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Interval Job Scheduling with Machine
Launch Cost

Runtian Ren, Yuqing Zhu, Chuanyou Li and Xueyan Tang

Abstract—We study an interval job scheduling problem in distributed systems. We are given a set of interval jobs, with each job specified
by a size, an arrival time and a processing length. Once a job arrives, it must be placed on a machine immediately and run for a period
of its processing length without interruption. The homogeneous machines to run jobs have the same capacity limits such that at any
time, the total size of the jobs running on any machine cannot exceed its capacity. Launching each machine incurs a fixed cost. After
launch, a machine is charged a constant cost per time unit until it is terminated. The problem targets to minimize the total cost incurred
by the machines for processing the given set of interval jobs. We focus on the algorithmic aspects of the problem in this paper. For the
special case where all the jobs have a unit size equal to the machine capacity, we propose an optimal offline algorithm and an optimal
2-competitive online algorithm. For the general case where jobs can have arbitrary sizes, we establish a non-trivial lower bound on the
optimal solution. Based on this lower bound, we propose a 5-approximation algorithm in the offline setting. In the non-clairvoyant online
setting, we design a O(µ)-competitive Modified First-Fit algorithm which is near optimal (µ is the max/min job processing length ratio).
In the clairvoyant online setting, we propose an asymptotically optimal O(

√
log µ)-competitive algorithm based on our Modified First-Fit

strategy.

Index Terms—Job Scheduling; Online Algorithm; Approximation Algorithm.
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1 INTRODUCTION

In this paper, we study an Interval Job Scheduling with
Machine Launch Cost problem (abbreviated as ISL) defined
as follows. The input is a set of interval jobs, with each
job specified by a size and an active interval delimited by
its arrival and departure times. Homogeneous machines
of uniform capacity are available to process jobs.1 Each
job must be placed onto a machine to run over its active
interval without interruption. At any time, the total size of
the active jobs placed on any machine cannot exceed the
machine capacity. Suppose a machine M is launched at time
t1 and terminated at time t2 for running a subset of the
jobs. Then, the cost for using this machine is C + (t2 − t1),
where a cost C is incurred for launching M at time t1 and
a constant cost rate 1 is incurred for running M throughout
the period [t1, t2). The target of ISL is to minimize the total
cost incurred for processing all the jobs.

Our ISL problem can model several practical scenarios
in energy-efficient computing and cloud computing.
Energy-efficient computing: Energy management in com-
puting servers of data centers is a key issue faced by
industries. It is observed that up to 50% budget of a data
center is invested on the electricity costs consumed by the
servers, and about 1.5% of the total electricity worldwide
is used by data centers nowadays [29]. Energy-efficient
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1. The capacity of a machine refers to its capacity of computing
resources such as CPU cores or time shares. The size of a job refers to
its demand for computing resources such as CPU cores or time shares.

scheduling focuses on minimizing the energy consumed by
a cluster of servers for supporting service level agreements
[30]. A service level agreement is a commitment between
service providers and customers, which includes service
parameters such as the demand for computing resource
and the usage period. Generally, the request of a customer
can be modeled by a job specified by a size (e.g., the
number of virtual machines to rent) and an active interval
(i.e., a fixed period for renting the computing resources).
For processing jobs, a typical computing server’s energy
consumption model is as follows. On one hand, according
to [16], [24], [27], when a server is “on”, its power usage
rate at any time is a constant, regardless of the total size
of the jobs running concurrently on the server; when a
server is “off”, its power usage rate is 0. On the other hand,
powering a server up and down normally incur inevitable
energy overheads. Let Cup and Cdown denote these energy
overheads. Since each server used must be powered down
eventually, we can assume alternatively an initial energy
overhead C = Cup+Cdown for powering a server up and
no energy overhead for powering a server down. Without
loss of generality, by assuming that the power usage rate is
1 when a server is “on”, the energy consumption of a server
for being “on” for a duration l becomes C+ l. Note that
a server can serve several requests concurrently as long as
their aggregate size does not exceed the server’s capacity. In
this way, how to assign the customer requests onto servers
such that the total energy consumption is minimized can be
modeled by our ISL problem.
Cloud computing: A cloud service customer may rent vir-
tual machines from cloud service providers for processing
jobs and the rental is charged according to “pay-as-you-go”
billing [1]. To launch (terminate) a virtual machine, there
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is generally a constant duration of setup2 (shutdown) until
the virtual machine is ready to process (turned off), which
is also charged to the customer. In other words, each virtual
machine used has a fixed launch cost, and the total cost
paid by the customer includes both launch and running
costs. Note that a virtual machine can run multiple jobs
simultaneously as long as the computing resources required
by the jobs do not exceed the virtual machine’s capacity.
Thus, a good strategy for renting virtual machines and
allocating jobs onto the virtual machines can be useful for
the customers to save their costs. Our ISL problem can be
used to model such an issue as well.

In this paper, we focus on the algorithmic aspects of ISL
and study the problem in the offline, non-clairvoyant online
and clairvoyant online settings. In the offline setting, the
information of all the jobs is known before the scheduling
process. In the online settings, each job must be placed onto
a machine when it arrives without any information of the
jobs arriving in the future. In the non-clairvoyant online
setting, the departure time of a job is not known at its arrival
and thus cannot be used for the scheduling purpose. In
the clairvoyant online setting, the departure time of a job
is known at its arrival and can be used for the scheduling
purpose.

As shall be elaborated in Section 3, our ISL problem
generalizes the MinUsageTime Dynamic Bin Packing (DBP)
problem [21]. By the results of existing studies [6], [21], we
can easily conclude the following:

1. ISL is NP-hard.
2. For ISL in the non-clairvoyant online setting, the com-

petitiveness of any deterministic online algorithm has a
lower bound of Ω(µ).

3. For ISL in the clairvoyant online setting, the compet-
itiveness of any deterministic online algorithm has a
lower bound of Ω(

√
logµ).

Here, µ is the max/min length ratio among the active inter-
vals of all the jobs to schedule. Consequently, the following
three questions arise naturally:

1. Does there exist a O(1)-approximation algorithm for
ISL in the offline setting?

2. Does there exist a O(µ)-competitive algorithm for ISL
in the non-clairvoyant online setting?

3. Does there exist a O(
√

logµ)-competitive algorithm for
ISL in the clairvoyant online setting?

We give an affirmative answer to each question in this paper.
Our main ideas on developing offline and online algo-

rithms for ISL are as follows. First, we consider a special
case where each job to be scheduled has a unit size equal to
the machine capacity (abbreviated as ISL-Unit). We propose
an optimal offline algorithm and an optimal 2-competitive
online algorithm to solve ISL-Unit. Then, we consider ISL in
the general case where each job can have an arbitrary size.
Based on the strategies designed for ISL-Unit, an intuitive
method to deal with a general ISL instance is to schedule
the large jobs J l (of size larger than half the machine
capacity) and the small jobs J s (of size at most half the
machine capacity) separately. This is because no two large
jobs active at the same time can be placed onto the same

2. Empirical studies show that the virtual machine start up time in
the cloud is about several minutes [23].

machine, which suggests that J l can be seen as an ISL-Unit
instance. Consequently, by adopting the ISL-Unit strategies
for J l, the total cost incurred for scheduling J l in the offline
setting is no more than the optimal cost for scheduling J ;
the total cost incurred for scheduling J l in the online setting
is no more than twice the optimal cost for scheduling J .
Then, we only need to focus on scheduling J s. We estab-
lish a non-trivial lower bound on the optimal cost of any
ISL instance. Based on this lower bound and the previous
works on MinUsageTime DBP [6], [25], [26], we propose
a O(1)-approximation algorithm, a O(µ)-competitive non-
clairvoyant algorithm and a O(

√
logµ)-competitive clair-

voyant algorithm to schedule J s in the three settings.
The rest of the paper is organized as follows. In Section

2, we introduce some notations and definitions. In Section
4, we present our optimal offline and online algorithms for
ISL-Unit. In Section 5, we introduce the lower bound on the
optimal cost of any ISL instance. In Sections 6, 7, 8, we study
ISL in the offline, non-clairvoyant online and clairvoyant
online settings respectively. Finally, in Section 9, we briefly
discuss how these results can be improved in the case of
uniform job sizes and introduce some future works.

2 NOTATIONS AND DEFINITIONS

We introduce some key notations used in this paper. For
any time interval I , we use I− and I+ to denote the left
and right endpoints of I respectively. For technical reasons,
we shall view intervals as half-open, i.e., I = [I−, I+). Let
len(I)=I+−I− denote the length of interval I .

As introduced in Section 1, the input to ISL is a set of
interval jobs J and each job J ∈J is specified by a size s(J)
and an active interval I(J) = [I(J)−, I(J)+). I(J)−, I(J)+

and len(I(J)) are known as J ’s arrival time, departure time
and processing length respectively. Given a set of jobs J , we
use s(J, t) to denote the total size of the jobs active at time
t, i.e., s(J, t)=

∑
J∈J :t∈I(J) s(J). Without loss of generality,

we assume that all the machines have the same capacity 1
and each job has a size no larger than 1. Then, at any time,
the total size of the active jobs placed on any machine cannot
exceed 1.

To facilitate reasoning, we shall assume that there is a
sufficiently large pool of machines and that once a machine
used is terminated, the machine is never launched again.
Such an assumption makes sense for our problem since after
a machine used is terminated, it becomes indistinguishable
from any unused machine. If a machine M is launched at
time t1 and terminated at time t2, we say that M is in the
“on” state during the interval [t1, t2) and refer to the interval
as the “on” interval of M . The cost for using this machine
M is C + (t2 − t1), where C is the cost for launching M ,
and t2 − t1 is the cost for keeping M “on” during [t1, t2).
Note that during its “on” interval, M may not always be
processing jobs. When at least one job is running on M , M
is said to be busy; when M is “on” but no job is running
on it, M is said to be idle. If M is busy (idle) throughout an
interval I , then I is referred to as a busy (idle) interval of M .

The target of ISL is to minimize the total cost incurred by
the machines for processing all the jobs. We propose several
offline and online algorithms and study their approximation
and competitive ratios [7], [31], i.e., the worst-case ratio
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between a solution constructed by the algorithm and an
optimal offline solution.

3 RELATED WORK

Our ISL problem generalizes several problems studied in
recent years. Two representative problems are the interval
job scheduling problem with bounded parallelism (ISBP) [3], [8],
[9], [11], [18], [19], [24], [27], [32] and the MinUsageTime
Dynamic Bin Packing (DBP) problem [6], [14], [16], [21], [22],
[25], [26], [28]. Both problems target to minimize the total
usage time of the machines for processing a set of interval
jobs. They can be seen as special cases of our ISL problem by
assuming no initial cost for launching a machine to process
jobs (i.e., C=0). Our ISL problem considers a more general
and practical model for the energy-efficient scheduling and
cloud computing issues.

In the ISBP problem, all the jobs have the same size
equal to a fraction 1

g of the machine capacity, such that
a machine can run at most g (g ≥ 2) jobs concurrently
at any time. Winker and Zhang [32] first proved its NP-
hardness through a reduction from the Circular Arc Col-
oring problem. In the offline setting, Alicherry and Bha-
tia [3] proposed a 2-approximation algorithm through a
network flow formulation. Kumar and Rudra [19] pro-
posed another 2-approximation algorithm based on the 2-
allocation technique introduced by Gergov [12]. Flammini
et al. [11] presented a greedy First-Fit algorithm which
gives a 4-approximation. Chang et al. [9] proposed another
3-approximation algorithm called GreedyTracking. In the
clairvoyant online setting where the departure time of a job
is revealed when it arrives, Shalom et al. [27] established
a tight bound g on the competitiveness of ISBP and also
studied several special cases where better competitiveness
can be achieved.

The MinUsageTime DBP problem generalizes the ISBP
problem by allowing each job to have an arbitrary size. In
the offline setting, Khandekar et al. [16] first proposed a 5-
approximation algorithm. Later, Ren and Tang [25] gave a
4-approximation Dual Coloring algorithm by extending the
algorithm of Kumar and Rudra [19]. In the non-clairvoyant
online setting where the departure time of a job is not
known when it arrives, Li et al. [21] established a lower
bound of µ on the competitiveness of any deterministic
online algorithm, where µ is the max/min length ratio
among the active intervals of all the jobs to schedule. Ren et
al. [26] showed that the First Fit packing algorithm achieves
a competitive ratio of µ+3, which is near optimal. In the
clairvoyant online setting, Azar and Vainstein [6] estab-
lished a lower bound Ω(

√
logµ) on the competitiveness and

proposed a matching O(
√

logµ)-competitive algorithm.
Azar et al. [5] modeled the setup time for booting a

virtual machine and developed bi-objective algorithms to
minimize the maximum delay of job completion and the
total dollar expenditure of job processing in the cloud.
In contrast, we study a unified cost metric that combines
the costs for machines to launch and process jobs. While
the study of [5] was limited to unit-size jobs, each with
a demand equal to the machine capacity, we consider the
general case where each job can have an arbitrary demand
for machine capacity.

Many previous works studied the energy conservation
problems for a limited number of machines with the en-
ergy cost of power-up operations taken into consideration.
Different from such cases, our ISL problem assumes that
an unlimited number of machines are provided for running
jobs. The rationale is that a data center is generally equipped
with sufficiently large number of servers for cloud service
renting, and a customer can also rent an arbitrary number
of virtual machines at the same time for processing jobs.

For the energy conservation problem with a single ma-
chine, a classical optimization problem is to design the
power-down strategy to minimize the energy consumed
during the machine’s idle periods when there is no compu-
tation demand. If the machine has an active state and a sleep
state, such a problem is equivalent to the ski-rental problem,
a famous rent-or-buy problem. Karlin et al. [15] proposed an
optimal 2-competitive deterministic online algorithm and an
improved e

e−1 -competitive randomized online algorithm.
Irani et al. [13] and Augustine et al. [4] studied the power-
down strategies on a single machine with an active state and
several low-power sleep states.

For the energy conservation problem with multiple ma-
chines, Albers [2] studied an offline problem to minimize
the total energy consumption for a group of heterogeneous
machines to satisfy the varying total demand for computing
capacity over time, but the study ignored specific jobs.
Khuller et al. [17], [20] introduced the machine activation
problems, where an activation budget is given for activating
machines. The target is to minimize the makespan for a
batch of jobs on a set of heterogeneous machines. Different
from [17], [20], we focus on minimizing the total launch and
running cost for processing interval jobs.

4 ISL-UNIT

We start by considering a special case of ISL where each job
has a size 1 which is equal to the machine capacity. In this
case, each machine can accommodate at most one job at any
time. We refer to this special case as ISL-Unit. We propose
an optimal algorithm in the offline setting and an optimal
2-competitive algorithm in the online settings based on the
following unified strategy.

Our algorithms work by scheduling jobs in the chrono-
logical order of their arrivals. When a job arrives, if there
exist one or multiple machines whose last job was com-
pleted less than C time units ago, then the incoming job is
placed on the machine whose last job was completed the
latest. Otherwise, a new machine is launched to run the
incoming job. We remark that in our problem definition,
“C” is defined as the launch cost of a machine. The “C” in
the “C time units” of our scheduling algorithms refers to the
same scalar value C as in the problem definition. That is, the
running cost of a machine for C time units is the same as
the cost to launch a machine, since we assume the running
cost of a machine per time unit is 1.

In the offline setting, each machine is terminated when
it completes its last job. In the online setting, whenever a
machine completes a job and becomes idle, it is kept “on”
for C time units for receiving new incoming jobs. If no new
incoming job is placed on it, the machine is then terminated.
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time

< C

> C

(a) an instance of 4 jobs {J1, J2, J3, J4}

J1

J1

J2

J2

J3

J4

J3

J4

(b) an optimal schedule for {J1, J2, J3, J4}

J1

J2 J3

J4

(c) an online schedule for {J1, J2, J3, J4}

C

C

C

the  on  interval of a machine

a busy interval

the  on  interval of a machine

an idle interval

a busy interval an idle interval

Fig. 1. Example schedules of an ISL-Unit instance with four jobs.

Examples of the offline and online schedules constructed are
shown in Figure 1.

We first prove the optimality of the offline algorithm
by converting any optimal schedule A for a set of jobs
J into the schedule produced by our algorithm without
incurring any extra cost during the conversion process. We
index and examine the jobs in their arrival order. Assume
that job Jj is the first job that is scheduled differently by
the optimal schedule A and our algorithm. Since the jobs
{J1, J2, . . . , Jj−1} are scheduled identically by schedule A
and our algorithm, before job Jj arrives, the set of machines
used by schedule A is identical to the set of machines used
by our algorithm. Now, suppose schedule A places job Jj
on a machine M ′, while our algorithm places job Jj on
another machine M . We can convert schedule A to a new
schedule that places Jj on M without increasing the cost
incurred. Specifically, let JM and JM ′ denote the sets of jobs
placed on machines M and M ′ respectively by schedule A.
We swap the assignments of jobs from Jj onward between
machines M and M ′:

1. Place jobs JM ′ ∩ {J1, J2, . . . , Jj−1} and JM −
{J1, J2, . . . , Jj−1} on machine M ′.

2. Place jobs JM ∩ {J1, J2, . . . , Jj−1} and JM ′ −
{J1, J2, . . . , Jj−1} on machine M . In this way, job
Jj is placed on machine M .

Since our schedule is feasible, the jobs in JM ∩
{J1, J2, . . . , Jj−1} do not overlap with Jj and hence all the
jobs in JM ′−{J1, J2, . . . , Jj−1}. Similarly, since schedule A
is feasible, the jobs in JM ′ ∩ {J1, J2, . . . , Jj−1} do not over-
lap with Jj and hence all the jobs in JM−{J1, J2, . . . , Jj−1}.
Therefore, the new schedule after the above conversion is
feasible. It is easy to infer that the total length of M and
M ′’s “on” intervals remains unchanged after conversion.
Thus, no extra cost is incurred due to the conversion. So, we
have obtained a new schedule in which jobs {J1, J2, . . . , Jj}
are scheduled identically to our algorithm. By performing
the similar conversions for every job in J−{J1, J2, . . . , Jj},
we can obtain an optimal schedule exactly the same as the
schedule produced by our algorithm. Thus, we can conclude
that our offline algorithm is optimal for solving ISL-Unit.

Next, we study the competitiveness of our online algo-
rithm. In the online algorithm, if a machine is terminated
at time t, it must be “on” and idle during the time in-
terval [t−C, t). Thus, each machine incurs a cost that is
C higher than that in the offline algorithm. Note that the
cost incurred by each machine is at least C in the offline
algorithm since it needs to be launched initially. Therefore,
our online algorithm is 2-competitive. We remark that our
online algorithm does not make use of the processing length
information of a job in scheduling it. Thus, it works for both
the non-clairvoyant setting (where the processing length is
not known at a job’s arrival) and the clairvoyant setting
(where the processing length is known at a job’s arrival).

Finally, we construct an instance to show that no deter-
ministic online algorithm can achieve a competitive ratio
less than 2 for ISL-Unit. In our instance, we release at most
n jobs, each with a processing length ε. First, a job J1 is
released at time 0. A new machine must be launched to run
this job and this machine becomes idle at time ε. Obviously,
an optimal schedule for this single job is to terminate the
machine once J1 is completed. Suppose an online algorithm
terminates this machine at time t1. If t1 ≥ C , we stop job
releasing. Then, the cost ratio between the online algorithm
and the optimal schedule is C+t1

C+ε ≥
2C
C+ε . Otherwise, if

t1 < C, we continue to release a new job J2. In general,
a job Ji (i ≥ 2) is released at time

∑i−1
j=1(tj + 1

2j δ), after
the machine used for Ji−1 is terminated. Here, tj denotes
the “on” time of the machine for processing Jj and δ > 0.
Thus, a new machine must be launched to run Ji. Suppose
the online algorithm terminates the new machine at time∑i−1
j=1(tj + 1

2j δ) + ti. If ti ≥ C , we stop job releasing. The
best strategy for scheduling jobs {J1, . . . , Ji} is to place
them on one machine and terminate this machine at time∑i−1
j=1(tj + 1

2j δ) + ε. So, the cost ratio between the online

algorithm and the optimal schedule is
∑i−1

j=1(C+tj)+(C+ti)

C+
∑i−1

j=1(tj+
1

2j
δ)+ε

>

(i+1)C+
∑i−1

j=1 tj

C+
∑i−1

j=1 tj+δ+ε
> 2i·C
i·C+δ+ε >

2C
C+δ+ε . Otherwise, job releasing

continues. After n jobs are released, the cost of the online
algorithm is at least

∑n−1
j=1 (C + tj) + (C + ε) = n · C +∑n−1

j=1 tj + ε, whereas the cost of the optimal schedule is
C +

∑n−1
j=1 (tj + 1

2j δ) + ε < C +
∑n−1
j=1 tj + δ + ε. Thus, the

cost ratio is at least
n·C+

∑n−1
j=1 tj+ε

C+
∑n−1

j=1 tj+δ+ε
> (2n−1)·C+ε

n·C+δ+ε . Therefore,

the competitive ratio by applying any deterministic online
algorithm is at least

min
{ 2C

C + ε
,

2C

C + δ + ε
,

(2n− 1)·C + ε

n · C + δ + ε

}
.

As ε and δ approach 0 and n goes towards infinity, the above
bound can be made arbitrarily close to 2. Hence, our online
algorithm is optimal for ISL-Unit.

5 A LOWER BOUND FOR ISL
Now, we study the ISL problem in the general case where
jobs can have arbitrary sizes. We first investigate the lower
bound on the optimal cost of any ISL instance, which shall
be used later to design and analyze offline and online
scheduling algorithms. We establish a lower bound by re-
laxing the requirement of ISL. Specifically, we consider a
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time t

total demand

1

2

3

< C = C

> C

level-3 

machines

contiguous intervals before merging in iteration 1

contiguous intervals before merging in iteration 2

contiguous intervals before merging in iteration 3

s(J, t)

level-2 

machines

level-1 

machines

the  on  interval of a machine

Fig. 2. Example of an optimal RISL schedule: the upper diagram illus-
trates the total size of the active jobs as a function of time, and the lower
diagram shows the corresponding optimal RISL schedule.

Relaxed ISL (abbreviated as RISL) problem. Given a set of
jobs J , the objective of RISL is to find a minimum-cost
schedule of machines such that at any time t, the aggregate
capacity of “on” machines is at least s(J, t), i.e., the total
size of the jobs active at time t. Note that RISL does not
impose the feasibility of actually placing the jobs on the
“on” machines. Since each job has to be placed on a single
machine throughout its active interval, a feasible placement
may not always exist even if the aggregate capacity of “on”
machines can meet the total demand s(J, t) at all times.
Thus, RISL is a relaxation of ISL and an optimal RISL
schedule can be used to bound the optimal cost of the ISL
problem.

We compute an optimal RISL schedule in an iterative
manner. In each iteration k, we first determine all the
contiguous intervals in which s(J, t)>k−1. Next, we merge
every two consecutive intervals Ia and Ib into one interval
if they are no further than C apart, i.e., we replace Ia and
Ib with [I−a , I

+
b ) if I−b − I+a ≤ C . This process is repeated

recursively until no more intervals can be merged. Then,
the resultant intervals are all further than C apart from
each other. For each resultant interval I , we schedule a new
machine with an “on” interval I . All the machines used in it-
eration k, denoted byMRISL

k , are referred to as the machines
of level k. It is easy to see that maxtds(J, t)e iterations are
needed by the scheduling process. The schedule produced is
given byMRISL =

⋃maxtds(J,t)e
k=1 MRISL

k . In this schedule, at
any time t, there is a machine with an “on” interval covering
t at each of the levels 1, 2, . . . , ds(J, t)e. Thus, the schedule
meets the capacity requirement of RISL. Figure 2 gives an
example to illustrate the construction of an optimal RISL
schedule.

Theorem 1. Our algorithm above produces an optimal RISL
schedule that minimizes the total cost incurred by the
machines used.

Proof: We prove it by converting any optimal RISL schedule
for a set of jobs J into the scheduleMRISL produced by our
algorithm without incurring any extra cost.

LetMopt denote the set of machines used by an optimal
schedule for J . Let Q(M) denote the “on” interval of a ma-

chine M . Let N(Mopt, t) = |{M :M ∈Mopt, t∈Q(M)}| de-
note the number of “on” machines at time t in the schedule
of Mopt. For each k ∈ {1, . . . ,maxtds(J, t)e}, we examine
the times twhenN(Mopt, t)≥k. These times may constitute
one or more contiguous intervals that are apart from each
other. For each interval I , we construct a machine with an
“on” interval I . All the machines constructed form a setMk.
Then, we create a new schedule M∗ by putting M1, M2,
. . . , Mmaxtds(J,t)e together, i.e., M∗ =

⋃maxtds(J,t)e
k=1 Mk. It

is easy to verify that the schedule M∗ meets the capacity
requirement of RISL and the total “on” time of the machines
M∗ cannot exceed that of the machines Mopt. Moreover,
every time a new machine in M∗ is launched, the number
of “on” machines in Mopt must have been increased, so
there must also be a machine launched in Mopt. Thus,
|M∗| ≤ |Mopt|. As a result, the total cost ofM∗ is bounded
by that ofMopt, which suggests thatM∗ is also an optimal
RISL schedule for J .

Next, we prove that the machines in M∗ have the
same “on” intervals as the machines MRISL produced by
our algorithm. For each k ∈ {1, . . . ,maxtds(J, t)e}, con-
sider the machine set Mk ⊆ M∗ and the level-k ma-
chines MRISL

k produced by our algorithm. We sort the
machines in Mk and MRISL

k in increasing order of their
launch times, i.e., Mk = {Mk,1,Mk,2, . . . } and MRISL

k =
{MRISL

k,1 ,MRISL
k,2 , . . . }. We first compare machine Mk,1 with

machine MRISL
k,1 . By our algorithm, the total demand s(J, t)

must be greater than k − 1 at time Q(MRISL
k,1 )−. Since

Mopt meets the capacity requirement of RISL, we have
N(Mopt, Q(MRISL

k,1 )−) ≥ k, which suggests that machine
Mk,1 is launched no later than Q(MRISL

k,1 )−. Now, suppose
Q(Mk,1)−<Q(MRISL

k,1 )−. Then, according to our algorithm,
the total demand s(J, t) is at most k−1 during the interval
[Q(Mk,1)−, Q(MRISL

k,1 )−). We can thus delay the launch of
Mk,1 to reduce its cost, which contradicts the optimality of
M∗. Therefore, we have Q(Mk,1)−=Q(MRISL

k,1 )−.

Now we prove that Q(Mk,1)+ = Q(MRISL
k,1 )+. If

Q(Mk,1)+ > Q(MRISL
k,1 )+, the total demand s(J, t) must

exceed k−1 immediately before time Q(Mk,1)+. Otherwise,
Mk,1 can be terminated earlier to save cost, which contra-
dicts the optimality of M∗. Since the total demand s(J, t)
exceeds k − 1 immediately before Q(Mk,1)+, Q(Mk,1)+

must fall inside or on the right endpoint of the “on”
interval of some machine in MRISL

k . Suppose that this
machine is MRISL

k,j where j > 1. Note that by our algo-
rithm, the total demand s(J, t) is bounded by k−1 during
the interval [Q(MRISL

k,j−1)+, Q(MRISL
k,j )−) and Q(MRISL

k,j )−−
Q(MRISL

k,j−1)+ > C. We can thus save cost by terminating
Mk,1 earlier at time Q(MRISL

k,j−1)+ and launching a new
machine from time Q(MRISL

k,j )− to Q(Mk,1)+ while keeping
the schedule M∗ meeting the capacity requirement. This
leads to a contradiction to the optimality of M∗. Similarly,
ifQ(Mk,1)+<Q(MRISL

k,1 )+, machineMk,2 must be launched
before time Q(MRISL

k,1 )+ as the total demand s(J, t) exceeds
k−1 immediately before time Q(MRISL

k,1 )+. SinceM∗ meets
the capacity requirement, the total demand s(J, t) must be
bounded by k−1 during the interval [Q(Mk,1)+, Q(Mk,2)−).
Since [Q(Mk,1)+, Q(Mk,2)−) ⊆ Q(MRISL

k,1 ), according to
our algorithm, we have Q(Mk,2)−−Q(Mk,1)+ ≤ C . This
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implies that machines Mk,1 and Mk,2 can be replaced by
a machine with an “on” interval [Q(Mk,1)−, Q(Mk,2)+) to
save cost, which again contradicts the optimality of M∗.3
Therefore, we have Q(Mk,1)+ = Q(MRISL

k,1 )+ and hence
Q(Mk,1)=Q(MRISL

k,1 ).
Given Q(Mk,1) =Q(MRISL

k,1 ), by similar arguments, we
can show that Q(Mk,2) =Q(MRISL

k,2 ). Inductively, it can be
shown that Q(Mk,i) = Q(MRISL

k,i ) for any i. Therefore, for
each k, the machines inMk andMRISL

k have the same “on”
intervals, which implies that the schedulesM∗ andMRISL

have the same costs. �

6 OFFLINE SETTING

We first consider ISL in the offline setting and propose a 5-
approximation algorithm. All the jobs are first classified into
two sets J l and J s according to their sizes, where J l (J s)
includes all the large (small) jobs with size larger (no larger)
than 1

2 . The large jobs and the small jobs are scheduled
separately. We apply our optimal offline algorithm proposed
for ISL-Unit (introduced in Section 4) to schedule all the
large jobs, since any two large jobs cannot run concurrently
on the same machine. The small jobs are scheduled by the
following steps. First, a demand chart is built to represent
the total size of the active small jobs as a function of time
(similar to the top diagram of Figure 2). The horizontal
dimension of the demand chart represents the time. At any
time t, the height of the demand chart is given by s(J s, t).
Then, all the small jobs are placed inside the demand chart
such that no three jobs overlap together in their placement.
Next, the jobs are assigned to the machines by slicing the
demand chart. Finally, the machine schedules are derived
by a similar algorithm to that for solving the RISL problem
(introduced in Section 5). Figure 3 gives an example to
illustrate the scheduling of small jobs. For ease of reference,
Algorithm 1 shows the details of scheduling the small jobs
J s.

The placement and slicing steps basically follow the Dual
Coloring algorithm proposed in our earlier work for the
MinUsageTime DBP problem [25]. In the placement step,
each small job J is represented by a rectangle spanning
its active interval I(J) in the time dimension and having a
height of its size s(J) in the demand dimension (see Figure
3(b)). To place jobs, we examine a collection of altitudes from
the top to the bottom in the demand chart. We gradually
color the area of the demand chart as jobs are placed. A
red color indicates that there is no overlap among jobs in
the area, while a blue color indicates that jobs are likely
to overlap in the area. Initially, the collection of altitudes
to examine includes all the ceiling altitudes s(J s, t) in the
demand chart. When examining an altitude h, we divide
the horizontal line at altitude h into three sets of intervals:
red, blue and uncolored. For each uncolored interval Iu,
we look for a yet-to-place job J whose active interval I(J)
intersects with Iu but does not intersect with any other
uncolored interval and any red interval. If there is no such

3. IfQ(Mk,2)
−−Q(Mk,1)

+=C, the replacement does not change the
cost but it extends the termination time of Mk,1 to Q(Mk,2)

+. We can
repeat the comparison of the new Q(Mk,1)

+ with Q(MRISL
k,1 )+ until

either the optimality ofM∗ is violated or Q(Mk,1)
+=Q(MRISL

k,1 )+.

1/2

1

3/2

1

time t

total demand s(J, t)

time t

(a) a set of small jobs

(b) placing small jobs inside the demand chart

(c) scheduling small jobs onto machines

> C

< C

> C

< C

the “on” interval of a machine

the jobs served

by a machine

machines for 

jobs in strip 

[0, 1/2]

machines for 

jobs in strip 

[1/2, 1]

machines for 

jobs crossing 

altitude 1/2

machines for 

jobs crossing 

altitude 1

Fig. 3. An example for scheduling small jobs in the offline setting: the
top diagram shows the set of small jobs to schedule, the middle diagram
shows the job placement in the demand chart, and the bottom diagram
shows the corresponding job assignments and machine schedules.

job, all the area below Iu in the demand chart is colored
blue to allow for overlaps. If such a job J exists, J is placed
at altitude h. The uncolored area covered by J is then
colored red to prevent overlaps. The altitude of J ’s lower
boundary, i.e., h−s(J), is added as an altitude to examine.
The examination of an altitude h proceeds until there is
no more uncolored interval. The placement step completes
when all the altitudes are examined. Upon completion, it
can be shown that all the jobs are placed in the demand
chart and no area of the demand chart is covered by three
or more jobs simultaneously [25].

In the slicing step, the demand chart is sliced into
horizontal strips of height 1

2 each. Thanks to the overlap
limit, all the small jobs placed completely within each strip
have a total size at most 1 at any time and thus can be
assigned to run on one machine. On the other hand, since
the size of each small job is bounded by 1

2 , a job can span at
most 2 strips in the placement. For each pair of neighboring
strips, due to the overlap limit, at most two small jobs can
cross them concurrently at any time, so their total size is
bounded by 1. Therefore, all the jobs placed across a pair of
neighboring strips can be assigned to run on one machine.
Note that the number of strips produced by the slicing step
is at most maxtd s(J

s,t)
1/2 e ≤ 2 ·maxtds(J s, t)e. Based on the

above analysis, all the small jobs can be divided into at most
2·maxtds(J s, t)e+2·maxtds(J s, t)e−1=4·maxtds(J s, t)e−1
disjoint groups such that the jobs in each group have a
total size bounded by 1 at any time. Finally, we can apply
the optimal RISL algorithm in Section 5 to each group of
small jobs to produce an optimal RISL schedule in just one
iteration (see Figure 3(c)).

Now we prove that our algorithm achieves an approx-
imation ratio of 5. Let OPTISL(J ) denote the optimal ISL
cost for processing all the jobs J and let A(J ) denote the
total cost incurred by applying our algorithm to schedule
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ALGORITHM 1: Scheduling Small Jobs for Offline ISL

Input: J s = {J ∈J : s(J)≤ 1
2
}.

Output: A schedule for all the small jobs J s.
—Place the small jobs inside the demand chart—
Altitudes = {s(J s, t) : t ∈

⋃
J∈J s I(J)};

while Altitudes 6= ∅ do
Determine h=maxh′∈Altitudes h

′;
Let Red, Blue and Uncolored be the respective sets of all
maximal red, blue and uncolored intervals at altitude h;
while Uncolored 6= ∅ do

Pick an uncolored interval Iu ∈ Uncolored;
if ∃ J ∈ J s such that I(J) ∩ Iu 6= ∅ and
∀ I ∈ Uncolored ∪Red \{Iu}, I(J) ∩ I = ∅ then

Place job J at altitude h and delete J from J s;
Color the rectangle {I(J) ∩ Iu}×(h−s(J), h] red;
Delete Iu from Uncolored;
Add [I−u , I(J)

−) and [I(J)+, I+u ) into Uncolored if
they are not empty;
Add h−s(J) into Altitudes if h>s(J) and
h−s(J) /∈Altitudes;

else
Color the rectangle Iu×(0, h] blue;
Delete Iu from Uncolored;

end
end
Delete h from Altitudes;

end
—Slice the demand chart and schedule small jobs—
Slice the demand chart into horizontal strips of height 1

2
each;

for each strip do
Schedule all the small jobs placed completely within the
strip by applying the optimal RISL algorithm;

end
for every two neighboring strips do

Schedule all the small jobs placed across the two strips by
applying the optimal RISL algorithm;

end

J . We have A(J ) = A(J l) +A(J s). Since no two large
jobs can run simultaneously on the same machine, by ap-
plying the optimal ISL-Unit algorithm, we have A(J l) =
OPTISL(J l)≤OPTISL(J ). Next, we bound A(J s). If we
apply the optimal RISL algorithm in Section 5 to schedule
J s, the machines used would consist of maxtds(J s, t)e dis-
joint setsMRISL

1 ,MRISL
2 , . . . where each setMRISL

k denotes
the machines of level k. Let OPTRISL(J s) denote the cost
of the optimal RISL schedule for J s and let E(MRISL

k )
denote the total cost of the machines in MRISL

k . Then,
OPTRISL(J s) =

∑maxtds(J s,t)e
k=1 E(MRISL

k ). Note that the
machines MRISL

k actually serve the job demands between
altitudes k−1 and k in the demand chart.

On the other hand, by applying our approximation al-
gorithm, all the machines used to process the small jobs
can be divided into at most 4 ·maxtds(J s, t)e− 1 disjoint
sets, among which there is one set for processing the jobs
placed completely within each strip of the demand chart
and one set for processing the jobs placed across each pair
of neighboring strips. By the construction of the demand
chart, the set of machines for the jobs placed in the strip from
altitude (h−1)· 12 to h· 12 only needs to be “on” when the total
size of active small jobs exceeds (h−1) · 12 ≥d

h
2 e − 1. Thus,

the “on” intervals of these machines must be completely
contained in the “on” intervals of the machinesMRISL

dh/2e. This

is true before as well as after the “on” intervals are merged
by the optimal RISL algorithm. Similarly, the set of machines
for the jobs placed across the strips from altitude (h−2) · 12 to
(h−1)· 12 and from (h−1)· 12 to h· 12 only needs to be “on” when
the total size of active small jobs exceeds (h−1) · 12≥d

h
2 e−1.

So, they must also have their “on” intervals fully contained
in the “on” intervals of the machinesMRISL

dh/2e. Therefore, the
total cost incurred for processing J s is bounded by

2·maxtds(J s,t)e∑
h=1

E(MRISL
dh/2e) +

2·maxtds(J s,t)e∑
h=2

E(MRISL
dh/2e)

= 2 ·
maxtds(J s,t)e∑

k=1

E(MRISL
k ) + E(MRISL

1 ) + 2 ·
maxtds(J s,t)e∑

k=2

E(MRISL
k )

< 4 ·
maxtds(J s,t)e∑

k=1

E(MRISL
k )

= 4 ·OPTRISL(J s).

Recall that the RISL problem is a relaxation of the ISL
problem. It follows that OPTRISL(J s) ≤ OPTISL(J s) ≤
OPTISL(J ). Thus, A(J s) ≤ 4 ·OPTISL(J ). As a result,
A(J )=A(J l)+A(J s)≤5·OPTISL(J ).

Theorem 2. Our algorithm above is a 5-approximation algo-
rithm for offline ISL.

Remark. In our offline algorithm, the large jobs and small
jobs are scheduled separately. An intuitive alternative is to
schedule the large jobs and small jobs together. However,
if we schedule all the jobs together to deal with an ISL
instance, the approximation ratio derived for the offline
strategy would be larger than 5. Specifically, if we schedule
all the jobs together, using the same placement step of
Algorithm 1, all the jobs are placed inside the demand chart
such that no three jobs overlap each other in their placement.
Then in the slicing step of Algorithm 1, all the jobs placed
completely within each strip of height 1

2 can still be assigned
to one machine since their total size is at most 1 at any time.
However, we shall need up to two machines for processing
the jobs crossing two neighboring strips. This is because
there can be two jobs crossing the strips at the same time
point and each job can have a size more than 1

2 . Since the
number of strips is at most 2 ·maxtds(J , t)e, all the jobs are
divided into at most 2·maxtds(J , t)e+2·(2·maxtds(J , t)e−
1) = 6 ·maxtds(J , t)e− 2 disjoint groups with the total size
of the jobs in each group bounded by 1 at any time. By
the same arguments above, the set of machines for the jobs
placed in the strip from altitude (h−1) · 12 to h · 12 must have
their “on” intervals fully contained in the “on” intervals of
the machines MRISL

dh/2e, and so does the set of machines for
each group of jobs placed across the strips from altitude
(h−2)· 12 to (h−1)· 12 and from (h−1)· 12 to h· 12 . Therefore, the
total cost incurred for processing all the jobs J is bounded
by

2·maxtds(J ,t)e∑
h=1

E(MRISL
dh/2e) +

2·maxtds(J ,t)e∑
h=2

2 · E(MRISL
dh/2e)

= 2 ·
maxtds(J ,t)e∑

k=1

E(MRISL
k ) + 2 · E(MRISL

1 ) + 4 ·
maxtds(J ,t)e∑

k=2

E(MRISL
k )
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Fig. 4. Simulation results for the offline algorithms over 100 job se-
quences: the bars represent the average ratio between the total cost
of a scheduling algorithm and the lower bound of the optimal cost; the
lines over the bars represent the 90th and 10th percentile ratios.

< 6 ·
maxtds(J ,t)e∑

k=1

E(MRISL
k )

= 6 ·OPTRISL(J s)
≤ 6 ·OPTISL(J ).

So, the algorithm is a 6-approximation algorithm.
We also conduct simulations to compare the strategies

of scheduling large and small jobs together and separately
using randomly generated job sequences. We assume that
the jobs arrive following a Poisson process with a mean
inter-arrival time of 1 time unit. A portion x of the jobs
are small jobs and have sizes randomly generated from a
uniform distribution (0, 12 ]. The remaining portion (1 − x)
of the jobs are large jobs and have sizes randomly generated
from a uniform distribution ( 1

2 , 1]. The processing lengths
of all the jobs are randomly generated from a uniform dis-
tribution [10, 100] time units. The launch cost of a machine
is set to 1. For each setting of x, we randomly generate 100
job sequences. Each sequence contains 1000 jobs. We apply
the scheduling algorithms to the sequence and compute the
total cost for processing all the jobs. We also derive a lower
bound on the optimal cost of the sequence as described in
Section 5. We compute the ratio between the total cost of
a scheduling algorithm and the lower bound for each se-
quence, and use the average ratio over the 100 job sequences
as a performance measure. Figure 4 shows the average ratio
together with the 90th and 10th percentile ratios for different
proportions of small jobs. As can be seen, when there is a
mix of large and small jobs, scheduling all the jobs together
produces higher ratios than scheduling large and small jobs
separately. This confirms that scheduling large and small
jobs together is less efficient than our approach to schedule
them separately. Moreover, Figure 4 also shows that the
ratios produced by our offline algorithm are well below the
derived approximation ratio of 5 for various settings. This
demonstrates the practical effectiveness of our algorithm in
the settings tested.

7 NON-CLAIRVOYANT SETTING

Now we study ISL in the non-clairvoyant online setting,
where each job must be placed on a machine at its arrival

time

< C

(a) a set of small jobs {J1, J2, ···, J10}

J1

J2

J3

J4

(b) an online schedule produced by Modified First-Fit

J5 J6

J7

J8

J9

J10

J1

J2

J3

J5

J4 C

J6

J7

J8

J9

C

C

layer-2 

machines

J10

< C

layer-1 

machines

the jobs served by a machine

Fig. 5. An example for scheduling small jobs by Modified First-Fit:
the upper diagram shows the set of small jobs to schedule, and the
lower diagram shows the corresponding job assignments and machine
schedules produced by Modified First Fit.

without knowing its departure time and any future job
arrivals. We propose a Modified First-Fit algorithm and
prove that it is (µ+ 9)-competitive. Again, the Modified
First-Fit algorithm schedules the large jobs J l (of size larger
than 1

2 ) and the small jobs J s (of size at most 1
2 ) separately.

The large jobs are scheduled by applying the 2-competitive
online algorithm for ISL-Unit (introduced in Section 4),
while the small jobs are scheduled based on the idea of First
Fit. Specifically, each machine used for processing small jobs
is given a layer label. The machines given the label k are
referred to as the layer-k machines. At any time, at most one
machine of each layer can be in the “on” state. To schedule
an incoming job J , we find the lowest-indexed layer k such
that either (1) no layer-k machine is in the “on” state or (2)
the “on” machine of layer k has enough capacity available
to accommodate job J . In the former case, a new layer-k
machine is launched to run job J . In the latter case, the
incoming job J is assigned to the “on” machine of layer k.
Whenever an “on” machine for small jobs becomes idle, the
machine waits for at most C time units for receiving new
incoming jobs. If no incoming job is placed on it after C
time units, the machine is terminated. Figure 5 shows an
example of how Modified First-Fit schedules small jobs.

Let MFF(J ) denote the total cost for processing all the
jobs J by applying our Modified First-Fit algorithm. Then,
we have MFF(J ) = MFF(J l)+MFF(J s). Since any two
large jobs cannot run concurrently on the same machine,
by applying the 2-competitive algorithm for ISL-Unit, we
have MFF(J l) ≤ 2 · OPTISL(J l) ≤ 2 · OPTISL(J ). To
bound MFF(J s), we split the cost incurred for process-
ing all the small jobs J s into two parts: the cost when
the machines are busy (referred to as the busy cost) and
the cost for launching the machines and when they are
idle (referred to as the auxiliary cost). We show that the
busy cost of all the machines used for J s is no more
than (µ+ 3) ·

∫⋃
J∈JsI(J)

ds(J s, t)edt. Since the number of
“on” machines for processing the small jobs J s must be
at least ds(J s, t)e at any time t,

∫⋃
J∈JsI(J)

ds(J s, t)edt is
a lower bound on the total “on” time and hence a lower
bound on the optimal ISL cost for J s, i.e., OPTISL(J s).
We also prove that the auxiliary cost of all the machines
used for J s is no more than four times the optimal RISL
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cost for J s, i.e., OPTRISL(J s). In this way, MFF(J s) is
bounded by (µ + 3) ·OPTISL(J s) + 4 · OPTRISL(J s) ≤
(µ+ 7) ·OPTISL(J s) ≤ (µ+ 7) ·OPTISL(J ). Combining
MFF(J l) and MFF(J s), we can then conclude that the
Modified First-Fit algorithm is (µ+9)-competitive.
Bounding the busy cost of machines used for J s: To bound
the busy cost for small jobs, we apply a charging technique
in a similar spirit to that in [16], [26]. Suppose the machines
used for small jobs consist ofm layers:MMFFs

1 ,MMFFs
2 , . . . ,

MMFFs
m . It is easy to bound the total busy time of the layer-1

machinesMMFFs
1 by

∫⋃
J∈JsI(J)

ds(J s, t)e dt, since at most
one machine inMMFFs

1 is busy at any moment when there
are small jobs active.

Next we bound the total busy time of the layer-k
machines (k ≥ 2). Let JMFFs

k be the set of small jobs
placed on the layer-k machines. By the Modified First-
Fit algorithm, the busy time of the machines MMFFs

k is
given by len

(⋃
J∈JMFFs

k
I(J)

)
. Let Jk be a maximal sub-

set of JMFFs
k by deleting any job J ∈ JMFFs

k whose
active interval is fully contained in another job’s active
interval. Then, by sorting the jobs in Jk in the order of
their arrival times, i.e., Jk = {Jk,1, Jk,2, . . . , Jk,zk} where
I(Jk,1)− < I(Jk,2)− < . . . < I(Jk,zk)− and zk = |Jk|, we
have I(Jk,1)+<I(Jk,2)+<. . .<I(Jk,zk)+. Besides, we also
have

⋃
J∈JMFFs

k
I(J)=

⋃
J∈Jk

I(J) after reducing JMFFs
k to

Jk.
We split

⋃
J∈Jk

I(J) into zk disjoint intervals. For each
job Jk,i∈Jk (i ∈ {1, . . . , zk−1}), define

X(Jk,i) =
[
I(Jk,i)

−,min{I(Jk,i)
+, I(Jk,i+1)−}

)
.

For the job Jk,zk ∈Jk, define X(Jk,zk) = I(Jk,zk). Then, the
total busy time of the layer-k machines can be written as

len
( ⋃
J∈JMFFs

k

I(J)
)

= len
( ⋃
J∈Jk

I(J)
)

=
∑
J∈Jk

len(X(J)).

Now, we define

dk =
∑
J∈Jk

s(J)·len(X(J)).

It is easy to see that

dk ≤
∑
J∈Jk

s(J)·len(I(J)) ≤
∑

J∈JMFFs
k

s(J)·len(I(J)). (1)

Recall that each job J in Jk is placed on a machine
in MMFFs

k . According to the Modified First-Fit algorithm,
when job J arrives at time X(J)−=I(J)−, there must exist
a layer-(k−1) machine M ∈MMFFs

k−1 which is busy and does
not have enough capacity available to accommodate job J .
Therefore, at time X(J)−, the total size of the active jobs on
machine M must be larger than 1−s(J). Let P(J) denote
these jobs. Then, we have s(J)+

∑
Ĵ∈P(J) s(Ĵ)>1. Define

d∗k=
∑
J∈Jk

( ∑
Ĵ∈P(J)

s(Ĵ)·len(X(J))
)
.

Then, the total busy time of the machines MMFFs
k can be

bounded by∑
J∈Jk

len(X(J)) <
∑
J∈Jk

((
s(J)+

∑
Ĵ∈P(J)

s(Ĵ)
)
·len(X(J))

)

= dk + d∗k. (2)

We next show that d∗k≤(µ+1)·
∑
J∈JMFFs

k−1
s(J)·len(I(J)).

Define Ĵk =
⋃
J∈Jk

P(J). Obviously, Ĵk ⊆ JMFFs
k−1 . For

each job Ĵ ∈ Ĵk, let P−1(Ĵ) denote the set of all the jobs J
in Jk such that Ĵ ∈ P(J). Note that the jobs in P−1(Ĵ) may
come from different machines inMMFFs

k . For each job J ∈
P−1(Ĵ), since job Ĵ has already been placed on a machine in
MMFFs

k−1 when J arrives, Ĵ cannot arrive later than J . Thus,

X(J)− = I(J)− ≥ I(Ĵ)−. (3)

By definition, I(Ĵ) covers time X(J)−, i.e., X(J)−<I(Ĵ)+.
Recall that the max/min job processing length ratio is µ,
which suggests that len(X(J)) ≤ len(I(J))≤ µ · len(I(Ĵ)).
Therefore,

X(J)+ = X(J)−+len(X(J)) < I(Ĵ)+ +µ · len(I(Ĵ)). (4)

Recall thatX(J) of all the jobs J inP−1(Ĵ)⊆Jk are disjoint.
It follows from (3) and (4) that∑
J∈P−1(Ĵ)

len(X(J)) ≤ max
J∈P−1(Ĵ)

X(J)+ − min
J∈P−1(Ĵ)

X(J)−

≤ I(Ĵ)+ + µ · len(I(Ĵ))− I(Ĵ)−

= (µ+ 1) · len(I(Ĵ)).

As a result, we can rewrite d∗k as

d∗k =
∑
Ĵ∈Ĵk

s(Ĵ) ·
( ∑
J∈P−1(Ĵ)

len(X(J))
)

≤
∑
Ĵ∈Ĵk

(
s(Ĵ) · (µ+ 1) · len(I(Ĵ))

)
≤ (µ+ 1) ·

∑
J∈JMFFs

k−1

s(J) · len(I(J)).

By (1) and (2), we can bound the total busy time of the
machinesMMFFs

k by

dk + d∗k ≤
∑

J∈JMFFs
k

s(J) · len(I(J)) + (µ+ 1) ·
∑

J∈JMFFs
k−1

s(J) · len(I(J))

and thus bound the total busy time of the machines⋃m
k=2MMFFs

k by
m∑
k=2

(
dk + d∗k

)
≤

∑
J∈J s

s(J) · len(I(J))

+ (µ+ 1) ·
∑
J∈J s

s(J) · len(I(J))

= (µ+ 2) ·
∑
J∈J s

s(J) · len(I(J))

≤ (µ+ 2) ·
∫
⋃

J∈Js I(J)
ds(J s, t)e dt.

Combining with the busy time of the machinesMMFFs
1 , we

can bound the total busy cost for processing all the small
jobs by (µ+3)·

∫⋃
J∈JsI(J)

ds(J s, t)edt.
Bounding the auxiliary cost of machines used for J s: We
first analyze the auxiliary cost incurred by the machines of
a given layer k. Recall that at most one machine of each
layer can be “on” at any time. Thus, the busy intervals of
the machines MMFFs

k must not overlap with each other.
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Let Ik,1, Ik,2, . . . , Ik,nk
denote all the busy intervals of the

machines MMFFs
k in the chronological order. Then, a cost

C must be incurred at time I−k,1 when the first machine
of layer k is launched. According to our Modified First-Fit
algorithm, for each i ∈ {1, . . . , nk−1}, if I−k,i+1−I

+
k,i ≤ C ,

then the two consecutive busy intervals Ik,i and Ik,i+1

must be associated with the same machine of layer k and
this machine must be idle during the interval [I+k,i, I

−
k,i+1).

Consequently, a cost of I−k,i+1− I
+
k,i is incurred over the

idle interval. Otherwise, if I−k,i+1−I
+
k,i > C, a machine of

layer k must be terminated at time I+k,i +C and a new
machine of layer k must be launched at time I−k,i+1. This
suggests that a total cost of 2 ·C is incurred by these two
machines during the interval [I+k,i, I

−
k,i+1). Finally, note that

the last machine of layer k must be idle during the interval
[I+k,nk

, I+k,nk
+ C) which incurs a cost of C . Therefore, the

total auxiliary cost of the machines MMFFs
k is at most

2·
(
C +

∑nk−1
i=1 min{I−k,i+1 − I

+
k,i, C}

)
. In the following, we

show that C +
∑nk−1
i=1 min{I−k,i+1− I

+
k,i, C} is no more than

the cost incurred by the machines of level dk/2e in the
optimal RISL schedule for J s. In this way, the auxiliary
cost of all the machines for J s by applying our Modified
First-Fit algorithm can be bounded by 4·OPTRISL(J s).

First, we show that if a machine of layer k is used by
our Modified First-Fit algorithm, then at least dk2 e levels of
machines are needed in the optimal RISL schedule for J s,
i.e., level dk2 e exists. In fact, if a small job J is placed on a
machine inMMFFs

k , then for each layer lower than k, there
must exist a machine which is in the “on” state at J ’s arrival
time I(J)− but does not have enough capacity available to
accommodate J . This implies that the “on” machine of each
layer lower than k must have more than 1−s(J) capacity
occupied at time I(J)−. Consequently, the total size of the
small jobs active at time I(J)− must be larger than (k−
1)(1− s(J)) + s(J) = k−1− (k−2) · s(J) ≥ k

2 , where the
inequality follows from the fact that s(J) ≤ 1

2 . Therefore,
in the optimal RISL schedule for J s, at least dk2 e machines
need to be “on” to satisfy the job demands at time I(J)−.
As a result, there are at least dk2 e levels of machines in the
optimal RISL schedule for J s.

Let MRISL
dk/2e denote the machines of level dk2 e in the

optimal RISL schedule for J s. The above analysis suggests
that a machine in MRISL

dk/2e must be in the “on” state at the
arrival of every small job placed on a machine of layer k by
our Modified First-Fit algorithm. It is obvious that there is a
small job arriving at the beginning of each busy interval Ik,i
of the machines inMMFFs

k . Thus, a machine inMRISL
dk/2e must

be “on” at times I−k,1, I−k,2, . . . , I−k,nk
. In order for a machine

to be launched at time I−k,1, a cost C must be incurred.
For each interval (I−k,i, I

−
k,i+1] (where i ∈ {1, . . . , nk−1}),

if different machines in MRISL
dk/2e are “on” at times I−k,i and

I−k,i+1 respectively, at least a launch cost C is incurred
in (I−k,i, I

−
k,i+1]. Otherwise, suppose the same machine in

MRISL
dk/2e is “on” at times I−k,i and I−k,i+1. If I−k,i+1−I

−
k,i ≤C ,

the minimum possible cost incurred by the machine during
(I−k,i, I

−
k,i+1] is at least I−k,i+1−I

−
k,i, i.e., to keep the machine

“on” throughout the interval, since terminating and then
launching the machine again would incur more cost. If
I−k,i+1−I

−
k,i>C , the minimum possible cost incurred by the

0% 20% 50% 80%
proportion of small jobs
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0.5

1

1.5

2

ra
tio

processing length [10,100]
processing length [10,1000]
processing length [10,10000]

Fig. 6. Simulation results for the Modified First-Fit algorithm over 100 job
sequences: the bars represent the average ratio between the total cost
of Modified First-Fit and the lower bound of the optimal cost; the lines
over the bars represent the 90th and 10th percentile ratios.

machine during (I−k,i, I
−
k,i+1] is at least a launch cost C , since

it incurs more cost to keep the machine “on” throughout the
interval. Therefore, the total cost incurred by the machines
in MRISL

dk/2e is at least C +
∑nk−1
i=1 min{I−k,i+1 − I

−
k,i, C} ≥

C+
∑nk−1
i=1 min{I−k,i+1−I

+
k,i, C}. As a result, the total aux-

iliary cost of the machines MMFFs
k is at most twice the

cost of the machinesMRISL
dk/2e. Thus, the auxiliary cost of all

the machines for J s by our Modified First-Fit algorithm is
bounded by 4·

∑maxtds(J s,t)e
k=1 E(MRISL

k )=4·OPTRISL(J s).

Theorem 3. The Modified First-Fit algorithm is (µ+ 9)-
competitive for non-clairvoyant ISL, where µ is the
max/min job processing length ratio.

We also conduct simulations to study the practical per-
formance of the Modified First-Fit algorithm. We use the
same settings as those presented in Section 6. Figure 6 shows
the average ratio between the cost of Modified First-Fit and
the lower bound on the optimal cost as well as the 90th
and 10th percentile ratios for different proportions of small
jobs. It can be seen that the ratios are rather close to 1
and are well below the derived competitive ratio of (µ+9).
This indicates that Modified First-Fit produces near-optimal
schedules in the settings tested. We further vary the range of
job processing length from [10, 100] to [10, 10000] time units.
As shown by the results in Figure 6, the performance ratio
of Modified First-Fit to the lower bound generally increases
with the max/min job processing length ratio µ. This is
consistent with the theoretical finding that the competitive
ratio of Modified First-Fit increases with µ. The reason is
that in the non-clairvoyant online setting, Modified First-
Fit is likely to place jobs with different processing lengths
on the same machine. As a result, the machines cannot be
terminated when short jobs end and have to be kept “on”
until long jobs end, increasing the cost of the schedule. In
the simulation results, the increase in the performance ratio
is more noticeable when a larger proportion of the jobs are
small jobs because more jobs can run concurrently on a
machine.

Next, we prove that our Modified First-Fit algorithm is
O(1)-competitive for a special case where each job to be
scheduled has a processing length no more than C . Recall
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that the total cost for processing the large jobs is bounded
by 2 ·OPTISL(J l) and the auxiliary cost for processing
the small jobs is bounded by 4 ·OPTRISL(J s). We thus
only need to bound the total busy time (busy cost) of the
machines used for J s in this special case. In the following,
we prove that the busy cost for processing J s is bounded
by 2·OPTRISL(J s).

Consider the machines MMFFs
k of a layer k by our

Modified First-Fit algorithm. Let JMFFs
k be the set of small

jobs processed by the machinesMMFFs
k . Then, all the busy

intervals of the machines MMFFs
k are given by the union

of the active intervals of the jobs JMFFs
k , i.e.,

⋃nk

i=1 Ik,i =⋃
J∈JMFFs

k
I(J). If each job has a processing length at most

C , we have
⋃
J∈JMFFs

k
I(J) ⊆

⋃
J∈JMFFs

k
[I(J)−, I(J)−+C).

As a result,
nk⋃
i=1

Ik,i ⊆
⋃

J∈JMFFs
k

[I(J)−, I(J)−+C). (5)

Now, consider the machines MRISL
dk/2e of level dk2 e in the

optimal RISL schedule for J s. It has been shown by the
former analysis that a machine in MRISL

dk/2e must be in the
“on” state at the arrival of every small job placed on a
machine of MMFFs

k by our Modified First-Fit algorithm.
Thus, for each job J ∈ JMFFs

k , I(J)− ∈
⋃
M∈MRISL

dk/2e
Q(M),

where Q(M) denotes the “on” interval of a machine M . As
a result, if we extend the “on” interval of every machine
inMRISL

dk/2e by length C , all the intervals [I(J)−, I(J)−+C)

would be covered, i.e., ∀ J ∈JMFFs
k ,

[I(J)−, I(J)−+C) ⊆
⋃

M∈MRISL
dk/2e

[Q(M)−, Q(M)++C). (6)

Combining (5) and (6), we have
nk⋃
i=1

Ik,i ⊆
⋃

M∈MRISL
dk/2e

[Q(M)−, Q(M)++C).

Note that all the busy intervals of the machines MMFFs
k

are disjoint. Therefore, the total busy time of the machines
MMFFs

k is bounded by
nk∑
i=1

len(Ik,i) = len
( nk⋃
i=1

Ik,i
)

≤ len
( ⋃
M∈MRISL

dk/2e

[Q(M)−, Q(M)++C)
)

≤
∑

M∈MRISL
dk/2e

(
len(Q(M))+C

)
= C · |MRISL

dk/2e|+
∑

M∈MRISL
dk/2e

len(Q(M)).

Note that the right end of the above inequality is exactly
the cost of the machines MRISL

dk/2e. By adding up the above
inequality for all the layers of machines, the total busy
time of the machines used for J s by our Modified First-
Fit algorithm is bounded by 2 ·OPTRISL(J s). Hence, we
have the following result.
Theorem 4. The Modified First-Fit algorithm is 8-competitive

for non-clairvoyant ISL when each job has a processing
length at most C .

This important result of Theorem 4 motivates the design
of our algorithms in the clairvoyant online setting next.

8 CLAIRVOYANT SETTING

Finally, we consider ISL in the clairvoyant online setting,
where the departure time of a job is known at its arrival
and can be used for scheduling purposes. Recall that Azar
and Vainstein [6] proposed aO(

√
logµ)-competitive Hybrid

algorithm for MinUsageTime DBP in the clairvoyant setting.
In this section, we propose a O(

√
logµ)-competitive algo-

rithm for clairvoyant ISL based on our Modified First-Fit
algorithm and the Hybrid algorithm introduced in [6].

The algorithm works by scheduling jobs shorter and
longer than C separately. If an incoming job J has a pro-
cessing length less than C , i.e., len(I(J)) ≤ C , we apply
our Modified First-Fit algorithm to schedule the job. Oth-
erwise, the Hybrid algorithm is applied to schedule the
job. The Hybrid algorithm defines two types of bins (gen-
eral bins and classify-by-duration bins) for placing items
in MinUsageTime DBP. For both bin types, an open bin
is closed once it becomes empty. In our context of job
scheduling, this implies that whenever a machine used for
processing the jobs by the Hybrid algorithm becomes idle,
we terminate the machine immediately. Thus, the machines
used for processing jobs longer than C are busy throughout
their “on” intervals.

Now, we show that the above algorithm is O(
√

logµ)-
competitive, which is asymptotically tight. Let JM and JH
denote the sets of jobs scheduled by the Modified First-Fit
algorithm and the Hybrid algorithm respectively. According
to Theorem 4, the total cost of the machines used for process-
ing JM is bounded by 8 ·OPTISL(JM ). On the other hand,
each job in JH has a processing length longer than C . By
applying the Hybrid algorithm, any machine M used for
processing the jobs JH must keep busy for at least C time
units and thus have an “on” interval at least C long. There-
fore, the cost of machineM is bounded by C+len(Q(M)) ≤
2 · len(Q(M)), where Q(M) denotes the “on” interval of M .
This suggests that the total cost of the machines used for
processing JH is bounded by twice their total busy time.
Based on the competitiveness of the Hybrid algorithm [6],
the total busy time of the machines used for JH is bounded
by O(

√
logµ) · OPTBUSY(JH), where OPTBUSY(JH) is

the minimum possible busy time of machines for processing
the jobs JH . Obviously, OPTBUSY(JH) ≤ OPTISL(JH).
It follows that the total busy time of the machines used
for JH is bounded by O(

√
logµ) · OPTISL(JH). In sum-

mary, we can bound the total cost for processing all the
jobs J by 8 ·OPTISL(JM ) +O(

√
logµ) ·OPTISL(JH) ≤

O(
√

logµ)·OPTISL(J ).
Theorem 5. There exists a O(

√
logµ)-competitive algorithm

for clairvoyant ISL, where µ is the max/min job process-
ing length ratio.

9 CONCLUDING REMARKS

We have studied the algorithmic aspects of ISL in the offline,
non-clairvoyant online and clairvoyant online settings. The
results show that the approximation and competitiveness
bounds of interval job scheduling remain asymptotically the
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same with the consideration of machine launch cost. We
remark that several results in this paper can be improved
for a special case where all the jobs have the same size
so that a machine can run at most a constant number of
g (g ≥ 2) jobs concurrently at any time (referred to as ISL-
Uniform). In this case, there is no need to schedule the large
and small jobs separately. By leveraging 2-approximation
algorithms for the ISBP problem [3], [19], we can develop
a 2-approximation algorithm for ISL-Uniform in the offline
setting. Moreover, our Modified First-Fit algorithm would
become min{µ + 4, g + 2}-competitive for ISL-Uniform in
the non-clairvoyant setting (with the busy cost bounded by
min{µ+2, g}·OPTISL(J ) and the auxiliary cost bounded by
2·OPTRISL(J ) because the “on” machines of all the layers
lower than k must be fully occupied when a job is placed on
a layer-k machine).

One direction for future work is to conduct more ex-
perimental evaluation of the proposed algorithms for other
job characteristics and workloads [10]. Another future di-
rection is to study interval job scheduling on heterogeneous
machines. Our current work is limited to homogeneous ma-
chines. In cloud computing, a cloud service provider often
provides multiple types of pre-defined virtual machines for
customers to rent. A virtual machine with larger capacity
generally has a higher cost rate for renting. Deriving a good
combination of machines of various types to optimize the
cost of processing jobs will be an interesting topic to study.
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