A(z), it follows that i < k. Thus, k is the
highest-indexed node in T (k).

Case 1: i1 < i2 < k.
Since i1, i2 ∈ T (k), we have i1 ∈ y(z1), i2 ∈ y(z2) for some

z1, z2 ∈ P (k). We show that z1 ≥ z2 must hold. Otherwise, if
z1 < z2, we have i1 ∈ y(z1) ⊂ A(z2) and i2 ∈ y(z2). By
Proposition 3.1.3, it holds that i2 < i1 which contradicts to the
condition i1 < i2. Therefore, z1 ≥ z2. It follows that i1 < i2 <
p(i2) = p(z2) ≤ p(z1) = p(i1). By definition, p(i1) is the
lowest-indexed node having a lower normalized cost rate than i1.
Thus, we have ri1/gi1 ≤ ri2/gi2 .

Case 2: i1 < i2 = k.
In this case, we have i1 ∈ y(z) for some z ∈ P (k). Hence,

i1 < k ≤ z < p(z) = p(i1). Similar to Case 1, by the definition
of parent, ri1/gi1 ≤ rk/gk must hold.

4

Proposition 3.1.5. For any k ∈ M, the trees rooted at the nodes
T (k), i.e., {A(i) : i ∈ T (k)}, are a partitioning of {1, 2, . . . , k}.
Furthermore, the trees rooted at the nodes ∪z∈P (k)e(z), i.e.,
{A(j) : j ∈ e(z) ∧ z ∈ P (k)}, are a partitioning of
M\ ({1, 2, . . . , k − 1} ∪ P (k)).

Proof. For each i ∈ T (k), i is the highest-indexed node in A(i).
In addition, k is the highest-indexed node in T (k). Therefore,
∪i∈T (k)A(i) ⊂ {1, 2, . . . , k}.

Since the cost-per-capacity graph is a forest, all the nodes
M can be partitioned into the tree rooted at k (A(k)), the
ancestors of k (P (k) \ {k}), and the trees rooted at the younger
and elder siblings of k and its ancestors (A(j) for each j ∈
∪z∈P (k) (y(z) ∪ e(z))). For any q ∈ M \ ∪i∈T (k)A(i), it
can be shown that q > k. Note that by definition T (k) =
{k} ∪

(
∪z∈P (k)y(z)

)
. Thus, either q ∈ P (k) \ {k} or q ∈

A(j) for some j ∈ e(z) where z ∈ P (k). In the former
case, clearly q > k. In the latter case, by Proposition 3.1.3,
since k ∈ A(z), it holds that k ≤ z < q. Therefore,
∪i∈T (k)A(i) = {1, 2, . . . , k} is proven. It also follows that
∪j∈∪z∈P (k)e(z)A(j) = M \ ∪i∈T (k)A(i) \ (P (k) \ {k}) =
M\ ({1, 2, . . . , k − 1} ∪ P (k)).

3.2 One-shot job scheduling

To understand the optimal cost of BSHM, we start by considering
scheduling jobs on heterogeneous machines at a single time instant
and refer to this problem as one-shot scheduling. In the one-
shot scheduling problem, we relax the constraint that each job
must be scheduled into a single machine and allow a job to
be divided into multiple pieces along its size dimension and
each piece to be scheduled into a distinct machine. However,
we retain the restriction that all the machines into which a job
is scheduled must have capacities no less than the original size
of the job. Furthermore, we relax the constraint that the number
of machines used for each machine type must be an integer. We
allow the number of machines for each machine type to be any
non-negative real number. For the highest-indexed machine type
used, we require that its number of machines must be at least 1.
The goal of one-shot scheduling is to minimize the total cost rate
of all the machines used for accommodating the jobs.

Note that BSHM does not allow jobs to be divided and
it enforces each job to be scheduled into the same machine
throughout its active interval. BSHM also requires the number of
machines used to be non-negative integers. Therefore, the optimal
cost OPTBSHM(J) of BSHM for a set of jobs J is bounded from
below by the accumulated cost of optimal one-shot scheduling for
the active jobs J (t) at each time instant t, i.e.,

OPTBSHM(J) ≥
∫
t
OPT1(J (t)) dt, (1)

where OPT1(J (t)) denotes the optimal cost rate of one-shot
scheduling for the jobs J (t). Note that in one-shot scheduling,
only the sizes of the jobs J (t) matter while the active inter-
vals of the jobs are irrelevant. We shall use the above lower
bound in the analysis of algorithm performance with respect to
OPTBSHM(J).

We define a machine configuration w as a set of numbers
{w(z) : z ∈ M}, each representing the number of machines for
a machine type. Given a set of jobs J 1d, the one-shot scheduling

problem essentially seeks a minimum-cost machine configuration
described by the following optimization problem:1

min
∑
z∈M

w(z) · rz (2)

s.t. S({J ∈ J 1d : m(J) ≥ i}) ≤
∑
z≥i

w(z) · gz,∀i ∈M;(3)

w(z) ≥ 0,∀z ∈M; (4)

w(k) ≥ 1, where k = max{z : w(z) > 0}. (5)

Constraint (3) says that the total capacity of the machines of
types at least i must be no less than the total size of the jobs
whose exact machine types are at least i. Constraint (4) says
that the number of machines used for each machine type is non-
negative. Constraint (5) says that the number of machines for the
highest-indexed machine type used must be at least 1. We remark
that the last constraint (5) is essential for one-shot scheduling to
be a reasonable approximation of real scheduling that requires
the machine numbers to be integers. Without constraint (5), the
optimal one-shot scheduling would schedule every job J into the
machine type of the lowest normalized cost rate among those with
sufficient capacity for J , so that the number of machines used for
the highest-indexed type can be a very small fractional number. As
a result, the cost rate of real scheduling can be arbitrarily higher
than the optimal one-shot scheduling, making the latter useless in
the algorithm analysis.

Remark 3.2.1. The one-shot scheduling problem can be solved
in polynomial time. An intuitive approach is to iterate through
k (i.e., the highest-indexed machine type used) and compare the
best machine configuration for each k value. Given a k value, the
best machine configuration is to fill up the capacity of one type-k
machine with jobs in decreasing order of size. Each remaining job
(including the fraction of the last job that cannot completely fit
into the type-k machine) can be scheduled into the machine type
of the lowest normalized cost rate and sufficient capacity.

The following are some observations for an optimal machine
configurations, where kopt := max{z : w∗(z) > 0} denotes
the highest-indexed machine type used by an optimal machine
configuration w∗.

Proposition 3.2.1. All the machine types used by w∗ must be
from T (kopt), i.e., w∗(i) = 0 for each type i ∈M \ T (kopt).

Proof. By Proposition 3.1.5, it suffices to show that the machine
numbers are 0 for the non-root types in the trees rooted at types
T (kopt). Assume on the contrary that w∗(i) > 0 for some type
i ∈ A(z)\{z} for some z ∈ T (kopt). We can replace w∗(i) type-
i machines with gi

gz
· w∗(i) type-z machines that have the same

capacity. The new machine configuration is also a feasible solution
to one-shot scheduling. Since i ∈ A(z) \ {z}, by definition, type
z has a lower normalized cost rate than type i. As a result, the new
machine configuration has a lower total cost rate than w∗, which
contradicts to the optimality of w∗.

Proposition 3.2.2. For each type i ∈ P (kopt) \ {kopt}, the
total cost rate of the machine types used in the tree rooted at
i must not exceed the cost rate of one type-i machine, i.e.,∑

z∈A(i)\{i} w
∗(z) · rz ≤ ri.

1. Since only the sizes of the jobs matter in one-shot scheduling, we use the
notation J 1d for the input to one-shot scheduling, differentiating it from the
input J to BSHM.

5

Proof. The argument for this observation is similar to the previ-
ous observation. If not, we would be able to construct a feasi-
ble machine configuration by replacing type-z machines (where
z ∈ A(i) \ {i}) with type-i machines which leads to a strictly
lower total cost rate than w∗.

Let Hz = {J ∈ J 1d : m(J) ∈ A(z)} denote the set of jobs
whose exact machine types are in the tree rooted at type z.

Proposition 3.2.3. For each type i ∈ P (kopt) \ {kopt}, the total
size of the jobs whose exact machine types are in the tree rooted
at i must not exceed the capacity of one type-i machine, i.e.,
S(Hi) < gi.

Proof. Note that for each type z ∈ A(i) \ {i}, by the definition
of the cost-per-capacity graph, gz

rz
< gi

ri
. It follows that∑

z∈A(i)\{i}

w∗(z) · gz =
∑

z∈A(i)\{i}

w∗(z) · rz ·
gz
rz

<
∑

z∈A(i)\{i}

w∗(z) · rz ·
gi
ri

≤ ri ·
gi
ri

= gi (by Proposition 3.2.2).

On the other hand, observe that since i ∈ P (kopt) \ {kopt},
(A(i) \ {i}) ∩ {1, 2, . . . , kopt} = A(i) ∩ {1, 2, . . . , kopt} =
{z0, z0 + 1, . . . , kopt}, where z0 = minA(i)∩ {1, 2, . . . , kopt}
(refer to Proposition 3.1.3). By constraint (3) of one-shot schedul-
ing, the feasibility of the machine configuration w∗ implies that∑

z∈A(i)\{i} w
∗(z) · gz =

∑
z=z0,z0+1,...,kopt

w∗(z) · gz ≥
S({J ∈ J 1d : m(J) ≥ z0}) = S({J ∈ J 1d : m(J) ∈
A(i)}) = S(Hi).

Proposition 3.2.4. There are two lower bounds for the total cost
rate of the optimal machine configuration: (i) OPT1(J 1d) ≥
rkopt

; and (ii) OPT1(J 1d) ≥
∑

z∈T (kopt)
S(Hz)

gz
· rz .

Proof. The first bound is due to constraint (5) of one-shot
scheduling. The second bound is due to constraint (3) of one-
shot scheduling and that the normalized cost rates of the machine
types in T (kopt) are non-decreasing with indexes (Proposition
3.1.4).

Proposition 3.2.5. There is an upper bound for the total cost
rate of the optimal machine configuration: OPT1(J 1d) ≤
max

{
1,

S(Hkopt)

gkopt

}
· rkopt +

∑
z∈T (kopt)\{kopt}

S(Hz)
gz
· rz.

Proof. The reason is simple: the machine configuration on the
right-hand side is a feasible solution to one-shot scheduling.

Remark 3.2.2. The optimal machine configuration for one-shot
scheduling may not be unique. Consider two machine types which
have the same normalized cost rate, i.e., r1/g1 = r2/g2. They are
siblings in the cost-per-capacity graph. Suppose all the jobs have
sizes less than or equal to g1 and the total size of them is at least
g2. Clearly, one optimal machine configuration is to use machines
of type 2 only which can exactly accommodate all the jobs, and
another optimal machine configuration is to use machines of type
1 only which can exactly accommodate all the jobs.

Although the optimal machine configuration may not be
unique, for the purpose of analysis, we shall always refer to
one particular class of optimal machine configurations described
below.

Theorem 3.1. There exists an optimal machine configuration w∗

such that kopt := max{z : w∗(z) > 0} ∈ P (k0), i.e., the
highest-indexed machine type kopt used is either k0 or an ancestor
of k0 in the cost-per-capacity graph, where k0 := max{m(J) :
J ∈ J 1d} is the highest-indexed exact machine type among all
the jobs.

Proof. Take any optimal machine configuration w1. We construct
another machine configuration w2 based on w1 as follows:

w2(z) :=


w1(z) if 1 ≤ z < k0,
w1(z) +

∑
j∈e(z)

∑
i∈A(j)

ri
rz
· w1(i) if z ∈ P (k0),

0 otherwise.
(6)

In essence, w2 modifies w1 by shifting the costs from the machine
types {k0, k0+1, . . . , |M|}\P (k0) to the machine types P (k0).
By Proposition 3.1.5, the trees rooted at the nodes ∪z∈P (k0)e(z),
i.e., {A(j) : j ∈ e(z) ∧ z ∈ P (k0)}, form a partitioning ofM\
({1, 2, . . . , k0 − 1} ∪ P (k0)). By the above construction, for
each z ∈ P (k0), we have w1(z) · rz +

∑
j∈e(z)

∑
i∈A(j) w1(i) ·

ri = w2(z) · rz = w2(z) · rz +
∑

j∈e(z)

∑
i∈A(j) w2(i) · ri.

Hence, w1 and w2 have the same cost rate.
It remains to show that w2 is a feasible machine configuration

for one-shot scheduling. First, we check w2 against constraint (3).
By the definition of k0, for each l > k0, S({J ∈ J 1d : m(J) ≥
l}) = 0 ≤

∑|M|
z=l w2(z) · gz .

By Proposition 3.1.2, for each i ∈ A(j) where j ∈ e(z)
and z ∈ P (k0), we have rz/gz ≤ rj/gj ≤ ri/gi. Therefore,
for each z ∈ P (k0), w1(z) · gz +

∑
j∈e(z)

∑
i∈A(j) w1(i) · gi =

w1(z)·rz · gzrz +
∑

j∈e(z)

∑
i∈A(j) w1(i)·ri · giri ≤ w1(z)·rz · gzrz +∑

j∈e(z)

∑
i∈A(j) w1(i) · ri · gzrz = w2(z) · rz · gzrz = w2(z) · gz .

As a result,

S({J ∈ J 1d : m(J) ≥ k0}) ≤
|M|∑
z=k0

w1(z) · gz

=
∑

z∈P (k0)

w1(z) · gz +
∑

j∈e(z)

∑
i∈A(j)

w1(i) · gi


≤

∑
z∈P (k0)

w2(z) · gz ≤
|M|∑
z=k0

w2(z) · gz, (7)

where the first inequality is due to the feasibility of w1.
For each l = 1, 2, . . . , k0 − 1, we have S({J ∈ J 1d :

m(J) ≥ l}) ≤
∑|M|

z=l w1(z) · gz ≤
∑|M|

z=l w2(z) · gz , where
the first inequality is due to the feasibility of w1, and the second
inequality is because of (7) and w2(z) = w1(z) for each
z = 1, 2, . . . , k0 − 1.

Next, we check w2 against constraint (5). Let k1 := max{z :
w1(z) > 0} and k2 := max{z : w2(z) > 0} denote the highest-
indexed machine types used by w1 and w2 respectively. Clearly,
k2 ∈ P (k0). If k1 ∈ P (k0), then k2 = k1 and w2(k2) =
w1(k1) ≥ 1. If k1 /∈ P (k0), then k1 ∈ A(j) for some j ∈ e(k2).
Note that in this case k2 < k1. By definition, w2(k2) ≥

rk1

rk2
·

w1(k1) ≥
rk1

rk2
≥ b > 1.

Therefore, w2 is feasible and hence optimal.

Remark 3.2.3. The optimal machine configuration described by
Theorem 3.1 is still not necessarily unique. Consider two machine
types where r2 = b · r1 and g2 = (b + 1) · g1. The normalized
cost rates satisfy r2/g2 < r1/g1, so type 2 is the parent of
type 1. Suppose all the jobs have sizes less than or equal to g1

6

and the total size of them is b · g1. Then, one optimal machine
configuration is to use one machine of type 2, and another optimal
machine configuration is to use b machines of type 1. Both
machine configurations conform to the description of Theorem
3.1. For the analysis of our offline algorithm in Section 4, any
optimal machine configuration described by Theorem 3.1 suffices.
For the analysis of our online algorithm in Section 5, among all
the optimal machine configurations described by Theorem 3.1, we
shall choose the one with the largest kopt.

4 THE OFFLINE SETTING

4.1 The offline algorithm: ALGoffline

We now discuss the offline BSHM problem, which is NP-hard
since it is a generalization of interval scheduling with bounded
parallelism.

Note that jobs of small sizes may be put into machines of large
capacities, but jobs of large sizes cannot be put into machines of
smaller capacities. Thus, to make full use of available machine
capacities, we schedule jobs into machines in decreasing order of
machine capacity. To optimize the cost, large machines are used
only when (1) they are required by the exact machine types of
outstanding jobs; or (2) they are more cost-effective than small
machines to meet the total resource demand of outstanding jobs.

Consider a set of jobs J for BSHM. For each machine type
z ∈ M, let Hz = {J ∈ J : m(J) ∈ A(z)} denote the set of
jobs whose exact machine types are in the tree A(z) rooted at z.
Algorithm 1 shows our offline algorithm ALGoffline for BSHM.
The algorithm iteratively determines the set of jobs Kz assigned
to each machine type z in descending order of type indexes (line
1). For each machine type z, we consider all the unassigned jobs
in Hz , denoted by Rz (line 2). Note that Rz includes jobs whose
exact machine types are z (denoted by Rh

z in line 3) and jobs
whose exact machine types are z’s descendants in the cost-per-
capacity graph (given by Rz \ Rh

z). The jobs in Rh
z must be

assigned to type z (line 4) since all the types indexed higher than z
have been considered before. For each job J inRz\Rh

z , we check
whether it is cost-effective to open a type-z machine throughout
J ’s active interval. If so, J is assigned to type z (lines 8-9). If
not, J is left to subsequent iterations and will be assigned to a
descendant type of z. To decide whether it is cost-effective to
open a type-z machine at a time instant t, we examineRz(t), i.e.,
all the active jobs inRz at time t. If there exists at least one job in
Rh

z active at t (i.e., t ∈ span(Rh
z)), time instant t is considered

cost-effective (line 6). Otherwise, all the jobs active at t are from
Rz \ Rh

z . Thus, each job active at t must have its exact machine
type in one of the trees rooted at z’s children. For each child type
x of z, we compute the number of type-x machines needed to
host all the active jobs Fx,t whose exact machine types are in
the tree A(x) rooted at x (lines 5-6). The total cost rate of the
machines calculated in this way gives a lower bound on the cost
rate to host all the jobs active at t, since each type x has the lowest
normalized cost rate in the tree rooted at x (Proposition 3.1.2). If
the total cost rate exceeds a fraction p > 0 of the cost rate of
a type-z machine, time instant t is considered cost-effective (line
6). Note that the set of active jobs does not change between two
successive job starts/ends. Thus, the cost-effectiveness only needs
to be evaluated once for each interval between two successive job
starts/ends. As a result, the cost-effectiveness evaluation can be
conducted in polynomial time.

Algorithm 1: ALGoffline

Input: A set of jobs J and a parameter p.
Output: A schedule for J .

1 for z = |M|, |M| − 1, . . . , 1 do
2 Rz ← Hz \ (∪i=|M|,|M|−1,...,z+1Ki);
3 Rh

z ← {J ∈ Rz : m(J) = z};
4 Kz ← Rh

z ;
5 Fx,t ← {J ∈ Rz(t) : m(J) ∈ A(x)}, for each

x ∈ f(z) and t;
6 Tz ← span(Rh

z)∪{t :
∑

x∈f(z)
S(Fx,t)

gx
rx ≥ p ·rz};

7 for each J ∈ Rz \ Rh
z do

8 if I(J) ⊂ Tz then
9 add J into Kz;

10 end
11 end
12 schedule jobs in Kz into type-z machines by using

the dual coloring algorithm (see [17]);
13 end

It is easy to infer that ALGoffline eventually assigns each
job J to either its exact machine type m(J) or an ancestor type
of m(J). After assigning the set of jobs Kz to each machine type
z, we use an existing dual coloring algorithm [17] to schedule
the jobs in Kz into type-z machines (line 12). Dual coloring
is a 4-approximation algorithm for scheduling a set of jobs into
homogeneous machines (i.e., all machines have the same cost rate
and capacity) to minimize the total cost of machine usage.

The output of the ALGoffline algorithm has the following
properties for any time instant t ∈ span(J).

Property 4.1. Let koff := max{z : Kz(t) ̸= ∅} be the highest-
indexed machine type used by ALGoffline at time t, and k0 :=
max{m(J) : J ∈ J (t)} be the highest-indexed exact machine
type among the active jobs at time t. We have koff ∈ P (k0), i.e.,
koff is either k0 or an ancestor of k0.

Proof. Obviously, koff ≥ k0. It suffices to show that k0 is in
the tree rooted at koff . Assume on the contrary that k0 is not in
the tree rooted at koff . By Proposition 3.1.3, k0 is smaller than
all the nodes in the tree rooted at koff . Take any job J assigned
to type koff . By the algorithm definition, J ’s exact machine type
m(J) is in the tree rooted at koff . As a result, k0 < m(J), which
contradicts to the definition of k0.

Property 4.2 follows from the algorithm definition directly. It
says that if koff is higher than the exact machine types of all the
active jobs, assigning the active jobs to koff ’s child types would
incur a total cost rate at least a fraction p of a type-koff machine.

Property 4.2. If koff > k0, we have
∑

x∈f(koff)
S(Hx, t) ·

rx
gx

=
∑

x∈f(koff)
S(Fx,t) · rxgx ≥ p · rkoff

, where f(koff) is the
set of koff ’s child types.

Recall that the cost rate of each machine type is a power of b.
For the offline setting, we set the base value b = 3.2 Property 4.3
says that for each type z, the total cost rate of the machines needed
for hosting all the jobs assigned to z’s descendants is bounded by
the cost rate of 16

5 p type-z machines.

2. Our analysis of the ALGoffline algorithm can be easily extended to any
base value b. For ease of exposition, we set b = 3 in the analysis which can
achieve a close to best approximation ratio for ALGoffline.

7

ta1 a2 a3 a4b1 b2 b3 b4

I(J1)− I(J2)− I(J1)+ I(J2)+

T = ∪4
i=1[ai, bi)

R′z(t) = {J1, J2}
S1 = [I(J1)−, b1) ∪ [a2, b2)

S2 = [a3, I(J2)+)

Fig. 2. An illustration of S1 and S2 for Case 2 in Property 4.3

Property 4.3. For any machine type z ∈ M, we have∑
i∈A(z)\{z}

S(Ki,t)
gi

· ri ≤ 16
5 p · rz , where Ki is the set of jobs

assigned to type i, and S(Ki, t) is the total size of the active jobs
in Ki at time t.

Proof. We are to show that the above inequality holds for any
z ∈ M and t ∈ span(J). We use induction on the height l ≥ 1
of the tree rooted at z, where the height of the tree is defined
as the number of nodes along the longest path from a leaf node
to the root. The base case when l = 1 is trivially true because
A(z) \ {z} = ∅, so it suffices to consider the inductive case. Let
T := {t ∈ span(J) : Rh

z (t) = ∅∧
∑

x∈f(z)
S(Fx,t)

gx
rx < p·rz},

i.e., T consists of all time instants that are not cost-effective to
open a type-z machine. Observe that the set T is a union of left
closed and right open intervals because the active interval of each
job is a left closed and right open interval. For each job J ∈ Rz ,
by the definition of ALGoffline (lines 8-9), J is assigned to type
z if and only if I(J) ∩ T = ∅, i.e., J ’s active interval does not
contain any time instant of T. For a fixed time instant t, we have
either t ∈ T or t /∈ T.

Case 1: t ∈ T.
In this case, Kz(t) = ∅, i.e., no job active at t is assigned to

type z. All the jobs Rz(t) active at t are passed to z’s child types
f(z). Thus,Rz(t) = ∪x∈f(z)Rx(t). By definition, for each child
type x ∈ f(z), Fx,t = Rx(t) ⊃ Kx(t), where Fx,t is computed
by line 5 in the iteration of type z,Rx(t) is the set of active jobs at
t passed to type x, and Kx(t) is the set of active jobs at t assigned
to type x. Therefore,∑

i∈A(z)\{z}

S(Ki, t)

gi
· ri

=
∑

x∈f(z)

S(Kx, t)

gx
· rx +

∑
i∈A(x)\{x}

S(Ki, t)

gi
· ri


≤

∑
x∈f(z)

S(Fx,t)

gx
· rx +

∑
i∈A(x)\{x}

S(Ki, t)

gi
· ri


<p · rz +

∑
x∈f(z)

∑
i∈A(x)\{x}

S(Ki, t)

gi
· ri

(by the definition of T)

=p · rz +
∑

x∈f(z)∧A(x)\{x}≠∅

∑
i∈A(x)\{x}

S(Ki, t)

gi
· ri

≤p · rz +
∑

x∈f(z)∧A(x)\{x}≠∅

16

5
p · rx

(by induction hypothesis).

Suppose f1 < f2 < . . . < fn are all the child types x of
z satisfying A(x) \ {x} ̸= ∅, i.e., x is not a leaf. For each q =
2, 3, . . . , n, since A(fq) \ {fq} ≠ ∅, we have fq−1 ≤ fq − 2 by

Proposition 3.1.3. It is easy to see that
∑

x∈f(z)∧A(x)\{x}̸=∅
16
5 p ·

rx is bounded by 16
5 p ·(1b +

1
b3 +

1
b5 + . . .) ·rz = 16

5 p · b
b2−1 ·rz =

6
5p · rz . Hence, eventually, we have∑

i∈A(z)\{z}

S(Ki, t)

gi
· ri < p · rz +

6

5
p · rz =

11

5
p · rz.

Case 2: t /∈ T.
Let R′

z(t) = Rz(t) \ Kz(t) denote the set of jobs active
at t which are passed to z’s child types f(z). Clearly, R′

z(t) =
∪x∈f(z)Rx(t), whereRx(t) is the set of active jobs at t passed to
type x. By definition,R′

z(t) can also be written asR′
z(t) = {J ∈

Rz(t) : m(J) ∈ A(z) \ {z} ∧ I(J) ∩T ̸= ∅}, i.e., each job in
R′

z(t) must contain in its active internal some time instant of T.
Since t /∈ T, we find the maximum time instant in T before t and
the minimum time instant in T after t. Then, each job in R′

z(t)
must contain one or both of these two time instants. Thus, we can
bound the total cost needed for hosting the jobs R′

z(t) based on
the fact that the time instants in T are not cost-effective.

Formally, consider two sets of time instants: S1 :=
span(R′

z(t)) ∩ T ∩ (−∞, t) and S2 := span(R′
z(t)) ∩ T ∩

(t,∞). Figure 2 shows an example of R′
z(t), T, S1 and S2,

where R′
z(t) consists of two jobs J1 and J2. Note that S1 and

S2 are both unions of left closed and right open intervals because
span(R′

z(t)) and T are.
Let t1 := supS1 if S1 is nonempty (e.g., t1 = b2 in Figure

2), and t2 := minS2 if S2 is nonempty (e.g., t2 = a3 in Figure
2). Observe that t1 ≤ t < t2, if both exists. Suppose that ϵ > 0
is an infinitesimal. Note that t1 − ϵ ∈ T and t2 ∈ T. Then,
for each job J ∈ R′

z(t), either t1 − ϵ or t2 is in I(J), since
otherwise I(J) ∩ T would be empty so that J ∈ Kz(t). Thus,
we have R′

z(t) ⊂ Rz(t1 − ϵ) ∪ Rz(t2). Consequently, after the
partitioning of jobs among z’s child types f(z), we haveRx(t) ⊂
Fx,t1−ϵ ∪ Fx,t2 for each child type x ∈ f(z), where Fx,t1−ϵ or
Fx,t2 is defined to be empty if S1 or S2 is empty. Therefore,∑

x∈f(z)

S(Rx, t)

gx
· rx

≤
∑

x∈f(z)

S(Fx,t1−ϵ ∪ Fx,t2)

gx
· rx

≤
∑

x∈f(z)

S(Fx,t1−ϵ)

gx
· rx +

∑
x∈f(z)

S(Fx,t2)

gx
· rx

<p · rz + p · rz = 2p · rz (since t1 − ϵ, t2 ∈ T). (8)

By definition, Kx(t) ⊂ Rx(t), i.e., the set of jobs assigned to
type x must be among those passed to type x. Similar to Case 1,
we have ∑

i∈A(z)\{z}

S(Ki, t)

gi
· ri

8

=
∑

x∈f(z)

S(Kx, t)

gx
· rx +

∑
i∈A(x)\{x}

S(Ki, t)

gi
· ri


≤

∑
x∈f(z)

S(Rx, t)

gx
· rx +

∑
x∈f(z)

∑
i∈A(x)\{x}

S(Ki, t)

gi
· ri

≤
∑

x∈f(z)

S(Rx, t)

gx
· rx +

∑
x∈f(z)∧A(x)\{x}̸=∅

16

5
p · rx

(by induction hypothesis)

≤
∑

x∈f(z)

S(Rx, t)

gx
· rx +

6

5
p · rz (same as Case 1)

<
16

5
p · rz (by equation (8)).

Hence, the inductive case is proven.

4.2 ALGoffline achieves O(1) approximation

We exploit the properties of the cost-per-capacity graph to ana-
lyze the ALGoffline algorithm. In particular, Proposition 3.1.5
indicates that all the machine types indexed from 1 to any k form
a disjoint union of the trees rooted at nodes from the set T (k),
where T (k) includes type k and all the younger siblings of k’s
ancestors. Proposition 3.1.2 says that the machine type at the root
of each tree has the lowest normalized cost rate among all the
types in the tree. This implies that given any k and any job J
within the capacity of a type-k machine, the machine type with
the lowest normalized cost rate that can accommodate J must be
from T (k). In our analysis, T (k) plays a critical role to bridge
the cost of ALGoffline and the optimal cost of BSHM. The
general idea is as follows. For each time instant, we charge the
cost of the machines used by the ALGoffline algorithm to only
machine types T (koff) (where koff is the highest-indexed ma-
chine type used by ALGoffline). We also charge the cost of the
optimal one-shot scheduling to only machine types T (kopt) (i.e.,
Proposition 3.2.4, where kopt is the highest-indexed machine type
used by the optimal one-shot scheduling). Finally, we establish
the connections between the costs of T (koff) and T (kopt) by
carefully analyzing different possible relations between koff and
kopt according to the definition of the ALGoffline algorithm.

ALGoffline schedules the jobs in each Kz into type-z ma-
chines by the dual coloring algorithm. The dual coloring algorithm
[17] guarantees that the total cost rate of type-z machines used at
any time instant t is bounded by 4 · ⌈S(Kz, t)/gz⌉ · rz , where
S(Kz, t) is the total size of the active jobs in Kz at time t, gz is
the capacity of a type-z machine, rz is the cost rate of a type-z
machine, and 4 comes from the approximation ratio of the dual
coloring algorithm. The following theorem shows that the sum of
⌈S(Kz, t)/gz⌉ · rz over all machine types z is bounded by O(1)
times the cost rate of the optimal one-shot scheduling for all the
active jobs J (t) at time t.

Theorem 4.1. At each time instant t, we have
∑

z∈M

⌈
S(Kz,t)

gz

⌉
·

rz ≤ max
{

5
2 + 24

5 p, 24
5 + 3

2p

}
· OPT1(J (t)).

Proof. Let k0 := max{m(J) : J ∈ J (t)} be the highest-
indexed exact machine type among the active jobs at time t. Let
koff := max{z : Kz(t) ̸= ∅} be the highest-indexed machine
type used by ALGoffline at time t. Let kopt := max{z :
w∗(z) > 0} be the highest-indexed machine type used by the
optimal machine configuration w∗ for one-shot scheduling of

J (t). By Property 4.1 and Theorem 3.1, both koff and kopt are
in P (k0).

Case 1: kopt ≥ koff .
By Proposition 3.1.5, {1, 2, . . . , koff} ⊂ {1, 2, . . . , kopt} =

∪z∈T (kopt)A(z). Let Hz = {J ∈ J : m(J) ∈ A(z)} denote
the set of jobs whose exact machine types are in A(z).

For each type z ∈ T (kopt), we have∑
i∈A(z)

⌈
S(Ki, t)

gi

⌉
· ri

≤ S(Kz, t)

gz
· rz +

∑
i∈A(z)\{z}

S(Ki, t)

gi
· ri +

∑
i∈A(z)

ri

≤ S(Kz, t)

gz
· rz +

16

5
p · rz +

∑
i∈A(z)

ri (by Property 4.3)

≤ S(Hz, t)

gz
· rz +

16

5
p · rz +

∑
i∈A(z)

ri (since Kz(t) ⊂ Hz(t)).

Since the cost rates are powers of b = 3, we have
∑kopt

z=1 rz <∑∞
i=0

1
bi · rkopt = 1/(1− 1

b) · rkopt =
3
2 · rkopt . Therefore,

koff∑
z=1

⌈
S(Kz, t)

gz

⌉
· rz

=
∑

z∈T (kopt)

∑
i∈A(z)

⌈
S(Ki, t)

gi

⌉
· ri

≤
∑

z∈T (kopt)

S(Hz, t)

gz
· rz +

16

5
p · rz +

∑
i∈A(z)

ri


≤

∑
z∈T (kopt)

S(Hz, t)

gz
· rz +

(
1 +

16

5
p

)
·
kopt∑
z=1

rz

≤
∑

z∈T (kopt)

S(Hz, t)

gz
· rz +

(
1 +

16

5
p

)
· 3
2
· rkopt

≤
(
5

2
+

24

5
p

)
·OPT1(J (t)) (by Proposition 3.2.4). (9)

Case 2: koff > kopt, which implies koff ∈ P (kopt)\{kopt}
(see Figure 3 for an illustration).

koff

kopt

· · ·

· · ·

· · ·

· · · · · ·

· · ·

f(koff) :

· · ·

· · ·

x

x

y

y

: y ∈ P (x)

: y = p(x)

: T (koff)

: T (kopt) ∩ A(koff)

Fig. 3. A diagram illustration for Case 2 in Theorem 4.1

Since koff ∈ P (kopt)\{kopt}, by Proposition 3.2.3, we have
S(Hkoff

, t) < gkoff
. By similar arguments to equation (9), we

have

koff∑
z=1

⌈
S(Kz, t)

gz

⌉
· rz

9

≤
koff−1∑
z=1

(
S(Kz, t) ·

rz
gz

+ rz

)
+

⌈
S(Hkoff

, t)

gkoff

⌉
· rkoff

(since Kkoff
(t) ⊂ Hkoff

(t))

≤
∑

z∈T (koff)\{koff}

S(Kz, t) ·
rz
gz

+
16

5
p ·

∑
z∈T (koff)

rz

+

koff−1∑
z=1

rz + rkoff
(by Property 4.3)

≤
∑

z∈T (koff)\{koff}

S(Hz, t) ·
rz
gz

+

(
1 +

16

5
p

)
·
koff∑
z=1

rz

(since Kz(t) ⊂ Hz(t))

≤
∑

z∈T (koff)\{koff}

S(Hz, t) ·
rz
gz

+

(
1 +

16

5
p

)
· 3
2
· rkoff

,

(10)

where T (koff) are the grey nodes in Figure 3.
Now we give an upper bound to rkoff

. Since koff > kopt and
kopt ∈ P (k0), it follows that koff > k0. By Property 4.2, we
have

p · rkoff
≤

∑
x∈f(koff)

S(Hx, t) ·
rx
gx

,

where f(koff) is the set of koff ’s child types (see Figure
3). Observe that the set of jobs whose exact machine types
are in A(koff), i.e., Hkoff

, can be partitioned into {Hx :
x ∈ f(koff)} because the exact machine type of each job
in Hkoff

must be lower than koff . Furthermore, the parti-
tioning {Hx : x ∈ f(koff)} can be further partitioned into
{Hz : z ∈ T (kopt)∩A(koff)}, where T (kopt)∩A(koff) are the
black nodes in Figure 3. This is because the exact machine type of
each job in Hkoff

must be lower than or equal to kopt, and each
machine type z ∈ T (kopt) ∩ A(koff) must be in the tree rooted
at some type x ∈ f(koff). For each z and the corresponding x,
type z has a normalized cost rate no less than type x. Therefore,∑

x∈f(koff)

S(Hx, t) ·
rx
gx
≤

∑
z∈T (kopt)∩A(koff)

S(Hz, t) ·
rz
gz

.

As a result,

rkoff
≤ 1

p
·

∑
z∈T (kopt)∩A(koff)

S(Hz, t) ·
rz
gz

. (11)

Combining equations (10) and (11), we get

koff∑
z=1

⌈
S(Kz, t)

gz

⌉
· rz

≤
∑

z∈T (koff)\{koff}

S(Hz, t) ·
rz
gz

+

(
24

5
+

3

2p

)
·

∑
z∈T (kopt)∩A(koff)

S(Hz, t) ·
rz
gz

≤ max

{
1,

24

5
+

3

2p

}
·

∑
z∈T (kopt)

S(Hz, t) ·
rz
gz

≤
(
24

5
+

3

2p

)
· OPT1(J (t)) (by Proposition 3.2.4),

where the second inequality is because T (koff) \ {koff} and
T (kopt) ∩A(koff) are disjoint subsets of T (kopt).

The cost of scheduling J by ALGoffline is bounded by∫
t∈ span(J)

(∑
z∈M 4 · ⌈S(Kz, t)/gz⌉ · rz

)
dt, where span(J)

is the time interval(s) in which at least one job in J is active. By
Theorem 4.1, we have∫

t∈ span(J)

(∑
z∈M

4 ·
⌈
S(Kz, t)

gz

⌉
· rz

)
dt

≤ 4 ·max

{
5

2
+

24

5
p,

24

5
+

3

2p

}
·
∫
t∈ span(J)

OPT1(J (t)) dt

≤ 4 ·max

{
5

2
+

24

5
p,

24

5
+

3

2p

}
· OPTBSHM(J)

(by equation (1)).

Together with an additional factor of b = 3 due to the power
of b assumption for cost rates (Section 2), the approximation ratio
of ALGoffline is 12 ·max

{
5
2 + 24

5 p, 24
5 + 3

2p

}
.

Corollary 4.2. ALGoffline achieves an approximation ratio of
12 ·max

{
5
2 + 24

5 p, 24
5 + 3

2p

}
.

Therefore, ALGoffline is an O(1)-approximation algorithm.
Since p > 0, the approximation ratio is minimized when
5
2 + 24

5 p = 24
5 + 3

2p . The best achievable approximation ratio
is approximately 78.83 when p ≈ 0.8478.

5 THE ONLINE SETTING

5.1 The online algorithm ALGonline

We now discuss the online BSHM problem. We say that a machine
is opened when it receives the first job to process. When all the
active jobs end in an open machine, the machine is closed. In the
online setting, jobs are released when they are to start execution.
For simplicity, we assume that jobs are released one at a time.
Algorithm 2 shows our online algorithm ALGonline for each
new job J released. The algorithm iteratively considers the exact
machine type m(J) and its ancestor types for processing J (lines
1 and 9). When a machine type z is considered, if there are one or
more type-z machines that are open and have available capacity
to host job J , J is scheduled into the machine which was opened
earliest among these machines (this is known as the First Fit rule)
(lines 3-5). If not, we check whether a new type-z machine should
be opened. If type z has no parent in the cost-per-capacity graph
or opening a new type-z machine does not cause the total cost
rate of the open machines for all the descendant types of each z’s
ancestor za ∈ P (z)\{z} to exceed that of one type-za machine, a
new type-z machine is opened to host job J (lines 6-8). Otherwise,
we proceed to consider the parent type p(z) (line 9).

By the definition of ALGonline, each job is scheduled into
its exact machine type or an ancestor of its exact machine type.
Thus, all the jobs scheduled into a machine type z must have
exact machine types in the tree rooted at z. For each machine type
z ∈ M and each time instant t ∈ span(J), let N(z, t) denote
the number of type-z machines being open at time t.

To analyze the ALGonline algorithm, we create a set of
artificial jobs to fill up the unused capacities of open machines,
in order to establish the relation between the cost of ALGonline

and the cost of the optimal one-shot scheduling (Section 5.2).
For each time instant, we invent a mechanism to charge the cost
of the optimal one-shot scheduling to individual jobs within an
O(1) factor (Section 5.4). This charging mechanism provides a
nice “monotonic” property (adding new jobs never decreases the

10

Algorithm 2: ALGonline

Input: A new job J released at time I(J)−

Output: A machine for processing J
1 z ← m(J);
2 while true do
3 if there exist type-z machines open at time I(J)−

with available capacity at least s(J) then
4 among these machines, return the machine which

was opened earliest;
5 end
6 if p(z) does not exist or ∀za ∈ P (z) \ {z},∑

x∈A(za)\{za} nxrx < rza − rz where nx is the
number of type-x machines open at time I(J)− then

7 open and return a new type-z machine;
8 end
9 z ← p(z);

10 end

costs charged to existing jobs, see Theorem 5.8). Based on this
property, we show that the cost due to the artificial jobs is bounded
by a factor O(µ) of the cost due to the original jobs (Theorem
5.4), where µ := maxJ∈J len(J)/minJ∈J len(J) denotes the
max/min job length ratio. This leads to the O(µ) competitive ratio
of the ALGonline algorithm. Without loss of generality, in the
following analysis, we assume that the maximum and minimum
job lengths are µ and 1 respectively.

5.2 A set of artificial jobs R
We start by creating some artificial jobs to fill up the capacities of
the open machines by ALGonline. By “fill up”, we mean that the
original jobs and the artificial jobs have a total size no less than
the machine capacities. We do not physically place the artificial
jobs into machines while observing the machine capacities.

For each job J ∈ J , we create three artificial jobs: J ’s twin
job W (J), µ-extension job Fµ(J) and 2µ-extension job F2µ(J).
They have the same sizes as J , i.e., s(W (J)) = s(Fµ(J)) =
s(F2µ(J)) = s(J). Their active intervals are defined as follows:

• I(W (J)) = I(J), i.e., W (J) has the same active interval
as J ;

• I(Fµ(J)) = [I(J)+, I(J)+ + µ), i.e., Fµ(J) extends
J ’s active interval by a period µ;

• I(F2µ(J)) = [I(J)+, I(J)++2µ), i.e., F2µ(J) extends
J ’s active interval by a period 2µ.

Let R = {W (J), Fµ(J), F2µ(J) : J ∈ J } denote all the
artificial jobs created. In the following, we show that at each time
instant t, the active jobs J (t) together with the active jobs R(t)
satisfy some properties. Given a time instant t, for each machine
type z, let Hz = {J ∈ J (t) ∪ R(t) : m(J) ∈ A(z)} denote
all the active jobs in J (t) ∪ R(t) whose exact machine types
are in the tree rooted at z. S(Hz) is the total size of the jobs in
Hz . Lemma 5.1 says that for each machine type z, if there are
multiple type-z machines open at time t, the jobs in Hz fill up the
capacities of these machines except one.

Lemma 5.1. For each machine type z such that N(z, t) > 1, we
have S(Hz) > (N(z, t)− 1) · gz .

Proof. As illustrated in Figure 4, suppose n = N(z, t) > 1 type-
z machines being open at time t were opened in the order of

t

J3

J2

m3

m2

m1

Fµ(J2)

W

W Fµ

W (J3)

W (J2)

µ

K1
z

type z

type z

type z

K2
z

Fig. 4. Artificial jobs fill up capacities of open machines at time t

m1, m2, . . ., mn. Recall that all the jobs scheduled into these
machines must have exact machine types in the tree rooted at z.
We pick an active job Ji (black rectangle) in each machine mi at
time t. For each i > 1, when Ji was scheduled into mi at its start
time I(Ji)−, machine mi−1 was also open at that time. Let Ki−1

z

denote the set of active jobs in machine mi−1 at time I(Ji)
−

(black rectangles). By the First Fit scheduling rule, we must have
s(Ji) + S(Ki−1

z) > gz for each i = 2, . . . , n. As a result,
n∑

i=2

(
s(Ji) + S(Ki−1

z)
)
> (n− 1) · gz.

On the other hand, each job Ji has a twin job W (Ji) active at t
(grey rectangles), where W (Ji) ∈ Hz . In addition, each job J ∈
Ki−1

z has a µ-extension job Fµ(J) which extends J by a period
µ (rectangles in back slash pattern). Either J or Fµ(J) is active
at t, since I(J)− ≤ I(Ji)

− ≤ t and t− I(J)+ < len(Ji) ≤ µ.
Thus, either J or Fµ(J) is in Hz . Therefore, the total size of the
jobs in Hz must be greater than (n− 1) · gz .

Lemma 5.2 says that for any active job Ĵ at time t, for each
machine type z, if there are multiple type-z machines open at time
I(Ĵ)−, the jobs in Hz fill up the capacities of these machines
except one.

Lemma 5.2. Take any job Ĵ ∈ J (t). For each machine type z
such that N(z, I(Ĵ)−) > 1, we have S(Hz) > (N(z, I(Ĵ)−)−
1) · gz .

Proof. The proof is similar to Lemma 5.1. As illustrated in Figure
5, take any active job Ĵ (black rectangle) at time t, and we consider
all the type-z machines being open at its start time I(Ĵ)−.
Suppose n = N(z, I(Ĵ)−) > 1 type-z machines being open
at time I(Ĵ)− were opened in the order of m1, m2, . . ., mn. All
the jobs scheduled into these machines must have exact machine
types in the tree rooted at z. We pick an active job Ji (black
rectangle) in each machine mi at time I(Ĵ)−. For each i > 1,
when Ji was scheduled into mi at its start time I(Ji)

−, machine
mi−1 was also open at that time. LetKi−1

z denote the set of active
jobs in machine mi−1 at time I(Ji)

− (black rectangles). By the

11

m3

m2

m1

Ĵ

J3

W

F2µ

W

Fµ

J2

tI(Ĵ)−

Fµ

Fµ(J3)W (J3)

W (J2) Fµ(J2)

µ

2µ

type z

type z

type z

K2
z

K1
z

Fig. 5. Artificial jobs fill up capacities of open machines at time I(Ĵ)−

First Fit scheduling rule, we must have s(Ji) + S(Ki−1
z) > gz

for each i = 2, . . . , n. As a result,
n∑

i=2

(
s(Ji) + S(Ki−1

z)
)
> (n− 1) · gz.

Each job Ji has a twin job W (Ji) (grey rectangles) and a µ-
extension job Fµ(Ji) which extends Ji by a period µ (rectangles
in back slash pattern). One of these two artificial jobs must be
active at time t, since I(Ji)

− ≤ I(Ĵ)− ≤ t and t − I(Ji)
+ <

len(Ĵ) ≤ µ. Thus, either W (Ji) or Fµ(Ji) is in Hz . In addition,
each job J ∈ Ki−1

z has a 2µ-extension job F2µ(J) which extends
J by a period 2µ (rectangles in slash pattern). Either J or F2µ(J)
is active at time t, since I(J)− ≤ I(Ji)

− ≤ t and t− I(J)+ <
len(Ji) + len(Ĵ) ≤ 2µ. Thus, either J or F2µ(J) is in Hz .
Therefore, the total size of the jobs in Hz must be greater than
(n− 1) · gz .

Based on Lemmas 5.1 and 5.2, we can prove that the total cost
of the machines used by ALGonline at any time t is bounded by
O(1) times the cost of the optimal one-shot scheduling for the
active jobs J (t) ∪R(t).

Theorem 5.3. If b3 − 3b2 − b + 1 > 0, at each time instant
t, we have

∑
z∈M N(z, t) · rz ≤ max

{
3b2−1
b2−1 , 2b3

b3−3b2−b+1

}
·

OPT1(J (t) ∪R(t)).

Proof. Please refer to Appendix A.

5.3 A sufficient condition

Note that all the artificial jobs R can be broken down into W =
{W (J) : J ∈ J }, Fµ = {Fµ(J) : J ∈ J } and F2µ =
{F2µ(J) : J ∈ J }. For any time instant t, the combination of
any optimal one-shot scheduling for the active jobs in J ∪F2µ and
any optimal one-shot scheduling for the active jobs inW ∪Fµ is
a feasible one-shot scheduling for the active jobs in J ∪R. Recall
that J (t) denotes the active jobs in J at time t. By optimality,

OPT1(J (t) ∪R(t))
≤ OPT1(J (t) ∪ F2µ(t)) + OPT1(W(t) ∪ Fµ(t)). (12)

In order to prove that ALGonline is an O(µ)-competitive al-
gorithm, it suffices to show the following theorem. Define a
function Fd with d ≥ µ which maps each job J in J to
its d-extension job Fd(J) such that s(Fd(J)) = s(J) and
I(Fd(J)) = [I(J)+, I(J)+ + d), i.e., the job Fd(J) has the
same size as J and extends J ’s active interval by a period d.

Theorem 5.4. Let H = {Fd(J) : J ∈ J } with d ≥ µ.
We have

∫
t∈ span(J) OPT1(J (t) ∪ H(t)) dt ≤ 2b

b−1 (d + 1) ·∫
t∈ span(J) OPT1(J (t)) dt.

Applying Theorem 5.4 by letting d = µ and 2µ, we have∫
t∈ span(J)

∑
z∈M

N(z, t) · rz dt

≤ max

{
3b2 − 1

b2 − 1
,

2b3

b3 − 3b2 − b+ 1

}
·
∫
t∈span(J)

OPT1(J (t) ∪R(t)) dt (by Theorem 5.3)

≤ max

{
3b2 − 1

b2 − 1
,

2b3

b3 − 3b2 − b+ 1

}
·
∫
t∈span(J)

(
OPT1(J (t) ∪ F2µ(t))

+OPT1(W(t) ∪ Fµ(t))
)
dt (by equation (12))

≤ max

{
3b2 − 1

b2 − 1
,

2b3

b3 − 3b2 − b+ 1

}
· 2b

b− 1
(3µ+ 2)

·
∫
t∈span(J)

OPT1(J (t)) dt (by Theorem 5.4)

≤ max

{
3b2 − 1

b2 − 1
,

2b3

b3 − 3b2 − b+ 1

}
· 2b

b− 1
(3µ+ 2)

·OPTBSHM(J) (by equation (1)).

Together with an additional factor of b due to the power of
b assumption for cost rates (Section 2), the competitive ratio of
ALGonline is max

{
3b2−1
b2−1 , 2b3

b3−3b2−b+1

}
· 2b2

b−1 (3µ+ 2).

Theorem 5.5. ALGonline achieves a competitive ratio of
max

{
3b2−1
b2−1 , 2b3

b3−3b2−b+1

}
· 2b2

b−1 (3µ+ 2).

Therefore, ALGonline is an O(µ)-competitive algorithm. The
best achievable competitive ratio is approximately 59 · (3µ + 2)
when b = 7.

5.4 A modified O(1) approximation of optimal one-shot
scheduling
Recall that in Section 3.2, we defined the one-shot scheduling
problem for a set of jobs J 1d. In order to prove Theorem 5.4, we
shall charge the machine cost of the optimal one-shot scheduling
to individual jobs in J 1d and have a desired “monotonic” property
that the cost charged to each job is non-increasing as the job set
J 1d expands. A major challenge to guarantee the “monotonic”
property is that the highest-indexed machine type used by the
optimal one-shot scheduling is derived from J 1d and it may
change as J 1d expands. In fact, the optimal one-shot scheduling
is not adequate to address this challenge. In the following, we
present a modified machine configuration which is an O(1)
approximation of the optimal one-shot scheduling and has the
desired “monotonic” property.

Given a set of jobs J 1d, recall that the optimal machine
configuration for one-shot scheduling may not be unique. In other

12

TABLE 2
Definition of r̃(J 1d, J)

condition r̃(J 1d, J) for each job r̃(J 1d, J) for each r̃(J 1d, J) for each
J ∈ Hi (i ∈ T (kopt) \ {kopt}) job J ∈ Hi (i ∈ f(kopt)) job J ∈ Hh

kopt

S(Hkopt) ≥ gkopt s(J) · ri
gi

s(J) ·
rkopt

gkopt
s(J) ·

rkopt

gkopt

S(Hkopt) < gkopt and s(J) · ri
gi s(J) ·

(
ri
gi

−
(

ri
gi

−
rkopt

gkopt

)
· α∗

)
s(J) ·

rkopt

gkoptc ≥ rkopt

S(Hkopt) < gkopt and s(J) · ri
gi

s(J) · ri
gi

s(J) ·
rkopt

gkopt
· (1 + β∗)

c < rkopt

words, the choice of the highest-indexed machine type kopt used
by the optimal one-shot scheduling may not be unique. Among all
the optimal machine configurations for J 1d described by Theorem
3.1, we choose the one with the highest highest-indexed machine
type used, and denote its highest-indexed machine type used by
kopt. That is, if there exists another optimal machine configuration
with the highest-indexed machine type k used, then kopt ≥ k must
hold. Next, we define the modified machine configuration based on
the chosen optimal machine configuration. For ease of reference,
Table 2 summarizes how the machine cost of the modified machine
configuration is charged to individual jobs in J 1d.

For each machine type i ∈M, let Hi = {J ∈ J 1d : m(J) ∈
A(i)} denote the set of jobs whose exact machine types are in the
tree A(i) rooted at type i. Then, by Proposition 3.1.5, {Hi : i ∈
T (kopt)} is a partitioning of J 1d, where T (kopt) includes type
kopt and all the younger siblings of kopt’s ancestors.

For each i ∈ T (kopt) \ {kopt}, the jobs in Hi are always
accommodated by type-i machines in the modified machine con-
figuration. Hence, we need S(Hi)

gi
type-i machines with a total cost

of S(Hi) · rigi . Each job is charged a cost proportional to its size,
i.e., each job J ∈ Hi is charged a cost of r̃(J 1d, J) := s(J) · rigi .
Note that we include the job set J 1d in the notation r̃(J 1d, J) to
indicate that the machine configuration and hence the cost charged
to each job is dependent on J 1d.

For the jobs in Hkopt , if their total size is at least the capacity
of one type-kopt machine, i.e., S(Hkopt) ≥ gkopt , all of them are
accommodated by type-kopt machines in the modified machine

configuration. Hence, we need
S(Hkopt)

gkopt
type-kopt machines with

a total cost of S(Hkopt
) · rkopt

gkopt
. Again, each job is charged a cost

proportional to its size, i.e., each job J ∈ Hkopt is charged a cost
of r̃(J 1d, J) := s(J) · rkopt

gkopt
.

If S(Hkopt
) < gkopt

, we aim to use one type-kopt machine to
accommodate all the jobs in Hkopt

with a cost of rkopt
. The cost is

charged to the jobs in Hkopt
as follows. Note that the jobs Hkopt

can be further partitioned into Hh
kopt

:= {J ∈ J 1d : m(J) =
kopt} and {Hi : i ∈ f(kopt)} where f(kopt) is the set of kopt’s
child types. Let c := S(Hh

kopt
) · rkopt

gkopt
+
∑

i∈f(kopt)
S(Hi) · rigi be

the cost of using type-kopt machines to accommodate Hh
kopt

and
type-i machines to accommodate each Hi where i ∈ f(kopt).

(i) If c ≥ rkopt
, each job J ∈ Hh

kopt
is charged a cost of

r̃(J 1d, J) := s(J) · rkopt

gkopt
. Note that in this case, we must have

∪i∈f(kopt)Hi ̸= ∅ since otherwise c = S(Hkopt
) · rkopt

gkopt
<

rkopt
. Each job J ∈ Hi where i ∈ f(kopt) is charged a

cost of r̃(J 1d, J) := s(J) ·
(
ri
gi
−
(
ri
gi
− rkopt

gkopt

)
· α∗

)
, where

α∗ ∈ [0, 1) is given by α∗ = (c − rkopt)/
∑

i∈f(kopt)
S(Hi) ·

(
ri
gi
− rkopt

gkopt

)
to ensure that the total cost charged is rkopt

. Since

α∗ ∈ [0, 1), we have r̃(J 1d, J) ∈
(
s(J) · rkopt

gkopt
, s(J) · rigi

]
for

each job J ∈ Hi.
(ii) If c < rkopt

, each job J ∈ Hi where i ∈ f(kopt)
is charged a cost of r̃(J 1d, J) := s(J) · ri

gi
. If Hh

kopt
̸= ∅,

each job J ∈ Hh
kopt

is charged a cost of r̃(J 1d, J) :=

s(J) · rkopt

gkopt
· (1 + β∗), where β∗ ≥ 0 is given by β∗ =

(rkopt
− c)/

(
S(Hh

kopt
) · rkopt

gkopt

)
to make the total cost charged

equal to rkopt
.

It is easy to see that the charging mechanism described above
has the following properties.

Property 5.1. (1) r̃(J 1d, J) = s(J) · rigi for each job J ∈ Hi

where i ∈ T (kopt) \ {kopt};
(2) r̃(J 1d, J) ≥ s(J) · rkopt

gkopt
for each job J ∈ Hkopt ;

(3) for each type i ∈ f(kopt), r̃(J 1d, J) ≤ s(J) · rigi for each job
J ∈ Hi.

Property 5.2. When S(Hkopt
) < gkopt

,
(1) if c ≥ rkopt or Hh

kopt
̸= ∅, the total cost charged to all the

jobs in Hkopt is rkopt ;
(2) if c < rkopt

and Hh
kopt

= ∅, the total cost charged to all the
jobs in Hkopt is c =

∑
i∈f(kopt)

S(Hi) · rigi .

With the costs charged to individual jobs, the total cost of the
modified machine configuration is given by

∑
J∈J 1d r̃(J 1d, J).

Next, we prove that the modified machine configuration is an O(1)
approximation of the optimal one-shot scheduling in terms of the
total cost.

Theorem 5.6 (O(1) Approximation). 1
2 ·
∑

J∈J 1d r̃(J 1d, J) ≤
OPT1(J 1d) ≤ b

b−1 ·
∑

J∈J 1d r̃(J 1d, J).

Proof. If S(Hkopt
) ≥ gkopt

, the total cost of the modified
machine configuration is exactly the same as that of the optimal
one-shot scheduling. Thus, it suffices to consider the case when
S(Hkopt

) < gkopt
.

For the left inequality, we have∑
J∈J 1d

r̃(J 1d, J)=
∑

z∈T (kopt)

∑
J∈Hz

r̃(J 1d, J)

≤ rkopt +
∑

z∈T (kopt)\{kopt}

S(Hz) ·
rz
gz

(by Property 5.2 and Property 5.1 (1))

≤ 2 ·OPT1(J 1d) (by Proposition 3.2.4).

For the right inequality, if c ≥ rkopt or Hh
kopt
̸= ∅, by Property

5.2 (1), the cost of the modified machine configuration due to the

13

jobs in Hkopt
is rkopt

, i.e.,
∑

J∈Hkopt
r̃(J 1d, J) = rkopt

. Thus,
we have∑

J∈J 1d

r̃(J 1d, J)

= rkopt
+

∑
z∈T (kopt)\{kopt}

S(Hz) ·
rz
gz

= max

{
1,

S(Hkopt
)

gkopt

}
· rkopt

+
∑

z∈T (kopt)\{kopt}

S(Hz) ·
rz
gz

≥ OPT1(J 1d) (by Proposition 3.2.5).

It remains to consider the case when c < rkopt and Hh
kopt

= ∅.
Note that Hh

kopt
= ∅ implies all the jobs in Hkopt

have exact
machine types lower than kopt. Thus, machine type kopt must
have at least one child type. By Proposition 3.1.3, kopt − 1 is
the highest-indexed child type of kopt. Consider the following
machine configuration in which the highest-indexed machine type
used is kopt − 1:

w′(z) :=


max{1, S(Hz)

gz
} if z = kopt − 1,

S(Hz)
gz

if z ∈ T (kopt − 1) \ {kopt − 1},
0 otherwise.

It is easy to see that w′ is a feasible machine configuration for
one-shot scheduling. By optimality, we have∑

z∈T (kopt−1)

w′(z) · rz ≥ OPT1(J 1d). (13)

On the other hand,∑
z∈T (kopt−1)

w′(z) · rz

=max

{
1,

S(Hkopt−1)

gkopt−1

}
· rkopt−1

+
∑

z∈T (kopt−1)\{kopt−1}

S(Hz) ·
rz
gz

≤ rkopt−1 +
∑

z∈T (kopt−1)

S(Hz) ·
rz
gz

. (14)

Since kopt − 1 is the highest-indexed child type of kopt, by
definition, T (kopt−1) = (T (kopt)\{kopt})∪f(kopt). Thus, by
Property 5.1 (1) and Property 5.2 (2),

∑
z∈T (kopt−1) S(Hz) · rzgz

is exactly the total cost of the modified machine configuration.
Therefore, we have∑

J∈J 1d

r̃(J 1d, J)

=
∑

z∈T (kopt−1)

S(Hz) ·
rz
gz

≥

 ∑
z∈T (kopt−1)

w′(z) · rz

− rkopt−1 (by equation (14))

≥ OPT1(J 1d)− rkopt−1 (by equation (13))

≥ OPT1(J 1d)− 1

b
· rkopt

≥ OPT1(J 1d)− 1

b
·OPT1(J 1d) (by Proposition 3.2.4)

=
b− 1

b
·OPT1(J 1d).

An essential step to prove the “monotonic” property of the
modified machine configuration is to show that the highest-
indexed machine type used is non-decreasing as the job set J 1d

expands.

Lemma 5.7. For any two sets of jobs X ⊂ Y , we have k2 ≥ k1,
where k1 is the highest-indexed machine type used by the mod-
ified machine configuration for X , and k2 is the highest-indexed
machine type used by the modified machine configuration for Y .

Proof. Please refer to Appendix B.

Theorem 5.8 (Monotonic Property). For any two sets of jobs
X ⊂ Y , we have r̃(X , J) ≥ r̃(Y, J) for each job J ∈ X .

Proof. It suffices to prove the special case of the theorem in which
Y \ X is a singleton, say J0. Denote by k1 the highest-indexed
machine type used by the modified machine configuration for
X . Denote by k2 the highest-indexed machine type used by the
modified machine configuration for Y = X ∪ {J0}. By Lemma
5.7, k2 ≥ k1. Thus, either k2 ∈ P (k1) or k2 ∈ A(i) for some
i ∈ e(a) for some a ∈ P (k1), where P (k1) includes k1 and all
its ancestor types, and A(i) is the tree rooted at type i.

Let Hz = {J ∈ X : m(J) ∈ A(z)} denote the set of jobs in
X whose exact machine types are in the tree A(z) rooted at type
z.

Recall that T (k1) includes k1 and all the younger siblings of
k1’s ancestors, and T (k2) includes k2 and all the younger siblings
of k2’s ancestors. If k2 ∈ P (k1) \ {k1} (see Figure 6 for an
illustration), for each type z ∈ T (k1) ∩ A(k2) (the black nodes),
for each job J ∈ Hz , it follows from Property 5.1 that r̃(X , J) ≥
s(J) · rzgz ≥ s(J) · rxgx ≥ r̃(X ∪{J0}, J), where x ∈ f(k2) such
that z ∈ A(x). For each type z ∈ T (k1)\A(k2) ⊂ T (k2)\{k2}
(the grey nodes), for each job J ∈ Hz , we have r̃(X , J) =
s(J) · rzgz = r̃(X ∪ {J0}, J) by Property 5.1 (1).

k2

· · · · · ·

· · · · · ·

· · ·

k1

f(k2) :

· · · · · · x

x

y

y

: y ∈ P (x)

: y = p(x)

: T (k1) \ A(k2)
: T (k1) ∩ A(k2)

Fig. 6. A diagram illustration for the case of k2 ∈ P (k1) \ {k1} in
Theorem 5.8

If k2 ∈ A(i) for some i ∈ e(a) for some a ∈ P (k1) (see
Figure 7 for an illustration), for each type z ∈ T (k1)∩A(a) (the
black nodes3), for each job J ∈ Hz , it follows from Property 5.1
(1) and (2) that r̃(X , J) ≥ s(J) · rz

gz
≥ s(J) · ra

ga
= r̃(X ∪

{J0}, J), because a ∈ T (k2) \ {k2} by definition. For each type
z ∈ T (k1) \ A(a) (the grey nodes), for each job J ∈ Hz , we
have r̃(X , J) = s(J) · rzgz = r̃(X ∪{J0}, J) by Property 5.1 (1).

If k2 = k1, we have m(J0) ≤ k1. By Proposition 3.1.5,
{A(z) : z ∈ T (k1)} form a partitioning of {1, 2, . . . , k1}. Note
that A(k1) can be further divided into k1 and the subtrees rooted
at k1’s child types. Thus, there are three possible scenarios: (i)
m(J0) = k1; (ii) m(J0) ∈ A(i∗) for some i∗ ∈ f(k1); and (iii)

3. k1 can be equal to a. In this case, T (k1) ∩A(a) = {k1}.

14

k2· · · · · ·

· · ·

k1

a i

· · · x

x

y

y

: y ∈ P (x)

: y = p(x)

: T (k1) \ A(a)
: T (k1) ∩ A(a)

Fig. 7. A diagram illustration for the case of k2 ∈ A(i) in Theorem 5.8

m(J0) ∈ A(z) for some z ∈ T (k1)\{k1}. It suffices to consider
scenarios (i) and (ii) because r̃(X , J) = r̃(X ∪{J0}, J) for each
job J ∈ X in scenario (iii) by definition. In scenarios (i) and (ii),
the monotonicity can be verified by mechanically checking the
definitions for different cases in Table 2. Note that when a new
job is added to J 1d, the total size of the jobs in Hkopt does not
decrease and c does not decrease. Thus, the applicable definition
of r̃(J 1d, J) can either stay in the same row or move from a
lower row to an upper row in Table 2. Recall that α∗ and β∗ are
parameters for adjusting the costs charged to individual jobs to
tally with the total cost specified. It is easy to see that the cost
charged to each job never increases by observing that α∗ does
not decrease and β∗ does not increase. We present the detailed
verifications below by enumerating all the possible cases.

Specifically, let c := S(Hh
k1
) · rk1

gk1
+
∑

i∈f(k1)
S(Hi) · rigi ,

where Hh
k1

= {J ∈ X : m(J) = k1}. If m(J0) = k1 (scenario
(i)), there are three cases: (i.1) S(Hk1

) ≥ gk1
; (i.2) S(Hk1

) <
gk1

and c ≥ rk1
; and (i.3) S(Hk1

) < gk1
and c < rk1

(see the
three rows in Table 2). Observe that it suffices to compare only
the costs charged to the jobs in Hk1

before and after J0 is added.
In case (i.1), clearly r̃(X , J) = r̃(X ∪ {J0}, J) for each job
J ∈ Hk1

. In case (i.2), if S(Hk1
)+s(J0) ≥ gk1

, by Property 5.1
(2) and definition, for each job J ∈ Hk1

, r̃(X , J) ≥ s(J) · rk1

gk1
=

r̃(X ∪ {J0}, J). If S(Hk1
) + s(J0) < gk1

, on the one hand, by
definition, r̃(X , J) = r̃(X ∪ {J0}, J) for each job J ∈ Hh

k1
. On

the other hand, for each type i ∈ f(k1), for each job J ∈ Hi,

r̃(X , J) = s(J) ·
(
ri
gi
−
(
ri
gi
− rk1

gk1

)
· α∗

1

)
and

r̃(X ∪ {J0}, J) = s(J) ·
(
ri
gi
−
(
ri
gi
− rk1

gk1

)
· α∗

2

)
.

It is easy to see that α∗
1 ≤ α∗

2 because

α∗
1=

c− rk1∑
i∈f(k1)

S(Hi) ·
(
ri
gi
− rk1

gk1

)
≤

c+ s(J0) ·
rk1

gk1
− rk1∑

i∈f(k1)
S(Hi) ·

(
ri
gi
− rk1

gk1

) = α∗
2.

In case (i.3), for each type i ∈ f(k1), for each job J ∈ Hi, by
definition and Property 5.1 (3), r̃(X , J) = s(J) · rigi ≥ r̃(X ∪
{J0}, J). For each job J ∈ Hh

k1
, by definition,

r̃(X , J) = s(J) · rk1

gk1

· (1 + β∗
1) ≥ s(J) · rk1

gk1

,

where

β∗
1 =

rk1 − c

S(Hh
k1
) · rk1

gk1

.

Therefore, if S(Hk1
)+s(J0) ≥ gk1

or c+s(J0)·
rk1

gk1
≥ rk1

, then

r̃(X , J) ≥ s(J) · rk1

gk1
= r̃(X ∪ {J0}, J) for each job J ∈ Hh

k1
.

If S(Hk1
) + s(J0) < gk1

and c + s(J0) ·
rk1

gk1
< rk1

, note that

for each job J ∈ Hh
k1

,

r̃(X , J) = s(J) · rk1

gk1

·
rk1
−
∑

i∈f(k1)
S(Hi) · rigi

S(Hh
k1
) · rk1

gk1

.

Similarly, for each job J ∈ Hh
k1

,

r̃(X ∪ {J0}, J) = s(J) · rk1

gk1

·
rk1
−
∑

i∈f(k1)
S(Hi) · rigi

s(J0) ·
rk1

gk1
+ S(Hh

k1
) · rk1

gk1

.

Clearly, r̃(X , J) ≥ r̃(X ∪ {J0}, J).
If m(J0) is in A(i∗) for some i∗ ∈ f(k1) (scenario (ii)),

similarly there are three cases: (ii.1) S(Hk1
) ≥ gk1

; (ii.2)
S(Hk1

) < gk1
and c ≥ rk1

; and (ii.3) S(Hk1
) < gk1

and
c < rk1

(see the three rows in Table 2). Again, it suffices to
compare only the costs charged to the jobs in Hk1

before and after
J0 is added. In case (ii.1), clearly r̃(X , J) = r̃(X ∪ {J0}, J) for
each job J ∈ Hk1

. In case (ii.2), if S(Hk1
) + s(J0) ≥ gk1

, by
Property 5.1 (2) and definition, for each job J ∈ Hk1

, r̃(X , J) ≥
s(J) · rk1

gk1
= r̃(X ∪ {J0}, J). If S(Hk1

) + s(J0) < gk1
, on the

one hand, by definition, r̃(X , J) = r̃(X ∪ {J0}, J) for each job
J ∈ Hh

k1
. On the other hand, for each type i ∈ f(k1), for each

job J ∈ Hi,

r̃(X , J) = s(J) ·
(
ri
gi
−
(
ri
gi
− rk1

gk1

)
· α∗

1

)
and

r̃(X ∪ {J0}, J) = s(J) ·
(
ri
gi
−
(
ri
gi
− rk1

gk1

)
· α∗

2

)
.

It can be shown that α∗
1 ≤ α∗

2. In fact, by definition,

α∗
1 =

c− rk1∑
i∈f(k1)

S(Hi) ·
(
ri
gi
− rk1

gk1

)
and

α∗
2 =

c+ s(J0) · ri∗gi∗
− rk1∑

i∈f(k1)
S(Hi) ·

(
ri
gi
− rk1

gk1

)
+ s(J0) ·

(
ri∗
gi∗
− rk1

gk1

) ,
where i∗ ∈ f(k1) such that m(J0) ∈ A(i∗). Note that for α∗

1, its
nominator is less than or equal to its denominator, meanwhile for
α∗
2, the term s(J0) · ri∗gi∗

added to its nominator is actually greater

than the term s(J0)·
(
ri∗
gi∗
− rk1

gk1

)
added to its denominator. Thus,

we must have α∗
1 ≤ α∗

2. In case (ii.3), for each type i ∈ f(k1), for
each job J ∈ Hi, by definition and Property 5.1 (3), r̃(X , J) =
s(J) · rigi ≥ r̃(X ∪{J0}, J). For each job J ∈ Hh

k1
, by definition,

r̃(X , J) = s(J) · rk1

gk1

· (1 + β∗
1) ≥ s(J) · rk1

gk1

,

where

β∗
1 =

rk1
− c

S(Hh
k1
) · rk1

gk1

.

Therefore, if S(Hk1
)+s(J0) ≥ gk1

or c+s(J0)· ri∗gi∗
≥ rk1

, then
r̃(X , J) ≥ s(J) · rk1

gk1
= r̃(X ∪ {J0}, J) for each job J ∈ Hh

k1
.

15

If S(Hk1
) + s(J0) < gk1

and c + s(J0) · ri∗gi∗
< rk1

, note that
for each job J ∈ Hh

k1
,

r̃(X , J) = s(J) · rk1

gk1

·
rk1
−
∑

i∈f(k1)
S(Hi) · rigi

S(Hh
k1
) · rk1

gk1

.

Similarly, for each job J ∈ Hh
k1

,

r̃(X ∪ {J0}, J)

=s(J) · rk1

gk1

·
rk1 −

∑
i∈f(k1)

S(Hi) · rigi − s(J0) · ri∗gi∗

S(Hh
k1
) · rk1

gk1

.

Clearly, r̃(X , J) ≥ r̃(X ∪ {J0}, J).

5.5 Proof of Theorem 5.4
Now, we are ready to finish the proof of Theorem 5.4 which is the
last piece in the analysis of ALGonline.

Proof of Theorem 5.4. For each job J ∈ J and each time in-
stant t ∈ I(J), define r̃1(J, t) := r̃(J (t), J). For each job
J ∈ J and each time instant t ∈ [I(J)+, I(J)+ + d), define
r̃2(J, t) := r̃1(J, τ), where τ := t−I(J)+

d len(J) + I(J)−

(note that I(J)− ≤ τ < I(J)+ and hence r̃1(J, τ) is valid,
as illustrated in Figure 8).

I(J)− τ tI(J)+ I(J)+ + d

J Fd(J)

Fig. 8. An illustration of r̃2(J, t) := r̃1(J, τ) in Theorem 5.4

We have∑
J∈J

(∫
t∈[I(J)+,I(J)++d)∩ span(J)

r̃2(J, t) dt

)

≤
∑
J∈J

(∫
t∈[I(J)+,I(J)++d)

r̃2(J, t) dt

)

=
∑
J∈J

(∫
t∈[I(J)+,I(J)++d)

r̃1(J, τ) dt

)

(where τ =
t− I(J)+

d
len(J) + I(J)−)

=
∑
J∈J

(∫
τ∈I(J)

r̃1(J, τ)
dt

dτ
dτ

)

=
∑
J∈J

(∫
τ∈I(J)

r̃1(J, τ)
d

len(J)
dτ

)

≤ d ·
∑
J∈J

(∫
τ∈I(J)

r̃1(J, τ) dτ

)
(since 1 ≤ len(J))

=d ·
∫
t∈span(J)

∑
J∈J (t)

r̃(J (t), J) dt

(by swapping
∑

and
∫

). (15)

Claim: For each time instant t ∈ span(J), let Gt := {J ∈
J : t − d < I(J)+ ≤ t} be the set of jobs ending in the period
(t − d, t]. We have

∑
J∈J (t) r̃(J (t), J) +

∑
J∈Gt

r̃2(J, t) ≥∑
J∈J (t)∪H(t) r̃(J (t) ∪H(t), J).

Proof of Claim. By definition, Gt consists of all the jobs
whose d extensions to right cover time t. Since H = {Fd(J) :
J ∈ J } where Fd(J) is the d extension of job J , the active
jobs in H at time t are exactly the d extensions of the jobs in
Gt, i.e., H(t) = {Fd(J) : J ∈ Gt}, Hence, Fd is actually a 1-1
correspondence between Gt andH(t) such that s(J) = s(Fd(J))
for each job J ∈ Gt. Note that for the definition r̃, only the job
size matters while the job’s active interval does not. Therefore, we
have

r̃(J (t) ∪H(t), J) = r̃(J (t) ∪ Gt, J) for each job J ∈ J (t),

and

r̃(J (t) ∪H(t), Fd(J)) = r̃(J (t) ∪ Gt, J) for each job J ∈ Gt.

By Theorem 5.8 (monotonic property), J (t) ⊂ J (t) ∪ Gt
implies that for each job J ∈ J (t), r̃(J (t), J) ≥ r̃(J (t) ∪
Gt, J). It remains to show that for each job J ∈ Gt, r̃2(J, t) ≥
r̃(J (t) ∪ Gt, J).

Take any job J ∈ Gt. Let τ := t−I(J)+

d len(J) + I(J)−.
We first show that t − d ≤ τ < t. Clearly, since t − d <

I(J)+ ≤ t, we have t−I(J)+

d < 1 and hence τ < I(J)+ ≤ t.
It remains to show that t − τ ≤ d. Consider the function
f(x) := t −

(
t−I(J)+

d x+ I(J)+ − x
)

. Since 1 − t−I(J)+

d =
d+I(J)+−t

d > 0, the function f(x) is increasing with x. Thus,
t− τ = f(len(J)) ≤ f(d) = d, since len(J) ≤ µ ≤ d.

We then show that J (τ) ⊂ J (t) ∪ Gt. Each job Ĵ ∈ J (τ)
is active at τ . If Ĵ is also active at t, then Ĵ ∈ J (t). If Ĵ is not
active at t, it must end in the period (τ, t], i.e., τ < I(Ĵ)+ ≤ t. It
follows from t− d ≤ τ that t− d < I(Ĵ)+ ≤ t. Hence, Ĵ ∈ Gt.
Therefore, J (τ) ⊂ J (t) ∪ Gt.

Note that J ∈ Gt indicates t − d < I(J)+ ≤ t, which
implies that I(J)− ≤ τ < I(J)+. Thus, J ∈ J (τ) ⊂ J (t) ∪
Gt. By Theorem 5.8 (monotonic property), we have r̃2(J, t) =
r̃1(J, τ) = r̃(J (τ), J) ≥ r̃(J (t) ∪ Gt, J). End of Claim

It follows that∫
t∈ span(J)

∑
J∈J (t)∪H(t)

r̃(J (t) ∪H(t), J) dt

≤
∫
t∈ span(J)

∑
J∈J (t)

r̃(J (t), J) dt

+

∫
t∈span(J)

∑
J∈Gt

r̃2(J, t) dt (by the above Claim)

=

∫
t∈ span(J)

∑
J∈J (t)

r̃(J (t), J) dt

+
∑
J∈J

(∫
t∈[I(J)+,I(J)++d)∩ span(J)

r̃2(J, t) dt

)

(by swapping
∫

and
∑

)

≤ (d+ 1) ·
∫
t∈ span(J)

∑
J∈J (t)

r̃(J (t), J) dt (by equation (15)).

Eventually, by Theorem 5.6, we have∫
t∈span(J)

OPT1(J (t) ∪H(t)) dt

≤ b

b− 1
·
∫
t∈span(J)

∑
J∈J (t)∪H(t)

r̃(J (t) ∪H(t), J) dt

16

≤ b

b− 1
(d+ 1) ·

∫
t∈span(J)

∑
J∈J (t)

r̃(J (t), J) dt

≤ 2b

b− 1
(d+ 1) ·

∫
t∈span(J)

OPT1(J (t)) dt.

6 CONCLUDING REMARKS

We have studied the general problem of busy-time scheduling
on heterogeneous machines. An O(1)-approximation offline algo-
rithm and an O(µ)-competitive non-clairvoyant online algorithm
have been developed for any sets of jobs and machine types. One
future direction is to investigate or improve the tightness of the
approximation ratio in the offline setting. Another direction is
to study the problem in the clairvoyant online setting where the
length of a job is revealed when it is released.

ACKNOWLEDGMENTS

This research is supported by the Ministry of Education, Singa-
pore, under its Academic Research Fund Tier 2 (Award MOE-
T2EP20121-0005) and Academic Research Fund Tier 1 (Award
RG112/19).

REFERENCES

[1] S. Albers. Energy-efficient algorithms. Communications of the ACM,
53(5):86–96, 2010.

[2] M. Alicherry and R. Bhatia. Line system design and a generalized col-
oring problem. In Proceedings of the 11th Annual European Symposium
on Algorithms (ESA), pages 19–30, 2003.

[3] Amazon. Amazon EC2, http://aws.amazon.com/ec2/, 2021.
[4] Y. Azar and D. Vainstein. Tight bounds for clairvoyant dynamic bin

packing. In Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 77–86, 2017.

[5] A. Borodin and R. El-Yaniv. Online Computation and Competitive
Analysis, volume 53. Cambridge University Press Cambridge, 1998.

[6] N. Buchbinder, Y. Fairstein, K. Mellou, I. Menache, and J. S. Naor.
Online virtual machine allocation with lifetime and load predictions.
In ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), 2021.

[7] J. Chang, S. Khuller, and K. Mukherjee. LP rounding and combinatorial
algorithms for minimizing active and busy time. Journal of Scheduling,
20(6):657–680, 2017.

[8] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom,
T. Tamir, and S. Zaks. Minimizing total busy time in parallel scheduling
with application to optical networks. Theoretical Computer Science,
411(40-42):3553–3562, 2010.

[9] Google. Google Cloud, https://cloud.google.com/, 2021.
[10] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Real-time

scheduling to minimize machine busy times. Journal of Scheduling,
18(6):561–573, 2015.

[11] V. Kumar and A. Rudra. Approximation algorithms for wavelength
assignment. In Proceedings of the 25th International Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 152–163, 2005.

[12] Y. Li, X. Tang, and W. Cai. On dynamic bin packing for resource
allocation in the cloud. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 2–11, 2014.

[13] Y. Li, X. Tang, and W. Cai. Dynamic bin packing for on-demand
cloud resource allocation. IEEE Transactions on Parallel and Distributed
Systems, 27(1):157–170, 2016.

[14] M. Liu and X. Tang. Analysis of busy-time scheduling on heterogeneous
machines. In Proceedings of the 33rd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 340–350, 2021.

[15] G. B. Mertzios, M. Shalom, A. Voloshin, P. W. Wong, and S. Zaks.
Optimizing busy time on parallel machines. Theoretical Computer
Science, 562:524–541, 2015.

[16] Microsoft. Microsoft Azure, https://azure.microsoft.com/, 2021.

[17] R. Ren and X. Tang. Clairvoyant dynamic bin packing for job scheduling
with minimum server usage time. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 227–237, 2016.

[18] R. Ren and X. Tang. Busy-time scheduling on heterogeneous machines.
In Proceedings of the 34th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 306–315, 2020.

[19] R. Ren, X. Tang, Y. Li, and W. Cai. Competitiveness of dynamic bin
packing for online cloud server allocation. IEEE/ACM Transactions on
Networking, 25(3):1324–1331, 2017.

[20] R. Ren, Y. Zhu, C. Li, and X. Tang. Interval job scheduling with machine
launch cost. IEEE Transactions on Parallel and Distributed Systems,
31(12):2776–2788, 2020.

[21] M. Shalom, A. Voloshin, P. W. Wong, F. C. Yung, and S. Zaks. Online
optimization of busy time on parallel machines. Theoretical Computer
Science, 560:190–206, 2014.

[22] M. M. Tan, R. Ren, and X. Tang. Cloud scheduling with discrete
charging units. IEEE Transactions on Parallel and Distributed Systems,
30(7):1541–1551, 2019.

[23] X. Tang, Y. Li, R. Ren, and W. Cai. On first fit bin packing for online
cloud server allocation. In Proceedings of the 30th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 323–
332, 2016.

[24] V. V. Vazirani. Approximation Algorithms. Springer Science & Business
Media, 2013.

[25] P. Winkler and L. Zhang. Wavelength assignment and generalized
interval graph coloring. In Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 830–831, 2003.

PLACE
PHOTO
HERE

Mozhengfu Liu received the BSc degree in ap-
plied mathematics from National University of
Singapore in 2019. He is currently a research
assistant in the School of Computer Science and
Engineering at Nanyang Technological Univer-
sity, Singapore. His research interests include
approximation algorithms and online algorithms.

PLACE
PHOTO
HERE

Xueyan Tang received the BEng degree in com-
puter science and engineering from Shanghai
Jiao Tong University in 1998, and the PhD de-
gree in computer science from the Hong Kong
University of Science and Technology in 2003.
He is currently an associate professor in the
School of Computer Science and Engineering
at Nanyang Technological University, Singapore.
His research interests include distributed sys-
tems, cloud computing, mobile and pervasive
computing. He has served as an associate ed-

itor of IEEE Transactions on Parallel and Distributed Systems, and a
program co-chair of IEEE ICPADS 2012, CloudCom 2014 and ICDCS
2020. He is now serving as an associate editor of IEEE Transactions on
Cloud Computing. He is a senior member of the IEEE.

17

APPENDIX A
PROOF OF THEOREM 5.3
Lemma A.1. For each machine type z ∈M and each time instant
t ∈ span(J), we have

∑
i∈A(z)\{z} N(i, t) · ri < rz .

Proof. By the definition of ALGonline (lines 6-7), the claim holds
obviously for any time instant t when a machine of any type i ∈
A(z) \ {z} is opened. For any other time instant t′, the total cost
rate of the open machines of types A(z)\{z} cannot exceed that at
the immediate previous time instant t when a machine of any type
i ∈ A(z)\{z} is opened. Hence, we have

∑
i∈A(z)\{z} N(i, t′) ·

ri ≤
∑

i∈A(z)\{z} N(i, t) · ri < rz .

Lemma A.2. Suppose a0, a1, a2, . . . is a sequence of integers such
that each an ∈ {0, 1, 2} and an = 2 only if an+1 = 0. We have∑

n=0,1,2,...
an

bn ≤
∑

n=0,2,4,...
2
bn = 2b2

b2−1 where b > 1 is a
constant.

Proof.∑
n=0,1,...

an
bn
≤

∑
n=0,1,... s.t. an≤1

1

bn

+
∑

n=0,1,... s.t. an=2

(
1

bn
+

1

bn+1
+

(
1

bn
− 1

bn+1

))
≤

∑
n=0,1,...

1

bn
+

∑
n=0,1,... s.t. an=2

(
1

bn
− 1

bn+1

)
.

Note that for each two distinct indices n1 and n2 such
that an1

= an2
= 2, we have |n1 − n2| ≥ 2. Thus,

the term
∑

n=0,1,... s.t. an=2

(
1
bn −

1
bn+1

)
must be bounded by∑

n=0,2,4,...

(
1
bn −

1
bn+1

)
because 1

bn −
1

bn+1 decreases with
increasing n. Therefore,∑

n=0,1,...

an
bn
≤

∑
n=0,1,...

1

bn
+

∑
n=0,2,4,...

(
1

bn
− 1

bn+1

)

=
∑

n=0,2,4,...

2

bn
=

2

1− 1
b2

=
2b2

b2 − 1
.

Proof of Theorem 5.3. Let kon be the highest-indexed machine
type used by ALGonline at time t. Let w∗ be an optimal machine
configuration for one-shot scheduling of J (t) ∪ R(t), which is
chosen by Theorem 3.1. Let kopt := max{z : w∗(z) > 0}
be the highest-indexed machine type used by w∗. Recall that
Hz = {J ∈ J (t) ∪ R(t) : m(J) ∈ A(z)} denotes the set
of jobs in J (t) ∪R(t) whose exact machine types are in the tree
rooted at z.

Case 1: kopt ≥ kon.
Observe that {1, 2, . . . , kon} ⊂ {1, 2, . . . , kopt} =

∪z∈T (kopt)A(z) by Proposition 3.1.5. So, we have

OPT1(J (t) ∪R(t))
≥

∑
z∈T (kopt)

S(Hz) ·
rz
gz

(by Proposition 3.2.4)

≥
∑

z∈T (kopt)∧N(z,t)>1

(N(z, t)− 1) · rz (by Lemma 5.1).(16)

Consequently,

kon∑
z=1

N(z, t) · rz =
∑

z∈T (kopt)

∑
i∈A(z)

N(i, t) · ri

=
∑

z∈T (kopt)

N(z, t) · rz +
∑

z∈T (kopt)

∑
i∈A(z)\{z}

N(i, t) · ri

≤
∑

z∈T (kopt)∧N(z,t)>1

(N(z, t)− 1) · rz +
∑

z∈T (kopt)

rz

+
∑

z∈T (kopt)∧A(z)\{z}̸=∅

rz (by Lemma A.1)

≤ OPT1(J (t) ∪R(t)) +
∑

z∈T (kopt)∧A(z)\{z}̸=∅

2 · rz

+
∑

z∈T (kopt)∧A(z)\{z}=∅

rz (by equation (16)). (17)

Since the cost rate of each machine type is a power of b > 1,
for each z ∈ T (kopt), rz = 1

bn · rkopt for some non-negative
integer n. Denote by an the coefficient of 1

bn · rkopt in the
sum

∑
z∈T (kopt)∧A(z)\{z}̸=∅ 2 ·rz+

∑
z∈T (kopt)∧A(z)\{z}=∅ rz .

Observe that each an ∈ {0, 1, 2} and an = 2 only if an+1 = 0.
Thus, by Lemma A.2, we have

∑
z∈T (kopt)∧A(z)\{z}̸=∅ 2 · rz +∑

z∈T (kopt)∧A(z)\{z}=∅ rz ≤ 2b2

b2−1 · rkopt . Furthermore, by
Proposition 3.2.4, rkopt

is a lower bound of OPT1(J (t)∪R(t)).
Therefore, it follows from equation (17) that

kon∑
z=1

N(z, t) · rz≤
(
1 +

2b2

b2 − 1

)
·OPT1(J (t) ∪R(t))

=
3b2 − 1

b2 − 1
·OPT1(J (t) ∪R(t)).

Case 2: kopt < kon.
First, we show that N(kon, t) = 1. In fact, if N(kon, t) ≥ 2,

by Lemma 5.1, we have S(Hkon) > (N(kon, t) − 1) · gkon ≥
gkon , which contradicts to Proposition 3.2.3.

Furthermore, since kopt < kon, the exact machine types of
all the jobs in J (t) must be lower than kon. Take any active job
Ĵ in type-kon machines at time t. Since Ĵ ∈ J (t), we have
m(Ĵ) ∈ A(f1) for some type f1 ∈ f(kon) (see Figure 9). When
scheduling Ĵ , ALGonline checks if Ĵ should be scheduled into
machine type f1 before considering type kon. Since Ĵ is rejected
by type f1, by the definition of ALGonline, we know that at
Ĵ ’s start time I(Ĵ)−, no open type-f1 machine can accommodate
Ĵ (lines 3-5); and one of the following conditions must hold to
prevent opening a new type-f1 machine (lines 6-8):

(i)
∑

z∈A(kon)\{kon} N(z, I(Ĵ)−) · rz + rf1 ≥ rkon
.

(ii) There exists some type k△ ∈ P (kon) \ {kon} such that∑
z∈A(k△)\{k△,kon} N(z, I(Ĵ)−)·rz+nkon ·rkon+rf1 ≥ rk△ ,

where nkon represents the number of type-kon machines being
open immediately before Ĵ is scheduled. Note that nkon

=
N(kon, I(Ĵ)

−) if Ĵ is scheduled into an open type-kon machine;
and nkon

= N(kon, I(Ĵ)
−) − 1 if Ĵ is scheduled into a new

type-kon machine. However, the latter case cannot happen. If
the latter case happens, we have

∑
z∈A(k△)\{k△} N(z, I(Ĵ)−) ·

rz − rkon
+ rf1 ≥ rk△ . Since rkon

> rf1 , it follows that∑
z∈A(k△)\{k△} N(z, I(Ĵ)−) · rz ≥ rk△ , which contradicts to

the definition of ALGonline (line 6).
Therefore, to summarize (i) and (ii), there exists some type

k△ ∈ P (kon) such that∑
z∈A(k△)\{k△}

N(z, I(Ĵ)−) · rz + rf1 ≥ rk△ . (18)

18

k4

kon

m(Ĵ)

· · ·

· · ·

· · ·

· · · · · ·

kopt

f1

f(k4) :

f(kon) :

· · · x

x

y

y

: y ∈ P (x)

: y = p(x)

: T (k4) \ {k4}
: T (kopt) ∩ A(k4)

Fig. 9. A diagram illustration for Case 2 in Theorem 5.3

By the definition of ALGonline, Hkon is nonempty. As
illustrated in Figure 9,4 since kopt < kon ≤ k△, kopt must be in
A(kon) \ {kon} and thus in A(k△) \ {k△}. As a result, T (kopt)
can be partitioned into T (kopt) ∩ A(k△) and T (k△) \ {k△}
(see the black nodes and the grey nodes in Figure 9 respectively).
Therefore, we have

OPT1(J (t) ∪R(t))
≥

∑
z∈T (kopt)

S(Hz) ·
rz
gz

(by Proposition 3.2.4)

=
∑

z∈T (kopt)∩A(k△)

S(Hz) ·
rz
gz

+
∑

z∈T (k△)\{k△}

S(Hz) ·
rz
gz

.(19)

Since kopt < k△, all the jobs in J (t) ∪ R(t) have exact
machine types lower than k△. Thus, Hk△ can be partitioned into
{Hx : x ∈ f(k△)}. In addition, {Hx : x ∈ f(k△)} can be
further partitioned into {Hz : z ∈ T (kopt) ∩ A(k△)}. Each
machine type z ∈ T (kopt) ∩ A(k△) must be in the tree rooted
at some type x ∈ f(k△) and hence type z has a normalized cost
rate no less than type x. Therefore, we have∑

z∈T (kopt)∩A(k△)

S(Hz) ·
rz
gz
≥

∑
x∈f(k△)

S(Hx) ·
rx
gx

.

It follows from equation (19) that

OPT1(J (t) ∪R(t))
≥

∑
x∈f(k△)

S(Hx) ·
rx
gx

+
∑

z∈T (k△)\{k△}

S(Hz) ·
rz
gz

≥
∑

x∈f(k△)∧N(x,I(Ĵ)−)>1

S(Hx) ·
rx
gx

+
∑

z∈T (k△)∧N(z,t)>1

S(Hz) ·
rz
gz

≥
∑

x∈f(k△)∧N(x,I(Ĵ)−)>1

(N(x, I(Ĵ)−)− 1) · rx

+
∑

z∈T (k△)∧N(z,t)>1

(N(z, t)− 1) · rz

(by Lemmas 5.2 and 5.1). (20)

4. In Figure 9, k△ is deliberately made to be the parent node of kon for the
illustration purpose, but k△ can be any node in P (kon) in general. The same
for f1 and kopt. In general, either of f1 ≤ kopt or f1 > kopt can happen.
f1 > kopt happens when m(Ĵ) ∈ A(kopt) and kopt ∈ A(f1).

For the first item on the right-hand side of (20), equation (18)
implies that ∑

x∈f(k△)∧N(x,I(Ĵ)−)>1

(N(x, I(Ĵ)−)− 1) · rx

≥ rk△ − rf1 −
∑

x∈f(k△)

rx +
∑

z∈A(x)\{x}

N(z, I(Ĵ)−) · rz


≥ rk△ − rf1 −

 ∑
x∈f(k△)

rx +
∑

x∈f(k△)∧A(x)\{x}̸=∅

rx


(by Lemma A.1)

= rk△ − rf1 −

 ∑
x∈f(k△)∧A(x)\{x}̸=∅

2 · rx +
∑

x∈f(k△)∧A(x)\{x}=∅

rx

 .

Since f1 ∈ f(kon) and k△ ∈ P (kon), we have rf1 ≤ 1
b · rk△ .

Likewise, for each x ∈ f(k△), we have rx ≤ 1
b ·rk△ . Then, sim-

ilar to the discussion in Case 1, by Lemma A.2, we can bound the
term

∑
x∈f(k△)∧A(x)\{x}≠∅ 2 · rx +

∑
x∈f(k△)∧A(x)\{x}=∅ rx

by 2b2

b2−1 ·
1
b ·rk△ = 2b

b2−1 ·rk△ . Therefore, following the previous
equation, ∑

x∈f(k△)∧N(x,I(Ĵ)−)>1

(N(x, I(Ĵ)−)− 1) · rx

≥
(
1− 1

b
− 2b

b2 − 1

)
· rk△ =

b3 − 3b2 − b+ 1

b3 − b
· rk△ . (21)

Thus, by equations (20) and (21),

OPT1(J (t) ∪R(t))

≥ b3 − 3b2 − b+ 1

b3 − b
· rk△ +

∑
z∈T (k△)∧N(z,t)>1

(N(z, t)− 1) · rz.

(22)

Eventually, we have

kon∑
z=1

N(z, t) · rz =
k△∑
z=1

N(z, t) · rz

=
∑

z∈T (k△)

N(z, t) · rz +
∑

z∈T (k△)

∑
i∈A(z)\{z}

N(i, t) · ri

≤
∑

z∈T (k△)∧N(z,t)>1

(N(z, t)− 1) · rz +
∑

z∈T (k△)

rz

+
∑

z∈T (k△)∧A(z)\{z}≠∅

rz (by Lemma A.1)

=
∑

z∈T (k△)∧N(z,t)>1

(N(z, t)− 1) · rz +
∑

z∈T (k△)∧A(z)\{z}̸=∅

2 · rz

+
∑

z∈T (k△)∧A(z)\{z}=∅

rz.

By Lemma A.2, we have
∑

z∈T (k△)∧A(z)\{z}̸=∅ 2 · rz +∑
z∈T (k△)∧A(z)\{z}=∅ rz ≤ 2b2

b2−1 · rk△ . Therefore, following
the previous equation, when b3 − 3b2 − b+ 1 > 0, we have

kon∑
z=1

N(z, t) · rz

≤
∑

z∈T (k△)∧N(z,t)>1

(N(z, t)− 1) · rz +
2b2

b2 − 1
· rk△

19

≤
2b2

b2−1
b3−3b2−b+1

b3−b

·OPT1(J (t) ∪R(t)) (by equation (22)).

In summary of Cases 1 and 2,
∑kon

z=1 N(z, t) · rz ≤
max

{
3b2−1
b2−1 , 2b3

b3−3b2−b+1

}
·OPT1(J (t) ∪R(t)).

APPENDIX B
PROOF OF LEMMA 5.7
Before proving Lemma 5.7, we consider the following problem
first. Given the highest-indexed machine type used k, how to
compute the best machine configuration for the optimization
problem (2)-(5)? By Proposition 3.2.1, all the machine types used
by the best machine configuration are from T (k). Let Hz denote
the set of jobs whose exact machine types are in the tree rooted at
type z. By Proposition 3.1.5, {Hz : z ∈ T (k)} is a partitioning
of all the jobs J 1d. If there was no constraint that at least one
type-k machine must be used, for each type z ∈ T (k), all the
jobs in Hz should be accommodated by type-z machines since z
is the type with the lowest cost-per-capacity rate among all the
machine types that can accommodate these jobs and have indexes
not exceeding k. Due to the constraint that at least one type-k
machine must be used, if S(Hk) < gk, some jobs from other
Hz’s where z ∈ T (k)\{k} will have to be accommodated by the
only type-k machine used. To optimize the total cost, these jobs
should be selected from the Hz’s with the highest indexes z, since
the cost-per-capacity rates of the machine types in T (k) \ {k} is
non-decreasing with indexes (Proposition 3.1.4). We refer to the
jobs accommodated by the type-k machine (including those from
Hz’s where z ∈ T (k)\{k}) as the upgraded part U , and the jobs
accommodated by the type-z machines where z ∈ T (k) \ {k} as
the non-upgraded part V . Note that jobs are considered divisible
along the size dimension in such partitioning. There may be a job
crossing the upgraded and non-upgraded parts, i.e., a portion of
this job is in the upgraded part while the remaining portion is in
the non-upgraded part. Let S(U) and S(V) denote the total size of
the jobs in U and V respectively. By definition, we have Hk ⊂ U
and S(U) ≤ gk. We refer to the highest-indexed machine type
among the exact machine types of all the jobs in the non-upgraded
part V as the boundary machine type zb (clearly zb < k). In the
case that V = ∅, we define zb = 0.

If a new job J0 (whose exact machine type m(J0) is lower
than or equal to k) is added to the job set J 1d, U and V as
well as the cost of the best machine configuration will change. Let
z0 ∈ T (k) be the index such that the exact machine type m(J0)
is in the tree rooted at type z0. It is easy to observe that:

(i) If S(Hk) ≥ gk, J0 is always accommodated by type-z0
machines. Hence, the cost increase is s(J0) ·

rz0
gz0

.
(ii) If S(Hk) < gk and z0 ≤ zb, J0 is added to the non-

upgraded part V and accommodated by type-z0 machines. Hence,
the cost increase is s(J0) ·

rz0
gz0

.
(iii) If S(Hk) < gk and zb < z0 < k, J0 is added to the

upgraded part U . This may result in the total size of the upgraded
part U exceeding the capacity gk of the type-k machine. Thus, an
amount of job size max{S(U) + s(J0) − gk, 0} will be moved
from the upgraded part U to the non-upgraded part V . Since the
cost of the upgraded part U does not change (which equals rk),
the cost increase is given by the cost of the moved portion after
the movement. Note that the size of the moved portion is bounded
by s(J0) because S(U) ≤ gk. Hence, the moved portion will be

accommodated by machine types from T (k) that are no higher
than z0, which have normalized cost rates at most rz0

gz0
. Therefore,

the cost increase is bounded by s(J0) ·
rz0
gz0

.
(iv) If S(Hk) < gk and zb < z0 = k, J0 is added to the

upgraded part U . If S(Hk) + s(J0) ≤ gk, the number of type-
k machines used remains at 1. Same as the above case (iii), an
amount of job size max{S(U) + s(J0) − gk, 0} will be moved
from the upgraded part U to the non-upgraded part V and the cost
increase is bounded by s(J0) ·

rz0
gz0

= s(J0) · rkgk .
(v) If S(Hk) < gk, zb < z0 = k and S(Hk) + s(J0) >

gk, the number of type-k machines used will be increased to
S(Hk)+s(J0)

gk
. Only the jobs in the upgraded part U that are from

Hz’s where z ∈ T (k) \ {k} will be moved to the non-upgraded
part V . Thus, the amount of job size moved from U to V is
S(U) − S(Hk). The cost increase is given by the cost of the
moved portion after the movement plus the cost of the additional
type-k machines. The former is bounded by (S(U)− S(Hk))· rkgk
(since the moved portion will be accommodated by machine
types with normalized cost rates at most rz0

gz0
= rk

gk
), while

the latter is
(
S(Hk)+s(J0)

gk
− 1
)
· rk. Thus, the cost increase

is bounded by (S(U)− S(Hk)) · rk
gk

+
(
S(Hk)+s(J0)

gk
− 1
)
·

rk = (S(U) + s(J0)− gk) · rk
gk
≤ s(J0) · rk

gk
= s(J0) ·

rz0
gz0

. Alternatively, we can also conceptually consider the part
of J0 accommodated by the additional type-k machines, i.e.,
S(Hk) + s(J0)− gk, as being “moved” to machine type z0 = k.
Then, the collective “moved” amount is (S(U)− S(Hk)) +
(S(Hk) + s(J0)− gk) = S(U)+ s(J0)− gk. In this way, cases
(iii), (iv) and (v) can be unified as moving an amount of job size
max{S(U) + s(J0) − gk, 0} to machine types with normalized
cost rates at most rz0

gz0
and the cost increase is given by the cost of

the moved portion after the movement.
(vi) In summary of all the cases above, the cost increase is

bounded by s(J0) ·
rz0
gz0

.

Proof of Lemma 5.7. It suffices to prove the special case of the
lemma in which Y \ X is a singleton, say J0. Denote by k1
the highest-indexed machine type used by the modified machine
configuration for X . Denote by k2 the highest-indexed machine
type used by the modified machine configuration for Y = X ∪
{J0}. Obviously, m(J0) ≤ k2. If m(J0) ≥ k1, we immediately
have k2 ≥ m(J0) ≥ k1. Thus, to show that k2 ≥ k1, it suffices
to consider the case when m(J0) < k1.

By Theorem 3.1, k1 is in P (k0) where k0 := max{m(J) :
J ∈ X} is the highest-indexed exact machine type among all
the jobs in X . If m(J0) ≤ k0, k2 is also in P (k0). On the
other hand, if m(J0) > k0, k2 is in P (m(J0)). Since k0 <
m(J0) < k1 and k0 is in the tree rooted at k1, by Proposition
3.1.3, m(J0) is also in the tree rooted at k1. Thus, k1 is also in
P (m(J0)). In summary, k1 and k2 are either both in P (k0) or
both in P (m(J0)). Therefore, either k1 = k2 or one of them is
an ancestor of the other in the cost-per-capacity graph.

We prove k2 ≥ k1 by contradiction. Let w1 be the optimal
machine configuration for jobs X , in which the highest-indexed
machine type used is k1; and w′

1 be the best machine configuration
for jobs X ∪ {J0}, assuming the highest-indexed machine type
used is k1. Let w2 be the best machine configuration for jobs X ,
assuming the highest-indexed machine type used is k2; and w′

2 be
the optimal machine configuration for jobs X ∪ {J0}, in which
the highest-indexed machine type used is k2.

20

If k1 > k2, we are to prove that the cost difference between
w1 and w′

1 is no more than the cost difference between w2 and
w′

2. As a result, the cost of the machine configuration w′
1 is lower

than or equal to the cost of the optimal machine configuration
w′

2 for scheduling jobs X ∪ {J0}, and hence w′
1 is optimal. This

contradicts to the choice of the highest-indexed machine type k2
used by the modified machine configuration for jobs X ∪ {J0},
which is defined to be the highest among the highest-indexed
machine types of all the optimal machine configurations for jobs
X ∪ {J0}.

Let z2 ∈ T (k2) be the index such that the exact machine type
m(J0) is in the tree rooted at type z2, and let z1 ∈ T (k1) be the
index such that the exact machine type m(J0) is in the tree rooted
at type z1. Note that k1 > k2 implies that k1 is an ancestor of k2
in the cost-per-capacity graph. Thus, we have either z2 = z1 < k1
(if m(J0) /∈ A(k1)) or z2 < z1 = k1 (if m(J0) ∈ A(k1)). In
either case, it holds that rz1

gz1
≤ rz2

gz2
.

Let Hk2
denote the set of jobs inX whose exact machine types

are in the tree rooted at type k2. If S(Hk2
) ≥ gk2

, by observation
(i) above, the cost difference between w2 and w′

2 is s(J0) ·
rz2
gz2

.
On the other hand, by observation (vi) above, the cost difference
between w1 and w′

1 is at most s(J0) ·
rz1
gz1
≤ s(J0) ·

rz2
gz2

.
If S(Hk2

) < gk2
, since k1 ∈ P (k2) \ {k2}, we must have

S(Hk1
) < gk1

by Proposition 3.2.3, where Hk1
denotes the set of

jobs in X whose exact machine types are in the tree rooted at type
k1. Let U1 and V1 be the upgraded and non-upgraded parts of w1,
and let U2 and V2 be the upgraded and non-upgraded parts of w2.
It must hold that the upgraded part U1 has a total size no less than
the upgraded part U2, i.e., S(U1) ≥ S(U2), because gk1

> gk2
.

This implies that the boundary machine type zb1 of w1 is no
higher than the boundary machine type zb2 of w2, i.e., zb1 ≤ zb2 .
If z2 ≤ zb2 , by observation (ii) above, the cost difference between
w2 and w′

2 is s(J0) ·
rz2
gz2

, and by observation (vi) above, the cost

difference between w1 and w′
1 is at most s(J0)·

rz1
gz1
≤ s(J0)·

rz2
gz2

.
If zb2 < z2, we have zb1 ≤ zb2 < z2 ≤ z1. By observations (iii),
(iv) and (v) above, J0 is added to U1 and U2 of w1 and w2

respectively, while an amount of job size max{S(U1) + s(J0)−
gk1

, 0} and max{S(U2) + S(J0) − gk2
, 0} needs to be moved

from U1 to V1 and from U2 to V2 respectively. Thus, the cost
difference between w1 and w′

1 (and between w2 and w′
2) is the

total cost of the moved portion after the movement. It is easy to see
that the moved portions satisfy max{S(U1)+ s(J0)− gk1

, 0} ≤
max{S(U2) + s(J0) − gk2

, 0}. In fact, if S(U2) < gk2
, we

must have S(U2) = S(X) = S(U1) and the claim follows from
gk1

> gk2
. On the other hand, if S(U2) = gk2

, the claim follows
from max{S(U1) + s(J0)− gk1

, 0} ≤ s(J0) = max{S(U2) +
s(J0)−gk2

, 0}. Moreover, since zb1 ≤ zb2 , each unit moved from
U1 to V1 must be moved to a machine type indexed no higher than
that of each unit moved from U2 to V2, so the former must have
a cost-per-capacity rate no higher than the latter. Hence, the cost
increase from w1 to w′

1 must be no more than the cost increase
from w2 to w′

2.

