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The Client Assignment Problem for
Continuous Distributed Interactive Applications:

Analysis, Algorithms, and Evaluation
Lu Zhang and Xueyan Tang

Abstract—Interactivity is a primary performance measure for distributed interactive applications (DIAs) that enable participants at
different locations to interact with each other in real time. Wide geographical spreads of participants in large-scale DIAs necessitate
distributed deployment of servers to improve interactivity. In a distributed server architecture, the interactivity performance depends
on not only client-to-server network latencies but also inter-server network latencies as well as synchronization delays to meet the
consistency and fairness requirements of DIAs. All of these factors are directly affected by how the clients are assigned to the
servers. In this paper, we investigate the problem of effectively assigning clients to servers for maximizing the interactivity of DIAs.
We focus on continuous DIAs that change their states not only in response to user operations but also due to the passing of time. We
analyze the minimum achievable interaction time for DIAs to preserve consistency and provide fairness among clients, and formulate
the client assignment problem as a combinational optimization problem. We prove that this problem is NP-complete. Three heuristic
assignment algorithms are proposed and their approximation ratios are theoretically analyzed. The performance of the algorithms is
also experimentally evaluated using real Internet latency data. The experimental results show that our proposed Greedy Assignment
and Distributed-Modify Assignment algorithms generally produce near optimal interactivity and significantly reduce the interaction time
between clients compared to the intuitive algorithm that assigns each client to its nearest server.

Index Terms—distributed interactive application, client assignment, interactivity, consistency, fairness, NP-complete.
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1 INTRODUCTION

D ISTRIBUTED Interactive Applications (DIAs), such as
multi-player online games and distributed interactive

simulations, allow participants at different locations to interact
with one another through networks. Thus, the interactivity of
DIAs is important for participants to have enjoyable interaction
experiences. Normally, interactivity is characterized by the
duration from the time when a participant issues an operation
to the time when the effect of the operation is presented
to the same participant or other participants [14]. We refer
to this duration as the interaction time between participants.
Network latency is known as a major barrier to provide good
interactivity in DIAs [9]. It cannot be eliminated from the
interactions among participants and has a lower theoretical
limit imposed by the speed of light. In this paper, we focus on
reducing network latency for improving interactivity in DIAs.
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Fig. 1. Distributed server architecture.
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Increasing geographical spreads of participants in large-
scale DIAs are making distributed server deployment vital
for combating the network latency [1], [3]. Latency-driven
distribution of servers is essential even when there are no
limitations on the availability of server resources at one
location [22]. In a distributed server architecture, the state
of a DIA (such as the virtual world in a multi-player online
game) is often replicated across a group of geographically
distributed servers [4], [6]. As shown in Figure 1, each
participant, known as a client, is assigned to one server and
connects to the server for sending user-initiated operations
and receiving updates of the application state. When issuing
an operation, a client first sends the operation to its assigned
server. Then, the server forwards the operation to all the other
servers. On receiving the operation, each server calculates
the new state of the application and sends a state update to
all the clients assigned to it. Thus, the clients interact with
one another through their assigned servers. The interaction
time between any pair of clients must include the network
latencies between the clients and their assigned servers, and
the network latency between their assigned servers. These
network latencies are directly affected by how the clients are
assigned to the servers. In addition, the interaction time is
also influenced by the consistency and fairness requirements
of DIAs. Consistency means that shared common views of the
application state must be created among all clients to support
meaningful interactions [9]. Fairness, on the other hand, is to
ensure that all clients have the same chance of participation
regardless of their network conditions [5], [17]. Maintaining
consistency and fairness in DIAs usually introduces artificial
synchronization delays in the interactions among clients due
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to diverse network latencies [5], [8], [11], [16], [20]. These
synchronization delays are also dependent on the assignment
of clients to servers. Therefore, how to assign the clients to the
servers in DIAs is of crucial importance to their interactivity
performance.

In this paper, we investigate the problem of effectively
assigning clients to servers for maximizing the interactivity of
DIAs. We focus on continuous DIAs that change their states
not only in response to user-initiated operations but also due
to the passing of time [20].1 Examples of continuous DIAs
include distributed virtual environments, distributed interactive
simulations and multi-player online games.

We start by mathematically modeling the interactivity per-
formance of continuous DIAs under the consistency and fair-
ness requirements. Given any client assignment, we analyze
the minimum achievable interaction time for DIAs to preserve
consistency and provide fairness among clients. Based on
the analysis, we formulate the client assignment problem
as a combinational optimization problem and prove that it
is NP-complete. Several heuristic assignment algorithms are
then proposed. Their approximation ratios are theoretically
analyzed. The performance of the algorithms is also experi-
mentally evaluated using real Internet latency data. The results
show that our proposed Greedy Assignment and Distributed-
Modify Assignment algorithms generally produce near optimal
interactivity and significantly reduce the interaction time be-
tween clients compared to the intuitive Nearest-Server Assign-
ment algorithm that assigns each client to its nearest server.
Distributed-Modify Assignment also has good adaptivity to
dynamics in client participation and network latency.

This paper significantly extends a preliminary conference
version [26]. The rest of this paper is organized as follows.
Section 2 analyzes the minimum achievable interaction time
and formulates the client assignment problem. Section 3
presents the hardness results. Section 4 proposes three heuristic
client assignment algorithms and analyzes their approximation
ratios. The experimental setup and results are discussed in
Section 5. Finally, Section 6 concludes the paper. The related
work is summarized in Appendix A in the supplementary file.

2 PROBLEM FORMULATION
2.1 System Model
We model the underlying network supporting the DIA by a
graph consisting of a set of nodes V . A distance d(u, v) > 0 is
associated with each pair of nodes (u, v) ∈ V×V , representing
the network latency of the routing path between nodes u and
v. Let S ⊆ V be the set of servers in the network and C ⊆ V
be the set of clients. Each client needs to be assigned to a
server for sending user operations and receiving state updates.
For each client c ∈ C, we denote by sA(c) ∈ S as the server
that client c is assigned to.

The clients interact with one another through their assigned
servers. Specifically, when a client ci issues an operation,
the effect of the operation is presented to another client cj

through the following process. First, ci sends the operation to

1. In an earlier work [25], we have investigated client assignment for
discrete DIAs that change their states in response to user operations only.
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Fig. 2. Interaction paths in a network.

its assigned server sA(ci). Then, sA(ci) forwards the operation
to cj’s assigned server sA(cj) if they are different. Finally,
sA(cj) executes the operation, possibly after some artificial
synchronization delay, and then delivers the resultant state
update to cj . In the above interaction process, the paths from
ci to sA(ci), from sA(ci) to sA(cj), and from sA(cj) to cj are
involved. Similarly, if cj issues an operation, the same three
paths in the network are involved in the interaction process
for ci to see the effect of the operation. Therefore, we refer to
the concatenation of these three paths as the interaction path
between ci and cj . For example, in the network of Figure 2,
suppose clients c1 and c2 are assigned to server s1, and client
c3 is assigned to server s2. Then, the interaction path between
c1 and c2 is indicated by the dotted line, and the interaction
path between c1 and c3 is indicated by the dashed line.

The length of the interaction path between two clients ci

and cj represents the network latency involved in their inter-
action, which is given by d(ci, sA(ci)) + d(sA(ci), sA(cj)) +
d(sA(cj), cj). Note that the length of the interaction path from
a client ci to itself is 2d(ci, sA(ci)), i.e., the round-trip time
between ci and its assigned server sA(ci), which represents
the network latency involved for ci to see the effect of its own
operation.

2.2 Consistency and Fairness Models
In continuous DIAs, the progress of the application state is
typically measured by the time elapsed since the initial state
of the application [20]. We shall call it the simulation time.
For instance, the simulation time of a multi-player online
game records the time elapsed in its virtual world. In the
distributed server architecture, each server and client has a
copy of the application state and its associated simulation
time. The simulation times of all servers and clients should
advance at the same rate. However, they do not have to be
synchronized, i.e., their readings do not have to be the same
at the same wall-clock time. Normally, the simulation time of
a client lags behind the simulation time of its assigned server
due to the network latency of delivering state updates from
the server to the client.

The consistency requirement for continuous DIAs is to en-
sure that all clients share the same view of the application state
when their respective simulation times reach the same value.
This is automatically guaranteed among the clients assigned
to the same server because they all inherit the application state
from their assigned server through state updates. Nevertheless,
the application states seen by the clients assigned to different
servers may not be identical at the same simulation time if the
application states maintained by their assigned servers are not
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consistent. Since the state of a continuous DIA changes due to
both user operations and time passing, to ensure consistency
among the application states at the servers, each user operation
must be executed by all servers at the same simulation time.

The fairness requirement is to ensure that all clients have
the same chance of participation regardless of their network
conditions. This is particularly important for applications
where users compete with each other. In essence, fairness is
concerned with the order of executing user operations [17]. For
example, a participant would gain an unfair advantage in an air
combat game if an action performed by him takes effect before
another action performed earlier by a different participant. To
guarantee fairness in continuous DIAs, the order of operation
execution must be the same as the operation issuance order at
the clients based on the simulation time. In addition, the time
interval between the issuances of two operations in terms of
simulation time must also be preserved between the executions
of these operations. This entails executing each operation at
the server at a simulation time that is of a constant lag behind
the simulation time of the operation issuance.

Integrating both consistency and fairness requirements, we
get the following criterion: all operations must be executed by
all servers at simulation times that are of a constant lag behind
the operation issuances.

2.3 Minimum Achievable Interaction Time
Given a client assignment, the minimum achievable interaction
time meeting the above criterion of consistency and fairness
is the maximum length of interaction paths between all client
pairs, i.e.,

D= max
ci,cj∈C

{d(ci, sA(ci))+d(sA(ci), sA(cj))+d(sA(cj), cj)}.

This is achievable by synchronizing the simulation times at
all clients and setting the offset of each server s’s simulation
time relative to all clients’ simulation time at

D −max
c′∈C
{d(c′, sA(c′)) + d(sA(c′), s)}. (1)

Please refer to Appendix B in the supplementary file for
detailed derivations.

We present an example to illustrate the minimum achievable
interaction time. In the network shown in Figure 3a, three
clients c1, c2, c3 are assigned to servers s1, s2, s3 respectively.
A straightforward strategy of time setting is to make the
simulation times at all clients synchronized, and also make
the simulation times at all servers synchronized (Figure 3b).
The simulation time of clients must lag behind the simulation
time of servers due to the network latency of delivering state
updates. Suppose that at simulation time 0, one of the three
clients issues an operation. If c1 issues the operation, its
operation first reaches server s1 at simulation time 6 as shown
in Figure 3b. Then, the operation is forwarded to the other two
servers, which receive it at simulation time 7. Figure 3b also
shows the delivery of the operation if it is issued by client c2

or c3. As can be seen, the latest possible simulation time for
a server to receive the operation is 11 (i.e., the time for server
s2 to receive the operation if it is issued by c3). Therefore,
the constant lag for operation execution must be at least 11. If

the operation is executed at simulation time 11, all the clients
receive and display the resultant state update at simulation time
11, and consequently, the interaction time is 11. On the other
hand, if the offset between each server and all clients is set
according to (1), the delivery of operation and state update is
shown in Figure 3c. It can be seen that regardless of its origin,
the operation can be received and executed by all servers by
simulation time 9. Thus, the resultant interaction time is 9,
which equals the maximum interaction path length.

2.4 Problem Statement
The client assignment problem for maximizing the interactivity
of continuous DIAs is formulated as follows:

Given a set of servers S and a set of clients C in a network,
find a client assignment that minimizes the maximum length
of interaction paths between all client pairs, i.e., to minimize

D= max
ci,cj∈C

{d(ci, sA(ci))+d(sA(ci), sA(cj))+d(sA(cj), cj)}.

2.5 Further Considerations
In this paper, we focus on reducing the network latencies and
the associated synchronization delays involved in the inter-
action between clients. Thus, the above problem formulation
has not taken into consideration the processing delays at the
servers. In general, the processing delays at the servers are
easier to improve than the network latencies [7]. A busy
server can always be better provisioned (e.g., by forming a
server cluster) to meet the capacity requirements and reduce
the processing delay. We shall discuss in Section 4.4 how to
deal with server capacity constraints in our proposed client
assignment algorithms if server capacities are limited.

There may exist jitter in the network. Jitter refers to the vari-
ability of network latency. In the presence of jitter, longer syn-
chronization delay would be required to cater for the variation
in network latency in order to guarantee consistency and fair-
ness. Our formulation of the client assignment problem is also
valid in dealing with network jitter in that the distance d(u, v)
between each node pair u, v can be set to any percentile of the
network latency to cater for its variability to a required extent.
At one extreme, setting d(u, v) to the maximum possible
network latency between nodes u and v would guarantee that
each operation is received by all servers before its execution,
thereby ensuring consistency and fairness. But this strategy
may considerably degrade interactivity at large jitter. Thus, a
real-world system often models a certain high percentile (e.g.,
90th percentile) of the network latency to significantly reduce
the chance for inconsistency and unfairness to arise [8], [17].
When inconsistency does occur due to jitter, the application
state can be repaired using synchronization mechanisms such
as timewarp [20] and Trailing State Synchronization (TSS) [8].
Repairing the application state, however, may create artifacts
that disturb the user behavior. For instance, an artifact in an
online game could mean that an opponent that has been beaten
in a fight stands up again and continues to fight. Therefore,
the extent to which the variability of network latency is
catered reflects a trade-off among interactivity, consistency and
fairness. Selecting an appropriate percentile of the network
latency to model based on the application needs is beyond the
scope of this paper.
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(b) Interaction time when all servers are synchro-
nized in simulation time
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Fig. 3. An example illustrating the minimum achievable interaction time.

3 HARDNESS RESULTS

Theorems 1 and 2 below present the hardness results of the
client assignment problem. Please refer to Appendix C in the
supplementary file for the detailed proofs.

Theorem 1: The client assignment problem is NP-complete.
Theorem 2: No polynomial-time algorithm for the client

assignment problem can achieve an approximation ratio less
than 4/3 if the network latency satisfies the triangle inequality
and any bounded approximation ratio otherwise, if P6=NP.

4 HEURISTIC ALGORITHMS

In this section, we present three heuristic client assignment
algorithms. The computation of these algorithms is based on
the network latencies between clients and servers, which can
be obtained with existing tools like ping and King [12].

4.1 Nearest-Server Assignment
The first algorithm is called Nearest-Server Assignment, which
intuitively assigns clients to their nearest servers [16], [23].
This algorithm can be implemented by having each client
measure the network latencies between itself and all servers,
and select the server with the lowest latency as its assigned
server. The computational complexity for each client is hence
O(|S|). While this Nearest-Server Assignment reduces the
client-to-server latencies, it could significantly increase the
latencies between the assigned servers of different clients, and
thus make the interactivity far worse than optimum.

The assumption of the triangle inequality is commonly
made when theoretically analyzing the performance of the
approximation algorithms in facility location problems [15].2

When assuming that the network latency satisfies the triangle
inequality, we can show that Nearest-Server Assignment has a
tight approximation ratio of 3. In the absence of the triangle
inequality [18], Nearest-Server Assignment cannot achieve any
bounded approximation ratio. Please refer to Appendix D in
the supplementary file for the detailed proof.

Theorem 3: Nearest-Server Assignment has an approxima-
tion ratio of 3 for networks with the triangle inequality.

2. We count the number of triples (u, v, w) that satisfy the constraint
d(u, v) + d(u, w) ≥ d(v, w) in the Internet latency data set used in our
experimental evaluation (Section 5) and observe that 92.6% of the triples
satisfy the triangle inequality.

4.2 Greedy Assignment

The second algorithm Greedy Assignment adopts a greedy
approach to assign clients iteratively, starting with an empty
assignment. In each step, the algorithm considers all the possi-
bilities of assigning an unassigned client to a server. If a client
c is selected to be assigned to a server s, then all unassigned
clients that are not farther from s than c are also assigned to
s as this would not increase the maximum interaction path
length. Let ∆n be the number of new clients assigned to s in
this way, and ∆l be the increase in the maximum interaction
path length due to these new assignments. To minimize the
amortized increase in the maximum interaction path length,
we use ∆l/∆n as the cost metric for selecting which client to
be assigned to which server. In each step, among all possible
pairs of unassigned client and server, the pair (c, s) resulting
in the minimum cost ∆l/∆n is selected and the corresponding
clients are then assigned to s. The algorithm terminates when
all clients have been assigned to servers.

To calculate ∆n efficiently, the distances from all clients to
each server s are sorted in a list Ls in a preprocessing stage.
This sorted list is then incrementally updated by removing
newly assigned clients at the end of every step. As a result,
∆n can be obtained directly from the index of the unassigned
client in the list. On the other hand, ∆l for assigning a new
client c to a server s is calculated by comparing the maximum
interaction path length before assigning c with the maximum
length of the interaction paths from c to all the clients already
assigned. The latter is given by

max
{

2d(c, s), max
b∈C′
{d(c, s)+d(s, sA(b))+d(sA(b), b)}

}
=max

{
2d(c, s), d(c, s)+max

b∈C′
{d(s, sA(b))+d(sA(b), b)}

}
,

where 2d(c, s) is the interaction path length from c to itself
and C ′ is the set of clients already assigned. For each server s,
the term maxb∈C′{d(s, sA(b))+d(sA(b), b)} is independent of
client c, so its calculation can be shared among all unassigned
clients. The pseudo code of Greedy Assignment is presented
in Algorithm 1. Greedy Assignment is suited for centralized
implementation due to its need for global knowledge about
the distances between clients and servers.

In the preprocessing stage, sorting lists Ls for all servers and
calculating the indexes of all clients in the lists can be done
in O(|S||C| log |C|) time. Suppose all clients are assigned to
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Algorithm 1: The Greedy Assignment algorithm
C′ ← ∅; // the set of clients already assigned1
max len← 0; // the maximum interaction path length2
forall s ∈ S do3

create a list Ls of all clients in C;4
sort Ls according to d(c, s) in ascending order;5
for i← 1 to |C| do6

index[s, Ls[i]]← i;7

while C′ 6= C do8
min←∞;9
forall s ∈ S do10

m← maxb∈C′{d(s, sA(b)) + d(sA(b), b)};11
forall c ∈ C − C′ do12

∆n← index[s, c];13
len← max{2d(c, s), d(c, s)+m, max len};14
∆l← len−max len;15
cost← ∆l

∆n
;16

if cost < min then17
min← cost;18
len∗ ← len;19
c∗ ← c;20
s∗ ← s;21

max len← len∗;22
forall c ∈ C − C′ such that d(c, s∗) ≤ d(c∗, s∗) do23

set sA(c) = s∗;24
C′ ← C′ ∪ {c};25

forall s ∈ S do26
nuc← 0; // the number of unassigned clients27
for i← 1 to |C| do28

if Ls[i] ∈ C − C′ then29
nuc← nuc + 1;30

index[s, Ls[i]]← nuc;31

servers in m steps. To calculate the time complexity of each
step, we divide it into three stages. Stage 1 (lines 9 to 21) is to
find the pair of client and server with the minimum ∆l/∆n.
For each server, the time complexity of line 11 is O(|C|).
Then, the calculation of ∆l/∆n can be done in O(1) time
for each unassigned client and hence in O(|C|) time for all
unassigned clients. Thus, the total time complexity of stage 1
in each step is O(|S||C|). Stage 2 (lines 22 to 25) is to add the
new assignments of clients. The time complexity of this stage
in each step is O(|C|). Stage 3 (lines 26 to 31) is to update the
indexes of unassigned clients in lists Ls by removing newly
assigned clients. The time complexity of this stage in each
step is O(|S||C|). So, the total time complexity for one step
is O(|S||C|). Therefore, the overall time complexity of Greedy
Assignment is O

(
|S||C| log |C|+ m|S||C|

)
, or O(|S||C|2) in

the worst case since m ≤ |C|.
Theorem 4 presents the approximation ratio of Greedy

Assignment that is asymptotically tight, when assuming that
the network latency satisfies the triangle inequality. In the
absence of the triangle inequality, Greedy Assignment has
unbounded approximation ratio. Please refer to Appendix E
in the supplementary file for the detailed proof.

Theorem 4: Greedy Assignment has an approximation ratio
of O(log(n)) for networks with the triangle inequality, where

n is the number of clients.

4.3 Distributed-Modify Assignment
The third algorithm Distributed-Modify Assignment is per-
formed in a distributed manner without requiring the global
knowledge of the network at any single server. It starts with
an initial assignment. Then, the assignment is continuously
modified for reducing the maximum interaction path length D
until it cannot be further reduced. This process is referred to
as the assignment modification.

One server is elected as a coordinator responsible for cal-
culating D and selecting the server to perform the assignment
modification. To calculate D of the initial assignment, each
server measures its distances (network latencies) to all the
other servers. It also measures its distances to all the clients
that are assigned to it and maintain them as a sorted list. Then,
each server s broadcasts to all the other servers its longest
distance l(s) to its clients, and sends the inter-server distances
to the coordinator. The coordinator calculates D based on the
received information.

To perform the assignment modification, the coordinator
selects a server s that is involved in a longest interaction
path and informs s of the current D value. Then, server s
attempts to reduce D by modifying the assignment of its client
c that introduces the longest interaction path. First, server
s broadcasts to all the other servers the identifier of c and
the longest distance l(s) to its assigned clients excluding c.
On receiving the information, each of the other servers s′

measures its distance to c, and computes the maximum length
of interaction paths involving c assuming c is assigned to it,
which is given by L(s′) = maxs′′{d(c, s′)+d(s′, s′′)+l(s′′)}.
Then, each server s′ sends the result L(s′) back to server
s. If mins′ L(s′) < D, s reassigns c to the server s∗ with
the minimum L(s∗). In this case, servers s and s∗ update
their longest distances to their clients and broadcast these
distances to all the other servers if they are changed. Finally,
the coordinator recalculates D. If D cannot be reduced after
the coordinator has tried all the servers involved in the longest
interaction path(s), the algorithm terminates.

s1 s2

s3 s4

c1 c2

10

10

10

10

10

5

5

Fig. 4. An example in which changing the assigned servers of two
clients simultaneously increases the maximum interaction path length.

If the coordinator selects two or more servers to perform
assignment modifications concurrently, the maximum inter-
action path length is not guaranteed to reduce because the
calculation of each assignment modification is based on the
assumption that the assigned servers of other clients remain
unchanged. Figure 4 gives an example. Suppose that clients c1

and c2 are initially assigned to servers s1 and s2 respectively,
so that the maximum interaction path length is 30. If c1 (or
c2) changes its assigned server to s3 (or s4), the maximum
interaction path length would be reduced to 25. However, if
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both clients change their assigned servers, the interaction path
length between c1 and c2 would become 40, which is even
longer than the maximum interaction path length of the initial
assignment. Therefore, the coordinator selects only one server
at a time for assignment modification.

In each assignment modification, the computation of L(s′)
by each server s′ has a time complexity of O(|S|). The time
complexity for server s to find s∗ with the minimum L(s∗)
is O(|S|). If client c is reassigned, its new server s∗ has
an additional time complexity of O(log |C|) for updating the
sorted list of the distances to its clients. The time complexity
for the coordinator to recalculate D is O(|S|2). In the process
of an assignment modification, s broadcasts to all the other
servers the information of c and then they reply to s with L(s′).
In addition, c’s new server s∗ and server s also broadcast
the new l(s∗) and l(s) to all the other servers. Therefore, the
message complexity of one assignment modification is O(|S|).

Distributed-Modify Assignment has unbounded approxima-
tion ratio if it starts with an arbitrary initial assignment,
even for networks with the triangle inequality. Please refer to
Appendix F in the supplementary file for details. On the other
hand, if Distributed-Modify Assignment takes Nearest-Server
Assignment as the initial assignment, the resultant assignment
cannot be worse than the latter since the assignment modifi-
cation can only reduce the maximum interaction path length.
Our experiments in Section 5 show that Distributed-Modify
Assignment normally outperforms Nearest-Server Assignment
significantly.

4.4 Dealing With Server Capacity Constraints
So far, our proposed assignment algorithms have not assumed
any capacity limitation at the servers. These “uncapacitated”
algorithms are suitable for the scenario where each server
site has abundant server resources or server resources can be
added to these sites as needed [19]. However, if the server
capacity at each site is limited, assigning more clients to a
server than its capacity may result in significant increase in
the processing delay at the server, damaging the interactivity
of the DIA. Therefore, we now discuss how to adapt each
proposed assignment algorithm to deal with server capacity
constraints.
• Nearest-Server Assignment: Each client chooses its server

and makes the request to connect to the server inde-
pendently. Each server accepts the client requests on a
first-come-first-serve basis until it is saturated. A client
first attempts to choose the nearest server. If the nearest
server is saturated, the client in turn tries the second
nearest server, the third nearest server and so on, until
its connection request is accepted by a server.

• Greedy Assignment: When selecting the pair of unas-
signed client and server in each step, the algorithm
considers unsaturated servers only. After a client c is
selected to be assigned to a server s in a step, if the
algorithm cannot assign to server s all clients closer to s
than c due to the capacity constraint of s, only a portion of
these clients are assigned to server s to fill it to capacity.
Accordingly, the calculation of ∆n is adjusted to reflect
the capacity limitations of the servers.

• Distributed-Modify Assignment: At each assignment
modification, a client is allowed to be reassigned to
unsaturated servers only.

The approximation ratios previously analyzed for “unca-
pacitated” assignment algorithms are not applicable to “ca-
pacitated” assignment algorithms. Distributed-Modify Assign-
ment has unbounded approximation ratio even without server
capacity limitation. Thus, the same is also true when the
server capacity is limited. Theorems 5 and 6 below present
the tight approximation ratios of the “capacitated” Nearest-
Server Assignment and the “capacitated” Greedy Assignment
respectively, when assuming that the network latency satisfies
the triangle inequality. Please refer to Appendices G and H in
the supplementary file for the detailed proofs.

Theorem 5: The “capacitated” Nearest-Server Assignment
has an approximation ratio of 5 for networks with the triangle
inequality.

Theorem 6: The “capacitated” Greedy Assignment has an
approximation ratio of O(n) for networks with the triangle
inequality, where n is the number of clients.

We experimentally evaluate both “uncapacitated” and “ca-
pacitated” assignment algorithms in the next section.

5 EXPERIMENTAL EVALUATION
We evaluate the performance of the proposed algorithms by
simulation experiments making use of the Meridian data set
[24]. The data set contains pair-wise latency measurements
between 2, 500 nodes in the Internet using the King measure-
ment technique. The measurements of some node pairs are
missing from the data set. On discarding the measurements
that involve these nodes, the network that we simulate is
represented by a complete matrix of pair-wise latencies among
1, 796 nodes. One client is assumed to be located at each
node, and a certain number of servers are placed at selected
nodes in the network. The proposed assignment algorithms
are evaluated with various parameter settings of server number
and capacity. In the default setting, there is no constraint on
the server capacity. We use Nearest-Server Assignment as the
initial assignment of Distributed-Modify Assignment in our
experiments.

We simulate three types of server placement: random, K-
center, and K-median. In random server placement, for each
parameter setting, we execute 1, 000 simulation runs using
1, 000 different sets of randomly placed servers. Unless stated
otherwise, the average performance of these 1, 000 simulation
runs is plotted together with the 90th and 10th percentile
results. K-center server placement is based on the K-center
problem which aims to place k servers (centers) in the network
so that the maximum distance from the clients (nodes) to their
nearest servers is minimized. K-median server placement is
based on the K-median problem which intends to minimize the
average distance from all clients to their nearest servers. These
two problems are widely used to model server placement in
the Internet [7]. Since they are both NP-complete [10], we
adopt a greedy K-center algorithm [7] and a greedy K-median
algorithm [21] for placing servers in the experiments.

We develop a theoretical lower bound on the maximum
interaction path length to quantify the relative performance
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of the assignment algorithms. The interaction path between
any two clients c and c′ has a length of

d(c, sA(c)) + d(sA(c), sA(c′)) + d(sA(c′), c′)
≥ min

s,s′∈S
{d(c, s) + d(s, s′) + d(s′, c′)}.

Thus, the maximum length of interaction paths between all
client pairs has a lower bound of

max
c,c′∈C

min
s,s′∈S

d(c, s) + d(s, s′) + d(s′, c′).

We normalize the maximum interaction path lengths produced
by all assignment algorithms with respect to the above lower
bound. The normalized results shall be called the normalized
interactivity. Note that the above lower bound calculation does
not enforce that each client is assigned to a single server
through which it interacts with all the other clients. Thus, this
lower bound is a super-optimum that may not be achievable
by any real assignment.

5.1 Comparison of Proposed Algorithms
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Fig. 6. Cumulative distribution of the normalized interactivity under 80
randomly placed servers.

First, we compare the performance of the client assignment
algorithms without assuming any limitation on the server
capacity. Figure 5 shows the normalized interactivity of each
algorithm as a function of the number of servers in the
network. As seen from Figure 5a, the average performance of
Nearest-Server Assignment under random server placement is
significantly worse than that of the other two algorithms for all
server numbers tested. Figure 6 shows the detailed cumulative
distribution of the normalized interactivity for the 1, 000
simulation runs of 80 randomly placed servers. The normalized
interactivity produced by Nearest-Server Assignment exceeds
2 in over 100 simulation runs and exceeds 3 in over 50 runs.
In contrast, the other two algorithms hardly result in any nor-
malized interactivity above 2. Under K-center and K-median
server placements, Nearest-Server Assignment also performs
far worse than the other two heuristics as shown in Figures
5b and 5c. The above results imply that intuitively assigning
each client to its nearest server is not the most effective way
of enhancing interactivity, even under carefully planned server
placements. Comparing Greedy Assignment and Distributed-
Modify Assignment, their performance is generally close to
each other. The interactivity produced by both algorithms is
within normally 40% of the lower bound, which means that it
is within at most the same percentage of the optimum.
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TABLE 1
Computation times for networks with 80 servers

CPU Time
Algorithm Random K-center K-median

Nearest-Server 0.79s 0.80s 0.81s
Greedy 3.26s 2.97s 2.22s

Distributed-Modify 1.42s 1.19s 1.20s

Note that Distributed-Modify Assignment proceeds with
assignment modifications until the maximum interaction path
length cannot be further reduced. Figure 7 shows the distri-
bution of the numbers of assignment modifications performed
in the simulation. We count each attempt made to change the
assigned server of a client involved in a longest interaction
path as one assignment modification, even if it is decided not
to change the assigned server of the client after calculation. As
seen from Figure 7, the algorithm performs fewer than 50 as-
signment modifications in 94% of the simulation runs. In fact,
the average number of assignment modifications performed
is less than 18. Under K-center and K-median placements,
the numbers of assignment modifications are about 55 and 43
on average. These results imply that only a small proportion
of clients need to modify their servers in the execution of
Distributed-Modify Assignment.

Table 1 reports the computation times of the algorithms
under 80 servers of various placements in our simulation
performed on a PC with a Pentium Xeon 3.2 GHz CPU and 6
GB RAM. It can be seen that Distributed-Modify Assignment
has much shorter computation time than Greedy Assignment.

Next, we evaluate the “capacitated” assignment algorithms
under various server capacity constraints. We refer to the
maximum number of clients that is allowed to be assigned
to a server as the server capacity. All servers are assumed
to have the same capacity. The “capacitated” Nearest-Server
Assignment is used as the initial assignment of the “capac-
itated” Distributed-Modify Assignment. Figure 8 shows the
normalized interactivity for different server capacities when
80 servers are placed in the network. Note that the theoretical
lower bound does not change with the server capacity since
its calculation assumes unlimited server capacity. As expected,
the interactivity performance produced by all algorithms de-
teriorates as the server capacity decreases. This is because
when the server capacity is limited, the algorithms may not
be able to assign clients to their most preferred servers. Com-
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Fig. 5. Experimental results for different numbers of servers.
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Fig. 8. Experimental results for different server capacities.

paring different algorithms, Nearest-Server Assignment and
Distributed-Modify Assignment are generally less affected by
server capacity constraints than Greedy Assignment. This im-
plies that the client assignments of Nearest-Server Assignment
and Distributed-Modify Assignment are more balanced among
servers. The relative performance of the three assignment
algorithms remains similar over different server capacities
unless the server capacity is severely limited. When the server
capacity is severely limited, all the algorithms produce similar
interactivity because there is little space for optimizing client
assignment to improve interactivity. Similar results are also
observed for other server numbers, which are not shown here
due to space limitations.

5.2 Dynamic Scenarios
So far, we have evaluated the interactivity performance of
the proposed algorithms in static scenarios where the client
participation and network latency do not change. In practice,
DIAs often support dynamic client participation such that
clients may join and leave the network at any time. In addition,
network latency may vary with time depending on network
conditions. Previous experiments have shown that Greedy As-
signment performs similarly to Distributed-Modify Assignment
and outperforms Nearest-Server Assignment in static scenar-
ios. However, it is a centralized algorithm and may not be
efficient in dealing with dynamic scenarios. On the other hand,
Distributed-Modify Assignment is more suitable for adapting
the client assignment to dynamics in client participation and
network latency due to its distributed and incremental nature.
In this section, we evaluate the adaptivity of Distributed-
Modify Assignment in dynamic scenarios. We also involve

the other two assignment algorithms in the experiments for
comparison purpose.

5.2.1 Adaptivity to Client Joining/Leaving
We first consider the scenario in which clients can join and
leave the network freely. To model the joining and leaving
patterns of clients, we randomly assign each client two weights
wj and wl (0 < wj , wl < 1). wl indicates the chance of
the client leaving the DIA when it is currently participating,
and wj indicates the chance of the client joining the DIA
when it is not participating at present. Small wj and wl

mean that the client is inclined to keep its current state of
participation unchanged, while large wj and wl imply that the
client tends to change its participation state frequently. The
client participation behavior is then modeled by a sequence
of events, each of which could be either a join event or a
leave event. Each event is randomly generated based on the
weights and participation states of all clients. We start from
a network in which no client is participating and simulate a
sequence of 10, 000 events. It is observed that about half of the
clients participate in the stable state. Please refer to Appendix
I in the supplementary file for the evolution of the number of
participating clients.

To adapt to dynamic client participation, Nearest-Server
Assignment simply assigns each joining client to its nearest
server. For Distributed-Modify Assignment, whenever a client
joins the network, it is initially assigned to its nearest server.
Then, for each join and leave event, based on the existing
assignment, assignment modifications are performed until the
maximum interaction path length cannot be further reduced.
For Greedy Assignment, we record the clients assigned at each
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step and the cost of assigning them. When a participating client
c leaves, the clients that are assigned before c in the previous
execution are directly assigned to the same servers as in
the previous execution. Then, the original Greedy Assignment
is executed to assign the remaining clients. When a new
client c joins, assume that in Greedy Assignment, clients are
assigned in the same way as in the previous execution up to
step i − 1. Let li be the maximum interaction path length
and ni be the number of unassigned clients before step i
starts. Then, if client c is assigned at step i, the increase
in the maximum interaction path length cannot be less than
2 ·mins∈S d(c, s)− li, and the number of clients assigned at
this step cannot be larger than ni. Thus, the cost of assigning c
at step i cannot be less than xi =

(
2 ·mins∈S d(c, s)− li

)
/ni.

If xi is larger than the cost of step i of the previous execution,
client c cannot be assigned at step i, which implies that the
newly assigned clients at this step would be the same as in
the previous execution. Therefore, instead of executing the
original Greedy Assignment algorithm, we can assign clients
in the same way as in the previous execution as long as xi is
larger than the cost of step i of the previous execution. After
encountering the first xi not exceeding the cost of step i, we
start executing the original Greedy Assignment algorithm to
assign the remaining clients.

Figure 9 shows the interactivity performance of each al-
gorithm when 80 servers are placed in the network. The
results for random server placement are those for one sample
placement. As can be seen, the relative performance of all al-
gorithms remains similar to the results in the static scenario. In
general, Distributed-Modify Assignment consistently achieves
the best interactivity among the three algorithms. Our statistics
show that the average numbers of assignment modifications
performed by Distributed-Modify Assignment at each join and
leave event are just 1.95, 1.57 and 1.87 under the three
server placements. This implies that performing just a few
assignment modifications per event is sufficient to maintain
decent interactivity performance.

5.2.2 Adaptivity to Dynamics in Network Latency
The latency for any information to be transmitted across
the network is affected by the network conditions and may
vary with time. In this section, we evaluate the adaptivity of
the algorithms to the variance of network latency. Since the
Meridian data set does not contain latency measurements at
different times, we employ the PlanetLab All-Pairs-Pings data
set [2] which includes continuous pair-wise measurements of
the latency between PlanetLab nodes using ping. The data
we use for simulation is collected within a one-day period
(May/9/2005) during which there are 188 PlanetLab nodes
consistently involved in all the measurements. One measure-
ment is performed every 15 minutes and consequently there
are 95 sets of measurements. Thus, we simulate a network
consisting of 188 nodes and emulate the dynamics in network
latency using these 95 sets of latency measurements. Again, a
client is assumed to be located at each node.

Similar methods are employed to deal with dynamic net-
work latency. After each latency measurement, Nearest-Server
Assignment simply allows each client to update its nearest

server. For Distributed-Modify Assignment, assignment mod-
ifications are performed to adjust the existing assignment.
Greedy Assignment is re-executed from scratch.

Figure 10 presents the normalized interactivity of all algo-
rithms over the day with 15 servers placed in the network.
The K-center and K-median placements are calculated based
on the first set of latency measurements. This models the
scenario in which the network latency information used for the
deployment of servers is predicted by the first measurement.
The theoretical lower bound on the maximum interaction
path length is recomputed after each set of measurements
for deriving the normalized interactivity. It can be seen from
Figure 10 that Distributed-Modify Assignment produces better
interactivity and performs much more stably than Nearest-
Server Assignment under all server placements. The average
numbers of assignment modifications performed after each
latency measurement are just 5.73, 9.02 and 5.95 under the
three server placements. Greedy Assignment generally pro-
duces similar interactivity performance to Distributed-Modify
Assignment. However, as stated earlier, Greedy Assignment is
a centralized algorithm which would introduce much higher
computation and communication overheads than Distributed-
Modify Assignment in adapting the client assignment.

6 CONCLUSION

In this paper, we have investigated the client assignment
problem for interactivity enhancement in continuous DIAs.
We have modeled the interactivity performance of continuous
DIAs under the consistency and fairness requirements. The
minimum achievable interaction time between clients is ana-
lyzed and used as the optimization objective in our formulation
of the client assignment problem. The problem is proven to be
NP-complete. Three heuristic assignment algorithms are pre-
sented. Their approximation ratios are theoretically analyzed
and their performance is experimentally evaluated using real
Internet latency data. The results show that: (1) our proposed
Greedy Assignment and Distributed-Modify Assignment algo-
rithms significantly outperform the intuitive Nearest-Server
Assignment algorithm; (2) Distributed-Modify Assignment re-
quires only a small proportion of clients to perform assignment
modifications for improving interactivity; and (3) Distributed-
Modify Assignment has good adaptivity to dynamics in both
client participation and network latency.

In this paper, we have assumed that d(u, v) = d(v, u) for
any pair of nodes u and v. To deal with asymmetric routing
[13], the network can be modeled by a directed graph. Each
pair of nodes is associated with the lengths of two routing
paths of different directions. The interaction path from a client
ci to another client cj can be considered as a directed path
that is different from the interaction path from cj to ci. It is
easy to show that if we change the definition of D to be the
maximum length of all the directed interaction paths between
clients, the consistency and fairness requirements can still be
satisfied. Therefore, the objective of the client assignment
problem becomes to minimize the maximum length of all
directed interaction paths. For the heuristic algorithms, we can
simply use the lengths of the directed routing paths between
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Fig. 9. Performance of client assignment algorithms with dynamic client participation.
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ment
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Fig. 10. Performance of client assignment algorithms with dynamic network latency.

clients and servers in the calculation without modifying the al-
gorithms. However, the approximation ratios of the algorithms
may change. We leave the detailed analysis to the future work.
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