
1

Analysis of Minimum Interaction Time
for Continuous Distributed Interactive Computing

Lu Zhang, Member, IEEE, Xueyan Tang, Member, IEEE, and Bingsheng He, Member, IEEE

Abstract—Distributed interactive computing allows participants at different locations to interact with each other in real time. In this
paper, we study the interaction times of continuous Distributed Interactive Applications (DIAs) in which the application states change
due to not only user-initiated operations but also time passing. Given the clients and servers of a continuous DIA, its interaction time is
directly affected by how the clients are assigned to the servers as well as the simulation time settings of the servers. We formulate the
Minimum Interaction Time (MIT) problem as a combinatorial problem of these two tuning knobs and prove that it is NP-hard. We then
approximate the problem by fixing the client assignment or the simulation time offsets among the servers. When the client assignment
is fixed, we show that finding the minimum achievable interaction time can be reduced to a weighted bipartite matching problem. We
further show that this approach establishes a tight approximation factor of 3 to the MIT problem if each client is assigned to its nearest
server. When the simulation time offsets among the servers are fixed, we show that finding the minimum achievable interaction time is
still NP-hard. This approach can approximate the MIT problem by a factor within 2 if the simulation times of all servers are
synchronized. A mix of the above two approaches better approximates the MIT problem within a factor of 5/3. We further conduct
experimental evaluation of these approaches with three real Internet latency datasets.

Index Terms—distributed interactive computing, interaction time, consistency, approximation algorithm.

F

1 INTRODUCTION

Recent years have witnessed rapid development of dis-
tributed interactive computing in many areas such as in-
teractive digital media and entertainment [21], distributed
interactive simulation [2], and collaborative computer-aided
design and engineering [1]. In large-scale distributed inter-
active computing, the application state (such as the virtual
worlds in multiplayer online games) is typically maintained
across a group of geographically distributed servers [21].
Each participant, known as a client, is assigned to one server
and connects to it for sending user-initiated operations.
When the application state changes, state updates are de-
livered to the clients by their assigned servers to reflect the
changes. In this way, Distributed Interactive Applications
(DIAs) enable participants at different locations to interact
with each other in real time.

Interactivity is of crucial importance to DIAs for support-
ing graceful interactions among participants. The interactiv-
ity performance can be characterized by the duration from
the time when a client issues an operation to the time when
the effect of the operation is presented to others [14]. This
duration is known as the interaction time between clients.
Since the clients interact with one another through their
assigned servers, the interaction time between any pair of
clients must include not only the network latencies between
the clients and their assigned servers, but also the network
latency between their assigned servers. These latencies are

• Lu Zhang is with the Computer Science and Computer Engineering
Department, University of Arkansas, Fayetteville, AR, 72701. Email:
lz006@uark.edu.

• Xueyan Tang is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore, 639798. E-mail: asxy-
tang@ntu.edu.sg.

• Bingsheng He is with the School of Computing, National University of
Singapore, Singapore 119077. E-mail: he.bingsheng@gmail.com.

directly affected by how the clients are assigned to the
servers. In addition to network latencies, the interaction
time is also influenced by the need for consistency main-
tenance in DIAs. Consistency means that shared common
views of the application state must be created among all
clients and it is a fundamental requirement for supporting
meaningful interactions [7].

In this paper, we study the interaction times of DIAs.
We focus on continuous DIAs in which the application
state changes due to not only user-initiated operations but
also time passing. Examples of continuous DIAs include
distributed virtual environments [22], distributed interac-
tive simulations [2], and multiplayer online games [9]. In
continuous DIAs, the progress of the application state is
normally measured along a synthetic time scale known
as the simulation time (for example, the time elapsed in
the virtual game world). To ensure consistency among the
application states at the servers, each user operation must be
executed by all servers at the same simulation time [17]. As
a result, maintaining consistency in continuous DIAs often
entails artificial synchronization delays in the interactions
among clients [3], [6], [12], [16], [17]. The amount of synchro-
nization delays is dependent on the simulation time settings
of clients and servers.

We formulate the Minimum Interaction Time (MIT)
problem for continuous DIAs as a combinatorial optimiza-
tion problem that includes two sets of variables: the client
assignment and the simulation time offsets among servers.
We show that the MIT problem is NP-hard. Two approaches
are then considered to approximate the MIT problem: by
fixing the client assignment and by fixing the simulation
time offsets among servers. When the client assignment
is fixed, we show that finding the minimum achievable
interaction time can be reduced to a weighted bipartite

2

matching problem. We further show that for networks with
the triangle inequality, this approach establishes a tight
approximation factor of 3 to the MIT problem if each client
is assigned to its nearest server. When the simulation time
offsets among servers are fixed, we show that finding the
minimum achievable interaction time is still NP-hard. For
networks with the triangle inequality, this approach can
approximate the MIT problem within a factor of 2 if the
simulation times of all servers are synchronized. A mix
of the above two approaches better approximates the MIT
problem within a factor of 5/3. These approaches are also
experimentally evaluated using three real Internet latency
datasets.

Most previous studies on client assignment for DIAs
have focused on reducing client-to-server latencies only [24],
[25]. Some recent work has investigated client assignment
by taking inter-server latencies into account as well for
optimizing interactivity [29]. However, no synchronization
delay for consistency maintenance was considered. There-
fore, it was only applicable to discrete DIAs that change
their application states in response to user operations only
(such as collaborative text editors). In addition, some client
assignment heuristics have also been studied for optimiz-
ing the maximum length of interaction paths among all
clients in DIAs [30]. Different from the above work, this
paper conducts in-depth theoretical analysis of consistency-
constrained simulation time settings and achievable inter-
activity for continuous DIAs. Where to place servers in
the network is another relevant issue that has been exten-
sively studied for various Internet applications [5], [16], [33].
Server placement is often related to several graph theoretic
problems including the facility location problem and the k-
center and k-median problems [5], [20]. Our work comple-
ments server placement in that we consider how to optimize
the client assignment and the simulation time settings given
a set of servers placed. To the best of our knowledge, there
has been no study on the interplay of these two tuning
knobs for improving the interactivity of continuous DIAs.
Some preliminary results of our work were presented as a
brief announcement [31].

The rest of this paper is organized as follows. Section 2
formulates the Minimum Interaction Time (MIT) problem
for continuous DIAs. Sections 3 and 4 study the MIT prob-
lem and present the hardness results. Section 5 analyzes sev-
eral approaches to approximate the MIT problem. Section
6 describes the experimental evaluation. Finally, Section 7
concludes the paper.

2 PROBLEM FORMULATION

A DIA can be modeled by a network consisting of a set of
nodes V . A distance d(u, v) is associated with each pair of
nodes (u, v) ∈ V × V , representing the network latency of
the routing path between nodes u and v. Denote by S ⊆
V the set of servers and C ⊆ V the set of clients in the
network. Each client is assigned to one server for sending
user operations and receiving state updates.

Each server and client has an associated simulation time
to characterize its view of the application state. To provide
realistic real-time interaction experiences, the simulation
times of all the servers and clients should advance at the

same rate as that of the wall-clock time. When a client issues
an operation, the effect of the operation is presented to
other clients through the following process. First, the client
sends the operation to its assigned server. Then, the server
forwards the operation to all the other servers. On receiving
the operation, each server executes the operation, possibly
after some synchronization delay, to compute the new state
of the application. Finally, each server delivers the resultant
state update to all the clients assigned to it. Since clients
inherit the application state from their assigned servers, to
allow all clients to always see identical states at the same
simulation time, the application states at all the servers must
be consistent at any simulation time. This in turn requires
each user operation to be executed by all servers at the same
simulation time, since the state of a continuous DIA changes
due to both user operations and time passing.

In general, the simulation times of servers and clients do
not have to be synchronized. The offsets between simulation
times at servers and clients can actually be exploited to
improve interaction times. To facilitate the presentation of
our analysis, we shall denote the clients by c1, c2, · · · , c|C|,
where |C| is the number of clients. For each client ci, we
denote by sA(ci) ∈ S the assigned server of ci in a client
assignment A. We also denote by δci ∈ R the offset of
each client ci’s simulation time relative to a reference clock
(the larger the offset, the further ahead the simulation time).
Similarly, for each server s ∈ S, we denote by δs ∈ R the
offset of s’s simulation time relative to the reference clock.

Consider an operation issued at simulation time t by
a client ci. Suppose that all servers execute the operation
at simulation time t + πi where πi ≥ 0. Due to state
inheritance, all clients would also see the operation taking
effect when their respective simulation times reach t + πi.
When the simulation time of a client cj reaches t + πi,
the simulation time at ci is t + πi + δci − δcj . Thus, the
interaction time for cj to see the effect of ci’s operation is
t+πi+ δci − δcj − t = πi+ δci − δcj . As a result, the average
interaction time between all pairs of clients1 is given by

1

|C|2
|C|∑
i=1

|C|∑
j=1

{πi + δci − δcj} =
1

|C|

|C|∑
i=1

πi,

which indicates how long it takes on average for the effect
of an operation to be presented to a client.

To make operation execution and state updates feasible,
the πi for each client ci must satisfy the following con-
straints:

(i) When client ci issues an operation at its simulation
time t, all servers are able to receive the operation
before their respective simulation times reach t+ πi.

(ii) All clients are able to receive the resultant state up-
date of executing the operation before their respective
simulation times reach t+ πi.

Note that each client ci’s operation is first sent to its
assigned server sA(ci), and then delivered to all the other
servers. Thus, based on constraint (i), for each client ci ∈ C

1. We also include here the interaction time from a client to itself,
which represents the time for the client to see the effect of its own
operation.

3

and each server s ∈ S, we have

t+ d(ci, sA(ci)) + d(sA(ci), s) + δs − δci ≤ t+ πi,

which can be rewritten as

∀ci∈C, s∈S, d(ci, sA(ci))+d(sA(ci), s)+δs−δci ≤ πi. (1)

The state update, on the other hand, is delivered to each
client after its assigned server executes the operation. Thus,
based on constraint (ii), for each client ci ∈ C , we have

t+ πi + d(sA(ci), ci) + δci − δsA(ci) ≤ t+ πi,

which can be rewritten as

∀ci ∈ C, d(sA(ci), ci) + δci − δsA(ci) ≤ 0. (2)

Combining (1) and (2), we have

∀ci∈C, s∈S, 2 ·d(ci, sA(ci))+d(sA(ci), s)+δs−δsA(ci) ≤ πi,
which are equivalent to

∀ci∈C, 2·d(ci, sA(ci))+max
s∈S

{
d(sA(ci), s)+δs

}
−δsA(ci) ≤ πi.

Therefore,
|C|∑
i=1

πi ≥ 2 ·
|C|∑
i=1

d(ci, sA(ci))

+

|C|∑
i=1

max
s∈S

{
d(sA(ci), s) + δs

}
−
|C|∑
i=1

δsA(ci).

(3)

It is easy to see that the right side of the above inequality
is a function of the client assignment A and the simulation
time offsets of the servers which we shall denote by ∆ =
{δs | s ∈ S}. To facilitate presentation, we define

D(A,∆) = 2 ·
|C|∑
i=1

d(ci, sA(ci))

+

|C|∑
i=1

max
s∈S

{
d(sA(ci), s) + δs

}
−
|C|∑
i=1

δsA(ci).

(4)

It follows from (3) that the average interaction time
1
|C|
∑|C|
i=1 πi is no less than 1

|C|D(A,∆). Given A and ∆,
the equality of (3) can be satisfied by setting the simulation
time offset δci of each client ci at δci = δsA(ci)−d(ci, sA(ci))
to fulfill constraint (2) and setting πi = 2 · d(ci, sA(ci)) +
maxs∈S

{
d(sA(ci), s) + δs

}
− δsA(ci) to fulfill constraint (1).

Therefore, the lowest achievable average interaction time is
exactly 1

|C|D(A,∆). Since the factor 1
|C| is fixed given the set

of clients, for simplicity, we shall omit it in studying inter-
activity optimization and define the Minimum Interaction
Time (MIT) problem as follows:

Definition 1. Given a set of servers S and a set of clients C
in a network, and the distance d(u, v) between each pair
of nodes u, v ∈ C ∪S, the MIT problem is to find a client
assignment A and the simulation time offsets of servers
∆ that minimize the average interaction time, i.e., to find

min
A,∆

D(A,∆).

To keep the above problem definition general, we do not
impose any constraints such as load balancing on the client

s1

s2 s3

c1

c2

c3

s′1

s′2

s′3

3

2 2

2 2

1 1

2 2
1

6 6

Fig. 1. An example network in a DIA.

assignment. This is in sync with the current trend towards
cloud-based application hosting. In this case, each server s
in our model can be viewed as a data center available to
host the DIA. Due to elastic computing resources offered
by clouds, there is practically no limit on the number of
clients that can connect to a data center. On the other hand, if
the service provider hosts the application on its own server
infrastructure, the servers may have capacity constraints.
We shall discuss how to deal with server capacity limitations
in Section 5.5.

We present an example to illustrate how A and ∆
affect the average interaction time. In the network shown
in Figure 1, there are three clients c1, c2, c3 and six servers
s1, s2, s3, s

′
1, s
′
2, s
′
3. A natural configuration is to assign each

client ci to server s′i (i.e., the nearest server), and syn-
chronize the simulation times of the assigned servers of
all the clients, as shown in Figure 2a, where each client
and server is marked with its simulation time offset.2 Note
that the simulation time of each client must lag behind the
simulation time of its server due to the network latency of
delivering state updates. Suppose that client c1 issues an
operation at simulation time t. As shown in Figure 2b, the
operation first reaches server s′1 at simulation time t+2, and
is then delivered to the other two servers at simulation time
t + 12. Thus, the operation can be executed by all the three
servers at the same simulation time t+12 at the earliest, and
finally, all the clients receive and present the resultant state
updates at simulation time t+ 12. Therefore, the interaction
time from client c1 to all the clients is 12. Figure 2c shows
that the interaction time from client c2 (or c3) to all the
clients is also 12. Consequently, D(A,∆) = 36 under this
natural configuration.

We can improve the interactivity by tuning the simu-
lation time offsets ∆. Figure 3a shows a simulation time
setting that reduces D(A,∆) to 33. Alternatively, we can
also improve the interactivity by tuning the client assign-
ment A. Figure 3b shows a client assignment that leads to
D(A,∆) = 30. The optimal solution to the MIT problem is
to tune both A and ∆ together as shown in Figure 3c, which
gives the best achievable interaction time of D(A,∆) = 27.

As seen from Definition 1, the MIT problem is a com-
binatorial optimization problem with two sets of variables:
the client assignment A and the simulation time offsets ∆ of
servers. When the client assignment is fixed, finding the sim-

2. The simulation times of the servers not assigned any client are not
really restricted by the consistency constraint. They can be set to lag
behind the reference clock by an arbitrarily large amount and do not
affect the interaction time between clients. Thus, they are not marked
in the figure.

4

s1

s2 s3

c1

c2

c3

s′1

s′2

s′3

+0

+0−1

−1

+0−1
client assignment

(a) Natural client assignment
and simulation time setting

t

t+12

t+1 t

t+12

t+1 t

t+12

t+1

t+12

c1 s′1 c2 s′2 c3 s′3

execute execute executet+12

t+2

t+12

(b) Interaction time from client c1

t

t+12

t+1 t

t+12

t+1 t

t+12

t+1

t+12

c1 s′1 c2 s′2 c3 s′3

execute execute executet+12

t+2

t+12

t+9

(c) Interaction time from client c2 (or c3)

Fig. 2. A natural configuration.

s1

s2 s3

c1

c2

c3

s′1

s′2

s′3

+3

+3+2

+2

+0−1
client assignment

(a) Tuning simulation times

s1

s2 s3

c1

c2

c3

s′1

s′2

s′3

+0

−2

−2

−2

+0 +0

(b) Tuning client assignment

s1

s2 s3

c1

c2

c3

s′1

s′2

s′3

+0

+1

+1

−2

+3 +3

(c) Optimal configuration

Fig. 3. Improved configurations.

ulation time offsets of servers that minimize the interaction
time, i.e., finding min∆D(A,∆), is a linear optimization
problem. Next, we study the MIT problem by fixing the
client assignment first.

3 MIT PROBLEM WITH FIXED CLIENT ASSIGN-
MENT

To find min∆D(A,∆), we first consider a more generalized
min-max problem P .

Definition 2. Given a n× n matrix Q =
(
qi,j
)
n×n

, problem

P is to find the values of σi (i = 1, 2, · · · , n) that
minimize

F (σ1, σ2, · · · , σn) =
n∑
i=1

max
j
{qi,j + σj} −

n∑
i=1

σi.

In the following, we show that the above problem P can
be reduced to a weighted bipartite matching problem.

Given an undirected bipartite graph with vertex parti-
tion (X,Y), a matching is a subset of edges M such that for
all vertices v ∈ X ∪ Y , at most one edge of M is incident
on v. A vertex v is said to be matched by matching M if
some edge inM is incident on v. Otherwise, v is unmatched.
We refer to a matching in which every vertex is matched
as a perfect matching [4]. Perfect matchings only exist in
bipartite graphs with equal size partitions |X| = |Y |. Hall’s
Theorem [27] gives the condition for a perfect matching to
exist in a bipartite graph.

Theorem 1 (Hall’s Theorem). A bipartite graph with vertex
partition (X,Y) has a matching of size |X| if and only if
every subset of vertices S ⊆ X is connected to at least
|S| vertices in Y .

Suppose that each edge in a bipartite graph is associated
with a non-negative weight. A maximum-weight matching is
a matching of maximum total edge weight. Given a n × n
matrix Q =

(
qi,j
)
n×n

, we can construct a (X,Y)-bipartite

graph where |X| = |Y | = n and each edge in the graph
is mapped onto an element located at the intersection of
the corresponding row and column of the matrix. Since the
constructed graph is a complete bipartite graph with two
equal size partitions, a maximum-weight matching in the
graph must be a perfect matching. Next, we show that the
minimum value of F in problem P (Definition 2) is given by
the weight of a maximum-weight matching in the (X,Y)-
bipartite graph constructed above.
Definition 3. Given a matrix Q, define M(Q) as the weight

of a maximum-weight matching in the bipartite graph
constructed from Q.

Proposition 1. The minimum value of F (σ1, σ2, · · · , σn) in
problem P is equal to M(Q).

Proof: Let σ∗i (i = 1, 2, · · · , n) be the optimal solu-
tion to problem P . Then, the minimum F value is given
by F (σ∗1 , σ

∗
2 , · · · , σ∗n) =

∑n
i=1 maxj{qi,j + σ∗j } −

∑n
i=1 σ

∗
i .

Define a new matrix Q∗ =
(
q∗i,j

)
n×n

where q∗i,j = qi,j +

σ∗j − σ∗i . In each row i of Q∗, we mark the largest ele-
ment(s) in the row, i.e., all the elements that are equal to
maxj{qi,j + σ∗j − σ∗i }.

We show that for each x = 1, 2, · · · , n, the marked
elements in any x rows of Q∗ must be distributed in
at least x columns of Q∗. Assume on the contrary that
the marked elements in a set of x rows with indexes
I = {i1, i2, · · · , ix} are distributed in a set of y columns
with indexes J = {j1, j2, · · · , jy} where y < x. Now,
suppose that we reduce σ∗j1 , σ

∗
j2
, · · · , σ∗jy by a small amount

5

ε > 0. Then, for the rows with indexes in I ∩ J , the
elements in columns j1, j2, · · · , jy (which include all the
marked elements in these rows) remain unchanged whereas
the elements in the other columns increase by ε. For the rows
with indexes in I−J , the elements in columns j1, j2, · · · , jy
(which include all the marked elements in these rows)
reduce by ε while the elements in the other columns do
not change. Therefore, for all the rows with indexes in I , the
marked elements remain to be the largest of their respective
rows as long as ε is small enough (for example, setting ε to
be less than the minimum difference between two elements
of different values in Q∗). Thus, by using such small ε, we
construct a new solution:

σ′i =

{
σ∗i − ε if i ∈ J,
σ∗i if i /∈ J.

The F value for the new solution is given by

F (σ′1, σ
′
2, · · · , σ′n) =

n∑
i=1

max
j
{qi,j + σ′j} −

n∑
i=1

σ′i

=
n∑
i=1

max
j
{qi,j + σ′j} −

n∑
i=1

σ∗i + |J | · ε

=
∑
i/∈I

max
j
{qi,j+σ′j−σ∗i }+

∑
i∈I

max
j
{qi,j+σ′j−σ∗i }+|J |·ε.

Since σ′j ≤ σ∗j for any j, it is obvious that
∑
i/∈I maxj{qi,j +

σ′j − σ∗i } ≤
∑
i/∈I maxj{qi,j + σ∗j − σ∗i }. As the largest

elements in each row of I are still the marked elements,
which are distributed in columns J , we have∑
i∈I

max
j
{qi,j + σ′j − σ∗i } =

∑
i∈I

max
j∈J
{qi,j + σ′j − σ∗i }

=
∑
i∈I

max
j∈J
{qi,j+σ∗j−ε−σ∗i }=

∑
i∈I

(
max
j∈J
{qi,j+σ∗j−σ∗i }−ε

)
=
∑
i∈I

max
j
{qi,j + σ∗j − σ∗i } − |I| · ε.

Therefore, it follows that

F (σ′1, σ
′
2, · · · , σ′n)

≤
∑
i/∈I

max
j
{qi,j + σ∗j − σ∗i }+

∑
i∈I

max
j
{qi,j + σ∗j − σ∗i }

+|J | · ε− |I| · ε

=
n∑
i=1

max
j
{qi,j + σ∗j } −

n∑
i=1

σ∗i + |J | · ε− |I| · ε

<
n∑
i=1

max
j
{qi,j + σ∗j } −

n∑
i=1

σ∗i = F (σ∗1 , σ
∗
2 , · · · , σ∗n),

which contradicts to that F (σ∗1 , σ
∗
2 , · · · , σ∗n) is minimum.

Thus, for each x = 1, 2, · · · , n, the marked elements in any
x rows of Q∗ must be distributed in at least x columns.

Now consider the bipartite graph constructed from ma-
trix Q∗. According to Hall’s Theorem, we can find a per-
fect matching in the bipartite graph consisting of only the
edges corresponding to the marked elements of Q∗. Sup-
pose the edge weights in this perfect matching are given
by q∗i,φ(i) (i = 1, 2, · · · , n) where φ(1), φ(2), · · · , φ(n) is a
permutation of 1, 2, · · · , n. Since q∗i,φ(i) is a marked element,
q∗i,φ(i) = maxj{qi,j + σ∗j − σ∗i }. Thus, F (σ∗1 , σ

∗
2 , · · · , σ∗n) =∑n

i=1 q
∗
i,φ(i). By Definition 3,

∑n
i=1 q

∗
i,φ(i) ≤ M(Q∗). There-

fore, F (σ∗1 , σ
∗
2 , · · · , σ∗n) ≤ M(Q∗). On the other hand, for

any perfect matching q∗i,ψ(i) (i = 1, 2, · · · , n), we have

n∑
i=1

q∗i,ψ(i) ≤
n∑
i=1

max
j
q∗i,j =

n∑
i=1

max
j
{qi,j + σ∗j } −

n∑
i=1

σ∗i

= F (σ∗1 , σ
∗
2 , · · · , σ∗n).

Since the bipartite graph constructed from Q∗ is a complete
bipartite graph with two equal size partitions, a maximum-
weight matching in the graph must be a perfect matching.
Thus, it follows that F (σ∗1 , σ

∗
2 , · · · , σ∗n) ≥ M(Q∗). Hence,

F (σ∗1 , σ
∗
2 , · · · , σ∗n) = M(Q∗).

Note that for any perfect matching q∗i,ψ(i),

n∑
i=1

q∗i,ψ(i) =
n∑
i=1

{qi,ψ(i) + σ∗ψ(i) − σ∗i }

=
n∑
i=1

qi,ψ(i) +
n∑
i=1

σ∗ψ(i) −
n∑
i=1

σ∗i =
n∑
i=1

qi,ψ(i).

Therefore, F (σ∗1 , σ
∗
2 , · · · , σ∗n) = M(Q∗) = M(Q).

Hence, the proposition is proven.
The following analysis establishes the relationship be-

tween min∆D(A,∆) and the minimum F value.

Proposition 2. In problem P , if columns j1 and j2 of Q are
identical, then any optimal solution σ∗1 , σ

∗
2 , · · · , σ∗n must

satisfy σ∗j1 = σ∗j2 .

Proof: Since columns j1 and j2 are identical, qi,j1 =
qi,j2 for each row i. Suppose that σ∗j1 6= σ∗j2 in the optimal
solution. Without loss of generality, we assume σ∗j1 < σ∗j2 .
Then, maxj∈{j1,j2}{qi,j + σ∗j } = qi,j2 + σ∗j2 for each 1 ≤
i ≤ n. Based on the optimal solution, we construct a new
solution σ′j , σ

′
2, · · · , σ′n by letting σ′j1 = σ∗j2 and keeping the

other variables unchanged, i.e., ∀j 6= j1, σ
′
j = σ∗j . Then, the

F value for the new solution is

F (σ′1, σ
′
2, · · · , σ′n) =

n∑
i=1

max
j
{qi,j + σ′j} −

n∑
i=1

σ′i

=
n∑
i=1

max
{

max
j 6=j1,j2

{qi,j+σ′j}, max
j∈{j1,j2}

{qi,j+σ′j}
}
−σ′j1−

∑
i 6=j1

σ′i

=
n∑
i=1

max
{

max
j 6=j1,j2

{qi,j+σ∗j }, qi,j2 +σ∗j2

}
− σ∗j2 −

∑
i 6=j1

σ∗i

=
n∑
i=1

max
{

max
j 6=j1,j2

{qi,j + σ∗j }, max
j∈{j1,j2}

{qi,j + σ∗j }
}

− σ∗j2 + σ∗j1 −
n∑
i=1

σ∗i

<
n∑
i=1

max
j
{qi,j + σ∗j } −

n∑
i=1

σ∗i = F (σ∗1 , σ
∗
2 , · · · , σ∗n).

This contradicts to the optimality of σ∗1 , σ
∗
2 , · · · , σ∗n.

Hence, the proposition is proven.

Corollary 1. Let QA be a |C|×|C|matrix of d(sA(ci), sA(cj))
(i, j = 1, 2, · · · , |C|). Then,

min
∆

D(A,∆) = 2 ·
|C|∑
i=1

d(ci, sA(ci)) + M(QA). (5)

6

Proof: According to Proposition 2, to solve problem P
for matrix QA, we only need to consider the solutions that
satisfy σi = σj for any pair of clients ci, cj where sA(ci) =
sA(cj). In this case, for each server s, all the σis that satisfy
sA(ci) = s must have the same value. Thus, we can replace
them by a common variable δs and obtain

F (σ1, σ2, · · · , σ|C|)

=

|C|∑
i=1

max
j
{d(sA(ci), sA(cj)) + σj} −

|C|∑
i=1

σi

=

|C|∑
i=1

max
s∈SA

{
d(sA(ci), s) + δs

}
−
|C|∑
i=1

δsA(ci), (6)

where SA is the set of servers that are assigned clients
under the client assignment A. Note that the simulation
times of the servers that are not assigned clients are not
really restricted by constraint (2). Their simulation times
can be set to lag behind those of the servers in SA by an
arbitrarily large amount to fulfill constraint (1), i.e., setting
δs � 0 for each s ∈ S − SA. Then, for any client ci,
maxs∈S

{
d(sA(ci), s) + δs

}
= maxs∈SA

{
d(sA(ci), s) + δs

}
.

Therefore, F (σ1, σ2, · · · , σ|C|) can be rewritten as

F (σ1, σ2, · · · , σ|C|)

=

|C|∑
i=1

max
s∈S

{
d(sA(ci), s) + δs

}
−
|C|∑
i=1

δsA(ci).

This implies that F (σ1, σ2, · · · , σn) has exactly the same
format as the second and third terms of D(A,∆) in (4). Note
that given a client assignment A, the first term of D(A,∆)
in (4) is fixed. Therefore,

min
∆

D(A,∆) = 2 ·
|C|∑
i=1

d(ci, sA(ci))

+ min
σ1,σ2,··· ,σ|C|

{
F (σ1, σ2, · · · , σ|C|)

}
= 2 ·

|C|∑
i=1

d(ci, sA(ci)) + M(QA).

Hence, the corollary is proven.

3.1 Hungarian Algorithm
Given a client assignment A, we construct a bipartite
graph G with vertex partitions X = {x1, x2, · · · , x|C|}
and Y = {y1, y2, · · · , y|C|}, and assign weight w(xi, yj) =
d(sA(ci), sA(cj)) to each edge (xi, yj). Then, M(QA) can
be calculated in polynomial time using the Hungarian algo-
rithm for weighted bipartite matching [15]. The pseudo code
of the Hungarian algorithm is presented in Algorithm 1,
where the equality subgraph Ge is defined as the spanning
subgraph ofG that includes all vertices ofG and those edges
(xi, yj) whose weights satisfy w(xi, yj) = l(xi) + l(yj).

The complexity of the original Hungarian algorithm is
O(|C|3). In our case, for each vertex in X , there are only |S|
different weights for all the edges incident on it, where |S|
is the number of servers. Specifically, if sA(cj1) = sA(cj2),
then w(xi, yj1) = w(xi, yj2). So, vertices yj1 and yj2 should
be either both in T or both in Y − T , which implies that
l(yj1) = l(yj2) holds throughout algorithm execution. Thus,

Algorithm 1: The Hungarian Algorithm
1 for each node xi ∈ X do
2 l(xi)← maxyj∈Y {w(xi, yj)};
3 for each node yj ∈ Y do
4 l(yj)← 0;

5 initialize an empty matching;
6 construct equality subgraph Ge;
7 for each exposed node u ∈ X do
8 R← {u}, T ← ∅;
9 for each node yj ∈ Y −T do

10 slack[yj] = minxi∈R{l(xi) + l(yj)− w(xi, yj)};
11 while T 6= Y do
12 find N(R): the set of vertices adjacent to R in

equality subgraph Ge;
13 while T ⊂ N(R) do
14 for each node v ∈ N(R)− T do
15 if v is exposed then
16 find the augmenting path from u to v

and update the matching;
17 break;

18 else
19 R← R ∪ {the matched node of v};
20 T ← T ∪ {v};
21 for each node yj ∈ Y −T do
22 update slack[yj];

23 update N(R): the set of vertices adjacent to R
in equality subgraph Ge;

24 ε← minyj∈Y−T slack[yj];
25 for each node xi ∈ R do
26 l(xi)← l(xi)− ε;

27 for each node yj ∈ T do
28 l(yj)← l(yj) + ε;

29 update equality graph Ge;

for each sk ∈ S, we can define zk = {yj | sA(cj) = sk}.
By maintaining the slack[·] values for each zk instead of for
each yj , the complexity of the Hungarian algorithm for our
special case can be improved to O(|C|2|S|).

4 HARDNESS OF MIT PROBLEM

Based on the analysis in the previous section, we now
analyze the hardness of the MIT problem. According to (5),
the minimum interaction time can be computed by

min
A,∆

D(A,∆) = min
A

{
2 ·
|C|∑
i=1

d(ci, sA(ci)) + M(QA)
}
.

Lemma 1. Given a n×n matrix Q, if all diagonal elements of
Q are 0, one non-diagonal element is 1 + x (x ≥ 0), and
all the other non-diagonal elements are 1, then M(Q) =
n+ x.

Lemma 2. Given a n×nmatrix Q, if there exist y (y ≤ n) ele-
ments that are located in y different rows and y different
columns of Q and have a sum of x, then M(Q) ≥ x.

Proof: The above two lemmas are self-evident.

Theorem 2. The MIT problem is NP-hard.

7

Proof: We show the NP-hardness of the MIT problem
by a polynomial reduction from the minimum set cover
problem which is known to be NP-hard [11]. The decision
version of the minimum set cover problem is defined as
follows: given a finite set P and a collection U of its subsets,
and a positive integer k ≤ |U|, find out whether U contains
a set cover for P of size at most k, i.e., whether there exists a
subcollection U′ ⊆ U with |U′| ≤ k such that

⋃
U∈U′ U = P .

Let R be an instance of the minimum set cover problem.
Suppose that set P contains n elements p1, p2, · · · , pn and
collection U contains m subsets U1, U2, · · · , Um. We first
construct a network with n clients c1, c2, · · · , cn and k
groups of servers. Each client ci corresponds to one element
pi in set P . Each server group consists of m subgroups,
each of which corresponds to one subset in U. The number
of servers in a subgroup is equal to the cardinality of
its corresponding subset, and each server in the subgroup
corresponds to one element in the subset. In the constructed
network, we say that a server and a client are associated if
they correspond to the same element in P . Clearly, each
server has only one client associated with it. The distance
between a server and a client is 1 if they are associated and is
2 otherwise. The inter-server distance is 1 if the two servers
are in different groups or in the same subgroup, and is 2
if they are in different subgroups of the same group. An
instance T of the MIT problem in its decision version is then
defined on this network. In the following, we show that, U
contains a set cover U′ of size at most k for instance R if and
only if there exist a client assignment A and simulation time
offsets ∆ satisfying D(A,∆) ≤ 3n for instance T of the MIT
problem.

Sufficiency: Suppose there exists a set cover U′ =
{Uj1 , Uj2 , · · · , Ujl} of size not exceeding k, i.e., l ≤ k. Then,
we construct a client assignment A that assigns all clients to
the servers in the following subgroups: the j1-th subgroup
of server group 1, the j2-th subgroup of server group 2, . . . ,
the jl-th subgroup of server group l. Since U′ is a set cover,
each client would have at least one server associated with it
in the above subgroups. By assigning each client to a server
associated with it, the distance between any client and its
assigned server is 1. Since all the aforementioned subgroups
belong to different server groups, the distance between any
two servers in these subgroups is 1. Thus, in the matrix
QA =

(
d(sA(ci), sA(cj))

)
n×n

, all non-diagonal elements

must be 1 and all diagonal elements are 0, which, according
to Lemma 1, leads to M(QA) = n. Let ∆∗ be the optimal
simulation time offsets of the servers under the constructed
client assignment A. It follows from Corollary 1 that

D(A,∆∗) = 2 ·
n∑
i=1

1 + M(QA) = 3n.

Necessity: Suppose that there exist a client assignment A
and simulation time offsets ∆A satisfying D(A,∆A) ≤ 3n.
Then, we have min∆D(A,∆) ≤ D(A,∆A) ≤ 3n. We first
show that in the client assignment A, each client must
be assigned to a server associated with it. Assume on
the contrary that there are a set X of clients that are not
assigned to servers associated with them. As a result, the
distances from these clients to their assigned servers are
2. The remaining n − |X| clients are assigned to servers

associated with them. Since each server is associated with
only one client, these n − |X| clients must be assigned to
n − |X| different servers. Therefore, the distances between
their assigned servers are at least 1. Denote these n − |X|
clients by cr1 , cr2 , · · · , crn−|X| . Consider the following
n − |X| elements in the matrix QA: d(sA(cr1), sA(cr2)),
d(sA(cr2), sA(cr3)), · · · , d(sA(crn−|X|−1

), sA(crn−|X|)),
d(sA(crn−|X|), sA(cr1)). These elements are located in
n − |X| different rows and n − |X| different columns of
QA, and their values are at least 1. According to Lemma 2,
M(QA) ≥ n− |X|. Thus, it follows from Corollary 1 that

min
∆

D(A,∆)=2·
∑
c/∈X

d(c, sA(c))+2·
∑
c∈X

d(c, sA(c))+M(QA)

≥ 2 ·
∑
c/∈X

1 + 2 ·
∑
c∈X

2 + n− |X|

= 2·
(
n−|X|

)
+ 4 · |X|+ n− |X| = 3n+ |X| ≥ 3n+ 1,

which contradicts to that min∆D(A,∆) ≤ 3n.
Next, we show that in the client assignment A, at most

one subgroup in each server group is assigned clients.
Otherwise, if two subgroups of the same server group are
both assigned clients, at least one non-diagonal element in
the matrix QA would be 2. Since all diagonal elements in
QA are 0 and all non-diagonal elements are no less than
1, according to Lemma 1, M(QA) ≥ n + 1. Note that the
distance from each client to its assigned server is at least 1.
Therefore,

min
∆

D(A,∆) = 2 ·
n∑
i=1

d(ci, sA(ci)) + M(QA)

≥ 2 · n · 1 + n+ 1 = 3n+ 1,

which again contradicts to that min∆D(A,∆) ≤ 3n.
We now construct a set cover U′ based on the client

assignment A by picking a subset from U if and only if at
least one of its corresponding server subgroups is assigned
clients in A. Since at most one subgroup in each server
group is assigned clients, the number of subgroups that
are assigned clients must not exceed the number of server
groups, i.e., k. Thus, |U′| ≤ k. Moreover, for each element
pi in set P , since client ci is assigned to a server associated
with it, the subset corresponding to its server’s subgroup
must cover pi and is picked by U′. It follows that U′ must
cover all the elements in P . Therefore, U′ is a set cover of
size at most k.

Hence, the theorem is proven.

5 APPROXIMATING MIT PROBLEM

We now study approximations of the MIT problem by fixing
the client assignment and/or the simulation time offsets.
An intuitive and easy-to-implement strategy for client as-
signment is to assign each client to its nearest server, i.e.,
the server with the shortest distance (network latency) to it.
This is known as the nearest-server assignment and is widely
used in many applications [8], [16], [26]. On the other hand,
a simple and straightforward setting of simulation times is
to synchronize the simulation times of the servers. Denote
such simulation time setting by ∆0 and denote the nearest-
server assignment by N .

8

IfN and ∆0 are employed together, the resultant interac-
tion time D(N,∆0) can be arbitrarily worse than the mini-
mum interaction time minA,∆D(A,∆). Figure 5 gives an ex-
ample network with n clients c1, c2, · · · , cn and two servers
s1, s2. In the nearest-server assignment, c1, c2, · · · , cn−1

are assigned to s1, and cn is assigned to s2. It can be
computed from (4) in Section 2 that D(N,∆0) = n + 2.
The optimal solution to the MIT problem can either as-
sign each client to its nearest server but set δs1 = 1 and
δs2 = 0, or assign all clients to server s1. The minimum
interaction time is minA,∆D(A,∆) = 4. Thus, the ratio
between the two results can be made arbitrarily large as
n goes towards infinity. In fact, it can be proved that
D(N,∆0) ≤ (|C|+1)·minA,∆D(A,∆) as detailed in Section
5.1.

Interestingly, however, constant approximation factors
can be achieved by either fixing the client assignment at N
or fixing the simulation time offsets at ∆0 as shall be shown
in Sections 5.2 and 5.3.

5.1 Approximating MIT Problem by Fixing Client As-
signment and Simulation Time Offsets

In this section, we show that for networks with the tri-
angle inequality, the interaction time resulting from fixing
the simulation time offsets at ∆0 under the nearest-server
assignment N has a tight approximation factor of (|C| + 1)
for the MIT problem, where |C| is the number of clients.

Theorem 3.

D(N,∆0) ≤ (|C|+ 1) ·min
A,∆

D(A,∆).

Proof: Let ni ∈ S be the nearest server of client ci, and
let SN = {ni|ci ∈ C} be the set of servers that are assigned
clients in the nearest-server assignment N . Under ∆0, the
simulation times of the servers in SN are synchronized. That
is, for all servers ni, δni

’s have the same value. In this case,
according to (6) in the proof to Corollary 1, we have

F (σ1, σ2, · · · , σ|C|) =

|C|∑
i=1

max
s∈SN

{
d(ni, s)

}
,

which is a constant independent of σ1, σ2, · · · , σ|C|. Thus,
D(N,∆0) is given by

D(N,∆0) = 2 ·
|C|∑
i=1

d(ci, ni) +

|C|∑
i=1

max
s∈SN

{d(ni, s)}. (7)

Define nmi
= arg maxs∈SN

{d(ni, s)}. Then, the above ex-
pression can be rewritten as

D(N,∆0) = 2 ·
|C|∑
i=1

d(ci, ni) +

|C|∑
i=1

d(ni, nmi).

Let oi ∈ S be the assigned server of client ci in the optimal
solution to the MIT problem. By the triangle inequality and

the fact that ni is the nearest server of ci, it follows that

D(N,∆0) ≤ 2 ·
|C|∑
i=1

d(ci, ni) +

|C|∑
i=1

(
d(ni, ci) + d(ci, oi)

+ d(oi, omi
) + d(omi

, cmi
) + d(cmi

, nmi
)
)

≤ 4 ·
|C|∑
i=1

d(ci, oi) + 2 ·
|C|∑
i=1

d(cmi
, omi

) +

|C|∑
i=1

d(oi, omi
).

(8)

We consider two different cases. In the first case, there
exist two different clients cj and ck such that mj 6= mk.
Then, d(cmj

, omj
) + d(cmk

, omk
) ≤ ∑|C|i=1 d(ci, oi). In addi-

tion, it is straightforward that d(cmi
, omi

) ≤ ∑|C|i=1 d(ci, oi)
for any other client ci (i 6= j, k). Thus, the second term of
(8) satisfies

2 ·
|C|∑
i=1

d(cmi , omi)

= 2 ·
(
d(cmj

, omj
) + d(cmk

, omk
) +

∑
i 6=j,k

d(cmi
, omi

)
)

≤ 2 ·
(|C|∑
i=1

d(ci, oi) + (|C| − 2) ·
|C|∑
i=1

d(ci, oi)
)

= (2|C| − 2) ·
|C|∑
i=1

d(ci, oi).

For the third term of (8), we have

|C|∑
i=1

d(oi, omi) ≤
|C|∑
i=1

max
j,k
{d(oj , ok)} = |C| ·max

j,k
{d(oj , ok)}.

Let QO be a |C|×|C|matrix of d(oi, oj) (i, j = 1, 2, · · · , |C|).
Since QO is symmetric, in the bipartite graph corresponding
to QO, we can always construct a perfect matching that
contains maxj<k{d(oj , ok)} and maxj>k{d(oj , ok)}. Note
that we have maxj<k{d(oj , ok)} = maxj>k{d(oj , ok)} =
maxj,k{d(oj , ok)}. Therefore, we obtain M(QO) ≥ 2 ·
maxj,k{d(oj , ok)}. It follows that

|C|∑
i=1

d(oi, omi) ≤
|C|
2
·M(QO).

As a result,

D(N,∆0) ≤ (2|C|+ 2) ·
|C|∑
i=1

d(ci, oi) +
|C|
2
·M(QO)

≤ (|C|+ 1) ·
(

2 ·
|C|∑
i=1

d(ci, oi) + M(QO)
)

= (|C|+ 1) ·min
A,∆

D(A,∆),

where the last step follows from Corollary 1 in Section 3.

In the second case, mi is the same for all clients ci. Then,
for client cmi , we have maxs∈SN

d(nmi , s) = d(nmi , nmi) =
0. That means for any server s ∈ SN , d(nmi , s) = 0. So, all
clients have the same nearest server. Thus, it follows from

9

o2

ε

cn nn

n1

n2

nn−1

c1

cn−1

c2 ε

ε

ε

ε/2

ε/2

ε/2

1 1− ε/2
o1

Fig. 4. The approximation factor (|C|+ 1) of D(N,∆0) is tight.

(7) that

D(N,∆0) = 2·
|C|∑
i=1

d(ci, ni) ≤ 2·
|C|∑
i=1

d(ci, oi) ≤ min
A,∆

D(A,∆).

So, D(N,∆0) must be an optimal solution.
Therefore, summarizing the above two cases, the approx-

imation factor is (|C|+ 1). Hence, the theorem is proven.
The above approximation factor is tight as shown by the

example in Figure 4. In this example, the nearest-server as-
signment assigns each client ci to server ni (i = 1, 2, · · · , n),
which gives D(N,∆0) = 2 · ((n − 1) · ε2 + 1 − ε

2) + n ·
(2 + 2ε) = 2n + 2 + (3n − 2)ε. On the other hand, the
optimal solution is to assign all clients to server o2 such that
minA,∆D(A,∆) = 2 ·((n−1) ·2ε+1) = 2+(4n−4)ε. Thus,
the ratio between the two results can be made arbitrarily
close to (n+ 1) as ε approaches 0.

5.2 Approximating MIT Problem by Fixing Client As-
signment

In Section 3, we have shown that the minimum achievable
interaction time under a fixed client assignment can be
computed efficiently in polynomial time. For networks with
the triangle inequality, it can be shown that the minimum
achievable interaction time under the nearest-server assign-
ment is within 3 times of the optimal solution to the MIT
problem.

Theorem 4. min∆D(N,∆) ≤ 3 ·minA,∆D(A,∆).

Proof: Let ni ∈ S be the nearest server of client ci.
According to Corollary 1 in Section 3, we have

min
∆

D(N,∆) = 2 ·
|C|∑
i=1

d(ci, ni) + M(QN),

where QN is a |C| × |C| matrix of d(ni, nj) (i, j =
1, 2, · · · , |C|).

Suppose that the maximum-weight matching in the bi-
partite graph constructed from QN includes d(ni, nφ(i))
(i = 1, 2, · · · , |C|) where φ(1), φ(2), · · · , φ(|C|) is a per-
mutation of 1, 2, · · · , |C|. It follows that

min
∆

D(N,∆) = 2 ·
|C|∑
i=1

d(ci, ni) +

|C|∑
i=1

d(ni, nφ(i)). (9)

Let oi ∈ S be the assigned server of client ci in the
optimal solution to the MIT problem. Then,

min
A,∆

D(A,∆) = 2 ·
|C|∑
i=1

d(ci, oi) + M(QO),

where QO is a |C| × |C| matrix of d(oi, oj) (i, j =
1, 2, · · · , |C|).

By the triangle inequality, we have

d(ni, nφ(i)) ≤ d(ni, ci) + d(ci, oi) + d(oi, oφ(i))

+ d(oφ(i), cφ(i)) + d(cφ(i), nφ(i)).
(10)

Since ni and nφ(i) are the nearest servers of clients ci and
cφ(i) respectively, it follows from (9) and (10) that

min
∆

D(N,∆) ≤
|C|∑
i=1

(
3 · d(ci, ni) + d(ci, oi) + d(oi, oφ(i))

+ d(oφ(i), cφ(i)) + d(cφ(i), nφ(i))
)

≤
|C|∑
i=1

(
4 · d(ci, oi) + d(oi, oφ(i)) + 2 · d(oφ(i), cφ(i))

)

= 4 ·
|C|∑
i=1

d(ci, oi) +

|C|∑
i=1

d(oi, oφ(i)) + 2 ·
|C|∑
i=1

d(oφ(i), cφ(i))

= 6 ·
|C|∑
i=1

d(ci, oi) +

|C|∑
i=1

d(oi, oφ(i)).

Since d(ni, nφ(i)) (i = 1, 2, · · · , |C|) is a perfect matching
in the bipartite graph constructed from QN , d(oi, oφ(i)) (i =
1, 2, · · · , |C|) must also be a perfect matching in the bipartite
graph constructed from QO. By Definition 3, we have

|C|∑
i=1

d(oi, oφ(i)) ≤ M(QO).

Therefore, it follows that

min
∆

D(N,∆) ≤ 6 ·
|C|∑
i=1

d(ci, oi) + M(QO) (11)

≤ 3 ·
(

2 ·
|C|∑
i=1

d(ci, oi) + M(QO)
)
≤ 3 ·min

A,∆
D(A,∆).

Hence, the theorem is proven.
The above approximation factor of 3 is tight. Figure 6

gives an example network with two clients c1, c2 and three
servers s, s1, s2. In the nearest-server assignment, c1 and c2
are assigned to s1 and s2 respectively. Under such client
assignment, the minimum interaction time min∆D(N,∆)
is 12a − 8ε, which can be achieved as long as the relative
offset between the simulation times of s1 and s2 is within
4a − 2ε (i.e., the network latency between them). On the
other hand, the optimal solution to the MIT problem is to
assign both clients to server s, so that the interaction time is
4a, i.e., minA,∆D(A,∆) = 4a. Thus, the ratio between the
two results can be made arbitrarily close to 3 as ε approaches
0.

5.3 Approximating MIT Problem by Fixing Simulation
Time Offsets

In this section, we approximate the MIT problem by fixing
the simulation time offsets at ∆0. Let SA be the set of servers

10

s1 s2 cn
1

1
n

1
n

1
n

1
n

c1

c2

cn−1

Fig. 5. The approximation factor of D(N,∆0) is not bounded.

sc1 c2s1 s2

a− ε a− εa a

Fig. 6. The approximation factor 3 of min∆ D(N,∆) is tight.

that are assigned clients in a client assignment A. Similar to
obtaining (7) in Section 5.1, D(A,∆0) is given by

D(A,∆0) = 2 ·
|C|∑
i=1

d(ci, sA(ci)) +

|C|∑
i=1

max
s∈SA

{
d(sA(ci), s)

}
,

(12)
In the following, we first show that finding

minAD(A,∆0) is also an NP-hard problem.
Theorem 5. When the simulation times of the servers are syn-

chronized, finding a client assignment that minimizes
the interaction time, i.e., finding minAD(A,∆0), is NP-
hard.

Proof: Similar to the proof to Theorem 2, we show the
NP-hardness by a polynomial reduction from the minimum
set cover problem. Given an instance of the minimum set
cover problem, we construct the same network as in the
proof to Theorem 2 and show that there exists a set cover of
size at most k if and only if there exists a client assignment
A satisfying D(A,∆0) ≤ 3n on the constructed network.

Sufficiency: Suppose that there exists a set cover of size at
most k. We construct a client assignment A in the same way
as in the proof to Theorem 2. Under this client assignment,
the distance between any client and its assigned server is 1,
and the distance between any two servers that are assigned
clients is also 1. Thus, we have

D(A,∆0) = 2 ·
n∑
i=1

1 +
n∑
i=1

1 = 2n+ n = 3n.

Necessity: In the proof to Theorem 2, we have shown
that if there does not exist any set cover of size at most
k, then ∀A and ∆, D(A,∆) > 3n. The latter implies that
∀A,D(A,∆0) > 3n. Thus, the necessity is proven.

The following analysis shows that minAD(A,∆0) can
approximate the MIT problem with a better factor than
min∆D(N,∆) for networks with the triangle inequality.

Lemma 3. For any n×n matrix Q =
(
qi,j
)
n×n

, it holds that

M(Q) ≥ 1
n

∑n
i=1

∑n
j=1 qi,j .

Proof: Consider the following n permutations of
1, 2, · · · , n:

φ1 = (1, 2, · · · , n), φ2 = (2, 3, · · · , 1),

· · · · · · , φn = (n, 1, · · · , n−1).

For each permutation φj (1 ≤ j ≤ n), qi,φj(i) (i =
1, 2, · · · , n) is a perfect matching in the bipartite graph

constructed from Q. By Definition 3, we have M(Q) ≥∑n
i=1 qi,φj(i). By adding up the inequalities for all js, we

have

n ·M(Q) ≥
n∑
j=1

n∑
i=1

qi,φj(i) =
n∑
i=1

n∑
j=1

qi,j .

Therefore,

M(Q) ≥ 1

n

n∑
i=1

n∑
j=1

qi,j .

Hence, the lemma is proven.

Theorem 6. minAD(A,∆0) ≤ 2 ·minA,∆D(A,∆).

Proof: Let oi ∈ S be the assigned server of client ci in
the optimal solution to the MIT problem. Then, we have

min
A,∆

D(A,∆) = 2 ·
|C|∑
i=1

d(ci, oi) + M(QO),

where QO is a |C| × |C| matrix of d(oi, oj) (i, j =
1, 2, · · · , |C|).

For each server oj (j = 1, 2, · · · , |C|), denote by Aoj the
client assignment that assigns all clients to oj . Then, we have

D(Aoj ,∆0) = 2 ·
|C|∑
i=1

d(ci, oj).

By adding up the above inequalities for all ojs, we have

|C|∑
j=1

D(Aoj ,∆0) = 2 ·
|C|∑
j=1

|C|∑
i=1

d(ci, oj).

By the triangle inequality, we have

|C|∑
j=1

D(Aoj ,∆0) ≤ 2 ·
|C|∑
j=1

|C|∑
i=1

(
d(ci, oi) + d(oi, oj)

)
= 2|C| ·

|C|∑
i=1

d(ci, oi) + 2 ·
|C|∑
i=1

|C|∑
j=1

d(oi, oj).

According to Lemma 3,

|C|∑
i=1

|C|∑
j=1

d(oi, oj) ≤ |C| ·M(QO).

Thus,
|C|∑
j=1

D(Aoj ,∆0) ≤ 2|C| ·
|C|∑
i=1

d(ci, oi) + 2|C| ·M(QO) (13)

≤ 2|C| ·
(

2 ·
|C|∑
i=1

d(ci, oi) + M(QO)
)

= 2|C| ·min
A,∆

D(A,∆).

Since for each server oj (j = 1, 2, · · · , |C|),
min
A
D(A,∆0) ≤ D(Aoj ,∆0),

it follows that

min
A
D(A,∆0) ≤ 1

|C|

|C|∑
j=1

D(Aoj ,∆0) ≤ 2 ·min
A,∆

D(A,∆).

(14)
Hence, the theorem is proven.

11

5.3.1 A Greedy Heuristic

The proof to Theorem 6 implies that the approximation fac-
tor 2 is in fact applicable to any client assignment algorithm
that takes into consideration those of assigning all clients
to each of the available servers. Thus, although finding
the best client assignment under simulation time setting
∆0 is NP-hard, it is straightforward to design efficient 2-
approximation algorithms under ∆0.

We present a heuristic called Greedy Assignment for as-
signing clients to servers to optimize D(A,∆0). The al-
gorithm maintains a set of active servers Sact, and the
clients are allowed to be assigned to the active servers only.
Algorithm 2 presents the pseudo code of Greedy Assignment.
The algorithm starts with Sact = ∅, and iteratively adds
servers into the set to reduce the average interaction time.
In each iteration, the algorithm considers each server s not
currently in Sact, and computes a new client assignment
assuming that s is added into Sact. Among all the servers
s that can reduce the average interaction time if added
to Sact, the algorithm chooses the one that produces the
minimum average interaction time. This process continues
until the average interaction time cannot be further reduced
by adding any new server into Sact.

Greedy Assignment adopts the following strategy, as de-
scribed in Algorithm 3, to compute the client assignment
given a set of active servers Sact. By assuming that each
server in Sact is assigned at least one client, it follows from
(12) that

D(A,∆0) =

|C|∑
i=1

(
2 · d(ci, sA(ci)) + max

s∈Sact

{
d(sA(ci), s)

})
.

Thus, the optimal assignment under this assumption is to
assign each client c to the server in Sact that minimizes
2 · d(c, sA(c)) + maxs∈Sact

{d(sA(c), s)}. Given Sact, the
algorithm performs such assignment for all clients. Let Sact′
be the set of servers that are actually assigned clients in
the aforementioned assignment. If Sact′ ⊂ Sact, i.e., some
servers in Sact are not assigned any client, the algorithm
updates Sact with S′act and repeats the above process. If
Sact′ = Sact, it stops and returns the current client assign-
ment.

In the client assignment process (Algorithm 3), the com-
plexity of each loop iteration (lines 3 - 9) is O(|C||Sact|),
and there are at mostO(|Sact|) iterations since each iteration
reduces |Sact| by at least 1 before the loop stops. Therefore,
the total complexity of the Greedy Assignment algorithm is
O(
∑
Sact

(|S| − |Sact|)|C||Sact|2) = O(|C||S|4).

5.4 A Hybrid Approach

Inspired by a mixed heuristic for the server placement
problem of DIAs [32], we further derive from the proofs
to Theorems 4 and 6 that the better approximation between
fixing client assignment and fixing simulation time offsets
has an improved approximation factor of 5/3.

Theorem 7. min
{

min∆D(N,∆),minAD(A,∆0)
}
≤ 5

3 ·
minA,∆D(A,∆).

Algorithm 2: The Greedy Assignment Algorithm
Output: D - The average interaction time

A - The assignment
1 Sact = ∅;
2 D =∞;
3 repeat
4 D? = D;
5 foreach s /∈ Sact do
6 Sact = Sact ∪ {s};
7 (D′, A′) = Assign(Sact);
8 if D′ < D? then
9 D? = D′;

10 A? = A′;
11 s? = s;

12 Sact = Sact\{s};
13 improve = D −D?;
14 if improve > 0 then
15 Sact = Sact ∪ {s?};
16 D = D?;
17 A = A?;

18 until improve ≤ 0;

Algorithm 3: Assign
Input : Sact - The set of active servers
Output: D - The average interaction time

A - The assignment
1 S′act = Sact;
2 repeat
3 Sact = S′act;
4 foreach s ∈ Sact do
5 m[s] = maxs′∈Sact{d(s, s′)};
6 foreach c ∈ C do
7 s? = argmaxs′∈Sact

{2 · d(c, s′) +m[s′]};
8 set sA(c) = s?;

9 S′act = {s|∃c ∈ C, sA(c) = s};
10 until S′act == Sact;
11 D =

∑
c{2 · d(c, sA(c)) +m[sA(c)]};

12 return (D,A);

Proof: According to (11) in the proof to Theorem 4,

min
∆

D(N,∆) ≤ 6 ·
|C|∑
i=1

d(ci, oi) + M(QO).

According to (13) and (14) in the proof to Theorem 6,

min
A
D(A,∆0) ≤ 1

|C|

|C|∑
j=1

D(Aoj ,∆0)

≤ 2 ·
|C|∑
i=1

d(ci, oi) + 2 ·M(QO).

Therefore, the better approximation between
min∆D(N,∆) and minAD(A,∆0) satisfies

min
{

min
∆

D(N,∆),min
A
D(A,∆0)

}
≤ 1

3
·
(

min
∆

D(N,∆) + 2 ·min
A
D(A,∆0)

)
≤ 1

3
·
(

10 ·
|C|∑
i=1

d(ci, oi) + 5 ·M(QO)
)

12

=
5

3
·
(

2 ·
|C|∑
i=1

d(ci, oi) + M(QO)
)

=
5

3
·min
A,∆

D(A,∆).

Hence, the theorem is proven.

5.5 Dealing with Limited Server Capacities

So far, we have not assumed any limitation on the server
capacity. If the capacity of each server is limited, the number
of clients assigned to each server must be kept within its
capacity to prevent the processing delay at the server from
increasing significantly [18]. Our proposed algorithms can
be easily adapted to ensure that the capacity of each server
is not exceeded. In Nearest-Server Assignment, if the nearest
server of a client is fully occupied, the client can try to
connect to the remaining servers in increasing order of
their distances to the client until a server not yet saturated
is found. For Greedy Assignment, we can first rank all the
servers in ascending order of their total distances to all the
clients, and initialize the active server set Sact to include top
d|C|/P e servers in the ranking, where P is the capacity of a
server. In the client assignment process (Algorithm 3), only
the servers not yet saturated are considered when assigning
the clients. With limited server capacities, the approximation
factors analyzed earlier may not hold. We leave the approx-
imability analysis of the “capacitated” MIT problem to the
future work. In the next section, we experimentally evaluate
the “capacitated” algorithms.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

We evaluate the above approximation approaches using
three real network latency datasets: the Meridian dataset,
the PlanetLab-All-Pairs-Pings dataset, and the PlanetLab-
Datacenter dataset. The Meridian dataset is collected in
the Meridian project [19], which contains pairwise latency
measurements between nodes in the Internet using the
King technique [13]. In our simulation, the network is
represented by a complete latency matrix among 1796
nodes. The PlanetLab-All-Pairs-Pings dataset is collected by
J. Stribling [23], which includes periodic pairwise latency
measurements between PlanetLab nodes performed every
15 minutes. In our simulation, we use the data collected
on May 8, 2005 that contains 220 nodes and calculate the
average pairwise latencies through the day. The PlanetLab-
Datacenter dataset consists of two network latency datasets.
The first dataset collected by Wu et al. [28] contains latency
measurements between PlanetLab nodes and datacenters
from Amazon EC2 and Microsoft Azure. The second dataset
collected by Garcia-Dorado et al. [10] contains latency mea-
surements between all pairs of datacenters from Amazon
EC2 and Microsoft Azure. We integrate these two datasets
and simulate a network including 253 PlanetLab nodes
and 13 datacenters with 7 from Amazon EC2 and 6 from
Microsoft Azure. Throughout our experiments, servers are
placed at a certain number of selected nodes, and a client is
assumed to be located at each of the remaining nodes. The
experiments are carried out with different server numbers
and capacities. All experiments are conducted with a PC
workstation with 16GB RAM and Intel Core i7-4770 CPU.

Three types of server placement schemes are simulated
in the experiments for the Meridian and PlanetLab-All-
Pairs-Pings datasets: random, k-center, and k-median. For
random placement, we perform 10 simulation runs using
different sets of randomly selected nodes to place servers,
and present the average performance results along with the
10th and 90th percentile results. The k-center and k-median
problems are widely used to model server placement in
the Internet [5]. Both problems are NP-hard [11]. In our
experiments, we employ two greedy heuristics of the k-
center and k-median problems [5], [20] to place servers.
For the PlanetLab-Datacenter dataset, we straightforwardly
place servers at all the datacenters.

We construct a theoretical lower bound of
minA,∆D(A,∆) to quantify the relative performance
of different approaches. According to Corollary 1 and
Lemma 3, we have

min
∆

D(A,∆) = 2 ·
|C|∑
i=1

d(ci, sA(ci)) + M(QA)

≥ 2 ·
|C|∑
i=1

d(ci, sA(ci)) +
1

|C|

|C|∑
i=1

|C|∑
j=1

d(sA(ci), sA(cj))

=
1

|C|

|C|∑
i=1

|C|∑
j=1

(
d(ci, sA(ci))+d(sA(ci), sA(cj))+d(sA(cj), cj)

)
.

For any client assignment A, we have

d(ci, sA(ci)) + d(sA(ci), sA(cj)) + d(sA(cj), cj)

≥ min
sa,sb∈S

{d(ci, sa) + d(sa, sb) + d(sb, cj)}.

Therefore, minA,∆D(A,∆) must be bounded by

1

|C|

|C|∑
i=1

|C|∑
j=1

min
sa,sb∈S

{d(ci, sa) + d(sa, sb) + d(sb, cj)}.

Note that this lower bound may not be achievable by any
client assignment A and simulation time setting ∆, and is
thus not tight. The interaction time D(A,∆) produced by
each approximation approach is normalized with respect to
the above lower bound.

We evaluate four approaches: (1) assign each client to its
nearest server and synchronize the simulation times of the
assigned servers (denoted by Nearest+Sync, which is the
baseline approach discussed at the beginning of Section 5);
(2) assign each client to its nearest server and optimize the
simulation time setting as discussed in Section 3 (denoted by
Nearest+OptTime); (3) optimize the client assignment using
Greedy Assignment as discussed in Section 5.3.1 and synchro-
nize the simulation times of the assigned servers (denoted
by Greedy+Sync); (4) assign the clients and/or optimize
the simulation time setting using the hybrid approach as
discussed in Section 5.4 (denoted by Hybrid).

6.2 Experimental Results
Figure 7 shows the normalized interaction times as a func-
tion of the server capacity when there are 60 servers placed
in the network represented by the Meridian dataset, where
the server capacity refers to the maximum number of clients
that can be assigned to each server. The error bars indicate

13

7

5

3

1

N
or

m
al

iz
ed

 In
te

ra
ct

io
n

Ti
m

e

35 50 100 200 300 400 800 1200 1600 1750
Server Capacity

 Nearest+Sync
 Nearest+OptTime
 Greedy+Sync
 Hybrid

(a) Random server placement

11

9

7

5

3

1

No
rm

al
ize

d
In

te
ra

ct
io

n
Ti

m
e

35 50 100 200 300 400 800 1200 1600 1750
Server Capacity

 Nearest+Sync
 Nearest+OptTime
 Greedy+Sync
 Hybrid

(b) k-center server placement

11

9

7

5

3

1

No
rm

al
ize

d
In

te
ra

ct
io

n
Ti

m
e

35 50 100 200 300 400 800 1200 1600 1750
Server Capacity

 Nearest+Sync
 Nearest+OptTime
 Greedy+Sync
 Hybrid

(c) k-median server placement

Fig. 7. Results for Meridian dataset with 60 servers.

3

2

1

N
or

m
al

iz
ed

 In
te

ra
ct

io
n

Ti
m

e

25 45 65 85 105 125 160 220
Server Capacity

 Nearest+Sync
 Nearest+OptTime
 Greedy+Sync
 Hybrid

(a) Random server placement

4

3

2

1

N
or

m
al

iz
ed

 In
te

ra
ct

io
n

Ti
m

e

25 45 65 85 105 125 160 220
Server Capacity

 Nearest+Sync
 Nearest+OptTime
 Greedy+Sync
 Hybrid

(b) k-center server placement

3

2

1

N
or

m
al

iz
ed

 In
te

ra
ct

io
n

Ti
m

e

25 45 65 85 105 125 160 220
Server Capacity

 Nearest+Sync
 Nearest+OptTime
 Greedy+Sync
 Hybrid

(c) k-median server placement

Fig. 8. Results for PlanetLab-All-Pairs-Pings dataset with 10 servers.

the 10th and 90th percentile results for random server
placement. Note that the theoretical lower bound does not
assume any server capacity limitation and is thus indepen-
dent of the server capacity. Therefore, all the results for
each server placement are normalized with the same base. It
can be seen that the interaction times resulting from all the
algorithms usually increase with decreasing server capacity.
This is because at lower server capacities, the algorithms are
less likely to succeed in assigning clients to the most prefer-
able servers. In general, Nearest+OptTime, Greedy+Sync
and Hybrid significantly outperform the intuitive Near-
est+Sync approach. This implies that simply assigning each
client to its nearest server and synchronizing the simulation
times may not be effective in minimizing the interaction
time for continuous DIAs. Comparing the remaining three

3

2

1

N
or

m
al

iz
ed

 In
te

ra
ct

io
n

Ti
m

e

30 50 70 90 110 130 170 210 270
Server Capacity

 Nearest+Sync
 Nearest+OptTime
 Greedy+Sync
 Hybrid

Fig. 9. Results for PlanetLab-Datacenter dataset .

approaches, Hybrid produces the best performance. This
indicates that it is beneficial to choose the approximation
approach to the MIT problem in an adaptive manner. We
remark that since Hybrid simply takes the better solution
between Nearest+OptTime and Greedy+Sync, it adds very
little execution time compared to these two algorithms.

Similar results are observed in the experiments with
other numbers of servers and with the other two network la-
tency datasets. Figure 8 shows the results for the PlanetLab-
All-Pairs-Pings dataset when there are 10 servers placed
in the network, and Figure 9 shows the results for the
PlanetLab-Datacenter dataset.

7 CONCLUSIONS

In this paper, we have studied the MIT problem for mini-
mizing the interaction times in continuous distributed inter-
active computing by optimizing the client assignment and
the simulation time offsets among servers. We have shown
that the MIT problem is NP-hard. To approximate the MIT
problem, two approaches are presented: by fixing the client
assignment and by fixing the simulation time offsets among
servers. When the client assignment is fixed, we have shown
that finding the minimum achievable interaction time can
be reduced to a weighted bipartite matching problem. When
the simulation time offsets among servers are fixed, we have
shown that finding the minimum achievable interaction
time is still NP-hard. The approximation factors of the above
two approaches as well as a hybrid approach combining
them have been analyzed. These approximation approaches

14

have been compared by experimental evaluation using real
Internet latency data. For future work, we plan to extend the
approximability analysis to the “capacitated” MIT problem.

ACKNOWLEDGMENTS

This work is supported by Singapore Ministry of Education
Academic Research Fund Tier 2 under Grant MOE2013-T2-
2-067, and Academic Research Fund Tier 1 under Grant
2014-T1-001-145.

REFERENCES

[1] A. Agustina, F. Liu, S. Xia, H. Shen, and C. Sun. CoMaya:
incorporating advanced collaboration capabilities into 3D digital
media design tools. In Proceedings of ACM CSCW 2008, pages 5–8,
2008.

[2] L. Ahmad, A. Boukerche, A. Al Hamidi, A. Shadid, and R. Pazzi.
Web-based e-learning in 3D large scale distributed interactive
simulations using HLA/RTI. In Proceedings of IEEE IPDPS 2008,
pages 1–4, 2008.

[3] J. Brun, F. Safaei, and P. Boustead. Managing latency and fairness
in networked games. Communications of the ACM, 49(11):46–51,
2006.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2001.

[5] E. Cronin, S. Jamin, C. Jin, A.R. Kurc, D. Raz, and Y. Shavitt.
Constrained mirror placement on the Internet. IEEE Journal on
Selected Areas in Communications, 20(7):1369–1382, 2002.

[6] E. Cronin, A.R. Kurc, B. Filstrup, and S. Jamin. An efficient
synchronization mechanism for mirrored game architectures. Mul-
timedia Tools and Applications, 23(1):7–30, 2004.

[7] D. Delaney, T. Ward, and S. McLoone. On consistency and network
latency in distributed interactive applications: A survey-Part I.
Presence: Teleoperators & Virtual Environments, 15(2):218–234, 2006.

[8] C. Ding, Y. Chen, T. Xu, and X. Fu. CloudGPS: A scalable and
ISP-friendly server selection scheme in cloud computing environ-
ments. In Proceedings of IEEE/ACM IWQoS 2012, 2012.

[9] C. Diot and L. Gautier. A distributed architecture for multiplayer
interactive applications on the Internet. IEEE Network Magazine,
13(4):6–15, 1999.

[10] Jose Garcia-Dorado and Sanjay Rao. Cost-aware multi data-center
bulk transfers in the cloud from a customer-side perspective. IEEE
Transactions on Cloud Computing, PrePrints, 2015.

[11] M.R. Garey and D.S. Johnson. Computers and intractability: A guide
to the theory of NP-completeness. WH Freeman and Company, Calif,
1979.

[12] L. Gautier, C. Diot, and J. Kurose. End-to-end transmission
control mechanisms for multiparty interactive applications on the
Internet. In Proceedings of IEEE INFOCOM 1999, pages 1470–1479,
1999.

[13] K.P. Gummadi, S. Saroiu, and S.D. Gribble. King: Estimating
latency between arbitrary Internet end hosts. In Proc. 2nd ACM
SIGCOMM Workshop on Internet Measurment, pages 5–18, 2002.

[14] C. Jay, M. Glencross, and R. Hubbold. Modeling the effects
of delayed haptic and visual feedback in a collaborative virtual
environment. ACM Transactions on Computer-Human Interaction,
14(2), 2007.

[15] E. Lawler. Combinatorial optimization: networks and matroids. Dover
Publications, 2001.

[16] K.W. Lee, B.J. Ko, and S. Calo. Adaptive server selection for large
scale interactive online games. Computer Networks, 49(1):84–102,
2005.

[17] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and
timewarp: Providing consistency for replicated continuous appli-
cations. IEEE Transactions on Multimedia, 6(1):47–57, 2004.

[18] P. Morillo, J.M. Orduna, M. Fernandez, and J. Duato. Improving
the performance of distributed virtual environment systems. IEEE
Trans. Parallel Distrib. Syst., 16(7):637–649, 2005.

[19] Meridian Project. The meridian latency data set. [Online] Avail-
able: http://www.cs.cornell.edu/People/egs/meridian/, 2011.

[20] L. Qiu, V.N. Padmanabhan, and G.M. Voelker. On the placement of
web server replicas. In Proc. IEEE INFOCOM’01, pages 1587–1596.

[21] F. Safaei, P. Boustead, C.D. Nguyen, J. Brun, and M. Dowlat-
shahi. Latency-driven distribution: infrastructure needs of partici-
patory entertainment applications. IEEE Communications Magazine,
43(5):106–112, 2005.

[22] S. Singhal and M. Zyda. Networked virtual environments: design and
implementation. Addison-Wesley Reading, MA, 1999.

[23] J. Stribling. Planetlab all-pairs-pings. [Online] Available: http:
//pdos.lcs.mit.edu/∼strib/, 2011.

[24] D.N.B. Ta and S. Zhou. A two-phase approach to interactiv-
ity enhancement for large-scale distributed virtual environments.
Computer Networks, 51(14):4131–4152, 2007.

[25] S.D. Webb and S. Soh. Adaptive client to mirrored-server assign-
ment for massively multiplayer online games. In Proceedings of
MMCN 2008, 2008.

[26] S.D. Webb, S. Soh, and W. Lau. Enhanced mirrored servers for
network games. In Proceedings of ACM SIGCOMM NetGames 2007,
pages 117–122, 2007.

[27] D.B. West. Introduction to graph theory. Prentice hall Englewood
Cliffs, 2001.

[28] Zhe Wu and Harsha V Madhyastha. Understanding the latency
benefits of multi-cloud webservice deployments. ACM SIGCOMM
Computer Communication Review, 43(2):13–20, 2013.

[29] L. Zhang and X. Tang. Optimizing client assignment for enhancing
interactivity in distribute interactive applications. IEEE/ACM
Transactions on Networking, 20(6):1707–1720, 2012.

[30] L. Zhang and X. Tang. The client assignment problem for continu-
ous distributed interactive applications: analysis, algorithms, and
evaluation. IEEE Transactions on Parallel and Distributed Systems,
25(3):785–795, 2014.

[31] Lu Zhang, Xueyan Tang, and Bingsheng He. Brief announcement:
on minimum interaction time for continuous distributed interac-
tive computing. In Proceedings of PODC 2013, pages 122–124. ACM,
2013.

[32] H. Zheng. Server Provisioning for Distributed Interactive Applications.
PhD Thesis, Nanyang Technological University, 2014.

[33] H. Zheng and X. Tang. Analysis of server provisioning for dis-
tributed interactive applications. IEEE Transactions on Computers,
64(10):2752–2766, 2015.

Lu Zhang Lu Zhang received the BEng de-
gree in computer science and engineering from
University of Science and Technology of China
in 2008, and the PhD degree in computer sci-
ence from Nanyang Technological University in
2013. He is currently a postdoctoral researcher
in the Computer Science and Computer Engi-
neering Department, University of Arkansas. His
research interests include distributed computing,
discrimination-aware data mining, and causal in-
ference.

Xueyan Tang Xueyan Tang received the BEng
degree in computer science and engineering
from Shanghai Jiao Tong University in 1998, and
the PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2003. He is currently an associate profes-
sor in the School of Computer Science and En-
gineering at Nanyang Technological University,
Singapore. He has served as an associate editor
of the IEEE Transactions on Parallel and Dis-
tributed Systems. His research interests include

distributed systems, cloud computing, mobile and pervasive computing,
and wireless sensor networks. He is a senior member of the IEEE.

15

Bingsheng He Bingsheng He received the
bachelor degree in computer science from
Shanghai Jiao Tong University (1999-2003), and
the PhD degree in computer science in Hong
Kong University of Science and Technology
(2003-2008). He is an Associate Professor in
School of Computing, National University of Sin-
gapore. His research interests are high perfor-
mance computing, distributed and parallel sys-
tems, and database systems.

