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Abstract—The network traffic pattern of continuous sensor data collection often changes constantly over time due to the exploitation
of temporal and spatial data correlations as well as the nature of condition-based monitoring applications. In contrast to most existing
TDMA schedules designed for a static network traffic pattern, this paper proposes a novel TDMA schedule that is capable of efficiently
collecting sensor data for any network traffic pattern and is thus well suited to continuous data collection with dynamic traffic patterns.
In the proposed schedule, the energy consumed by sensor nodes for any traffic pattern is very close to the minimum required by
their workloads given in the traffic pattern. The schedule also allows the base station to conclude data collection as early as possible
according to the traffic load, thereby reducing the latency of data collection. We present a distributed algorithm for constructing the
proposed schedule. We develop a mathematical model to analyze the performance of the proposed schedule. We also conduct
simulation experiments to evaluate the performance of different schedules using real-world data traces. Both the analytical and
simulation results show that, compared with existing schedules that are targeted on a fixed traffic pattern, our proposed schedule
significantly improves the energy efficiency and time efficiency of sensor data collection with dynamic traffic patterns.
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1 INTRODUCTION

Energy efficiency and time efficiency are two major consider-
ations for sensor data collection in wireless sensor networks.
Energy efficiency concerns the amount of energy spent in
data collection. Since sensor nodes are normally powered by
batteries, it is critical to conserve energy as much as possible
to extend the lifetime of a sensor network [2]–[4]. Time
efficiency, on the other hand, refers to the latency of collecting
data from sensor nodes to a base station (or a sink node).
Sensor data are often required to be quickly gathered after
acquisition for timely processing [2].

TDMA is an attractive MAC protocol for efficient data
collection in wireless sensor networks [5]–[16]. TDMA elim-
inates collisions by scheduling only non-interfering trans-
missions to proceed in the same time slot. It avoids the
energy cost and latency overhead required by contention-based
MAC protocols to compete for channel access and to perform
retransmissions upon collisions.

Most existing TDMA schedules are constructed for a static
network traffic pattern in which a fixed set of nodes report data
to the base station [6]–[10]. In practice, however, continuous
sensor data collection often exhibits dynamically changing
traffic patterns over time due to energy conservation concerns
and the nature of monitoring applications. For example:
• To save energy, temporal and spatial correlations among

sensor measurements are usually exploited to reduce the
amount of data that need to be collected [17]–[19]. In
this approach, a sensor node updates new measurements
with the base station only when the new measurements
differ considerably from past ones or their correlations
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with other measurements in the vicinity change substan-
tially. As a result, the set of reporting nodes normally
changes from one sampling interval to another in a largely
unpredictable manner.

• Condition-based monitoring is widely used in surveil-
lance applications such as volcano monitoring [2], con-
tour mapping [20], and structural health monitoring [21].
In these applications, only sensor measurements satisfy-
ing certain conditions need to be reported. For instance,
to monitor volcanic activities, only the spikes of seismic
and infrasonic signals need to be collected [2]. Thus, the
set of sensor nodes that report to the base station usually
varies over different sampling intervals.

One possible approach to cope with dynamic traffic patterns
in continuous data collection is to construct and deploy a new
TDMA schedule tailored to the new traffic pattern whenever
the traffic pattern changes. However, identifying new traffic
patterns and disseminating new schedules over the network
both require sensor nodes to communicate with each other,
which introduces extra energy and latency overheads. When
the traffic pattern changes frequently, the overheads are very
likely to cancel out or even outweigh the benefits of deploying
new schedules [8]. Therefore, it is highly desirable to consis-
tently use a single TDMA schedule that is able to efficiently
handle a wide variety of traffic patterns.

This paper proposes a novel TDMA schedule that achieves
high energy efficiency and time efficiency for any traffic
pattern and is thus well suited to continuous data collection
with dynamic traffic patterns. A salient feature of the schedule
is that it enables each node to transmit all data in its successive
transmission slots irrespective of the traffic pattern. This
allows a receiving node to identify the end of transmission
performed by a sending node and then to stop listening to
the sending node without worrying about missing any data. In
this way, the energy consumed by each node self-adapts to its
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required workload given in any traffic pattern. In addition, the
proposed schedule allows the base station to conclude data
collection as early as possible according to the traffic load,
thereby reducing the latency of data collection. We present a
distributed algorithm for constructing the proposed schedule.
We develop a mathematical model to analyze the performance
of the proposed schedule and compare it with a state-of-the-
art schedule and a yardstick ideal schedule. We also conduct
simulation experiments to evaluate the performance of differ-
ent schedules using real-world data traces. Both the analytical
and experimental results show that, compared with existing
schedules that are targeted on a fixed traffic pattern, our
proposed schedule significantly improves the energy efficiency
and time efficiency of sensor data collection with dynamic
traffic patterns.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 describes the system
model. Section 4 elaborates our proposed scheduling algo-
rithm. Section 5 analyzes the performance of the proposed
schedule. The experimental evaluation is presented in Section
6. Finally, Section 7 concludes the paper.

2 RELATED WORK

TDMA scheduling for sensor data collection has attracted
much research attention in recent years. Some early work aims
to construct schedules for each node to communicate once with
each of its neighbors [5]. In these schedules, one time slot is
assigned to each communication link in the network. Some
recent work targets at constructing schedules for aggregate
data collection with in-network data aggregation [11]–[16]. In
the in-network aggregation, each internal node in the routing
tree aggregates all the data received from its children before
forwarding them upstream. One transmission slot is normally
assigned to each node in the schedule, because the partial
aggregate results sent by different nodes to their parents have
the same size that can often fit into one data packet. To allow
for in-network aggregation, the transmission of an internal
node must be scheduled after all of its children’s transmissions.

The above schedules do not meet the communication de-
mands of non-aggregate data collection that aims to collect the
data acquired by individual sensor nodes [3], [4], [18], [22].
In non-aggregate data collection, an internal node needs more
transmission slots than any of its children in the routing tree
because it has to relay all the data received from its children.
Meanwhile, due to the absence of in-network aggregation,
the transmissions of an internal node do not have to be all
scheduled after all the transmissions of its children. Several
recent studies have investigated scheduling non-aggregate data
collection [6]–[10]. Nevertheless, these studies all target at
constructing schedules for a given static network traffic pat-
tern in which each node generates a fixed amount of data
to transport to the base station. These schedules are either
inapplicable to or inefficient in dealing with dynamic traffic
patterns. A schedule constructed for a light traffic pattern is
unable to meet the demand of a heavy traffic pattern, whereas
a schedule built for a heavy traffic pattern introduces much idle
listening and unnecessary delay when handling a light traffic

pattern as shall be shown in Section 4.1. To the best of our
knowledge, there has been little work on designing efficient
TDMA schedules for continuous non-aggregate data collection
with dynamic traffic patterns.

There are also a number of studies on the network capacity
of sensor networks [23]–[30]. Many of these studies have
proposed scheduling algorithms for maximizing the data deliv-
ering rate to the base station, which is important to applications
where large amount of data needs to be continuously and
quickly collected. However, a capacity-maximized schedule
indicates neither the minimum delay of data collection nor
the minimum amount of energy spent by sensor nodes. In
addition, the above schedules are all constructed to deal with
the fixed traffic pattern in which all sensor nodes generate
equal amounts of data to send to the base station. They could
not effectively handle continuous data collection with dynamic
traffic patterns.

3 SYSTEM MODEL

We consider a continuous data collection scenario in which
data is collected from sensor nodes to the base station once
per sampling interval. In each sampling interval, sensor nodes
first sample local phenomena (like temperature and solar
radiation) and then transmit the acquired data to the base
station. Following common practices [6]–[9], [31], [32], we
assume that the sensor nodes are organized into a tree structure
rooted at the base station for data collection. In addition to
reporting its own data, each internal node in the tree is also
responsible for forwarding the data received from its children
to its parent. Due to various reasons as described in the
introduction, a sensor node may not report its acquired data
to the base station at every sampling interval. Decisions of
what data to report are driven by the data itself and are thus
made only after data are acquired by the sensor node. As a
result, the network traffic pattern of data collection changes
over different sampling intervals in an unpredictable manner.

Our objective is to design a TDMA schedule to conserve
energy at sensor nodes and reduce the latency of data col-
lection as much as possible for any traffic pattern. Similar to
other studies [5]–[9], clocks are assumed to be synchronized
among sensor nodes [33]. Time is divided into slots and the
duration of a time slot allows a sensor node to transmit one
packet. To simplify presentation, we assume that the acquired
data reported by each node in a sampling interval, if any,
fit into one packet, and packets generated by different nodes
are not aggregated on their ways toward the base station.
Our algorithm can be easily extended to take into account
packet aggregation in which an internal node may combine
multiple packets received from its children into one packet
for forwarding to its parent, subject to some packet size limit.
Please refer to Appendix B in the supplementary file for
detailed discussions.

To avoid collisions, only transmissions that do not conflict
with each other are allowed to be scheduled in the same time
slot. Our proposed scheduling strategy, as shall be elaborated
in Section 4, is independent of the propagation and interference
models. For simplicity of illustration, we shall assume the
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Fig. 1: Inefficiency of a schedule targeted on a static network
traffic pattern.

protocol interference model in the discussion of this paper,
which considers pairwise conflict relationships only. But we
do not make any specific assumption about the interference
radius relative to the transmission radius and whether the
transmission/interference range of a sensor node is regular.
We simply assume that each node knows the other nodes
conflicting with it. This information can be obtained by using
practical methods such as RID [34].

4 TRAFFIC PATTERN OBLIVIOUS SCHEDULES

4.1 A Motivating Example

We start with an example illustrating how a conventional
TDMA schedule constructed for a static traffic pattern in-
troduces idle listening and unnecessary delay under dynamic
traffic patterns. Fig. 1(a) shows a network of 10 sensor nodes
organized into a tree structure for data collection. For sim-
plicity, in this example, we assume that the transmission from
each node to its parent conflicts with only the transmissions of
its siblings, parent and grandparent in the tree. Fig. 1(b) shows
a typical schedule [6], [8] targeted on the full traffic pattern
in which each node generates one packet to send to the base
station. In the full traffic pattern, the base station receives the
last packet in slot 13. So, the latency of data collection is 13
time slots. In the data collection process, node B listens to
transmissions in four time slots (slots 3, 5, 9 and 12).

Now suppose the traffic pattern changes such that only
nodes A, B, D and E generate packets to send, and the change
is not known a priori to any node as well as the base station.
Using the same schedule, actual transmissions occur only in
the fully shaded rectangles shown in Fig. 1(c). Although the
base station has received all the four packets by the end of slot
8, it has to continue listening for possible transmissions in slots
10, 11 and 13. This is because packets generated by nodes I,
H and J, if any, are scheduled to be forwarded to the base
station in slots 10, 11 and 13 respectively by nodes B, A and

2 3 4 5 7
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Fig. 2: Node B’s transmission and listening slots in the
schedule of Fig. 1(c).

B. Since the base station does not know beforehand whether
nodes I, H and J generate any packet or not, it has to listen
in these slots in order not to miss any potential transmission.
The base station cannot make certain that all data have been
received until the end of slot 13. Therefore, the latency of data
collection remains 13 time slots. For node B, it receives only
one packet from node E in slot 3. Similar to the base station,
since B is not aware of which descendants generate packets, B
still has to listen for possible transmissions in all the four slots
3, 5, 9 and 12, the last three of which result in idle listening
as shown by the half shaded rectangles in Fig. 1(c). Similar
observations can also be made for other nodes in the network.

To investigate the cause, Fig. 2 shows all the transmission
and listening slots of node B in the schedule of Fig. 1(c). It can
be seen that B’s transmission slots alternate with its listening
slots in the temporal order. As a result, each transmission
slot of B is used to forward the packet received in a unique
listening slot (i.e., the immediate preceding listening slot). If
node B does not receive any packet in a listening slot, the
following transmission slot would be left idle. However, since
node B’s parent does not know the traffic pattern in advance,
B’s parent has to listen in all of B’s transmission slots in
order not to miss any possible transmission. If B’s parent is
the base station (as in the example of Fig. 1), this prevents
the base station from concluding data collection early when
the traffic load is light. If B’s parent is another sensor node,
this leads to a lot of idle listening at B’s parent when the
traffic load is light. The unnecessary delay in data collection
and the energy waste due to idle listening are more significant
for traffic patterns of lighter loads.

4.2 Reducing Idle Listening and Latency
Our key strategy for reducing idle listening and latency is
to allow each node to transmit all data in its successive
transmission slots starting from its first transmission slot,
irrespective of the traffic pattern. In this way, if a node does
not send out any packet in a scheduled transmission slot, the
node will leave all of its subsequent transmission slots idle
as well. Thus, on observing an idle transmission slot of the
node, its parent does not need to listen in any subsequent
transmission slot of that node, thereby reducing idle listening.
By applying the above strategy to all nodes in the network, a
parent node listens to each child for at most one more slot than
the actual number of transmission slots used by the child to
send packets. As a result, the energy consumed by each node
self-adapts to its required workload given in any traffic pattern.
Moreover, when the base station observes an idle transmission
slot of a child node, it can infer that the child node has finished
transmitting all data. Therefore, instead of listening till the end
of the schedule, the base station concludes data collection once
it infers that all of its children have finished transmission.
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Fig. 3: A temporal order of transmission slots that allows node
B to transmit all data in its successive transmission slots.

To illustrate our strategy, consider again the example net-
work of Fig. 1(a). Suppose that node B and its children’s
transmission slots are arranged in the temporal order shown
in Fig. 3, where B’s first transmission slot is scheduled after
E and F’s first transmission slots, and B’s second transmission
slot is scheduled after F’s second transmission slot. Then, node
B is able to transmit all data in its successive transmission slots
irrespective of the traffic pattern, provided that both nodes E
and F do so. This is because based on whether E and F’s
first transmission slots are idle or not, B would have learned
whether E and F have any packet to forward to it. In addition,
B certainly knows whether itself generates any packet to send
to the base station. Thus, prior to B’s first transmission slot, B
is already aware of whether it needs to send at least one packet
to its parent or not (but B may not know the total number of
packets to send to its parent). If at least one packet needs
to be sent, B can send out a packet in its first transmission
slot, which may be any packet available at B (i.e., either the
packet generated by B or the packet received from E or F
in their first transmission slots). Otherwise, B leaves its first
transmission slot idle and will not have anything to send in
all its subsequent transmission slots either. Similar arguments
apply to B’s second transmission slot as well. Therefore, node
B is able to transmit all data in its successive transmission
slots starting from its first transmission slot.

Let Tv be the subtree rooted at a node v, and |Tv| be the
size of Tv . In general, the relative transmission order of a node
v and its children must satisfy the following condition S to
enable v’s transmission in its successive transmission slots.

Condition S: for each index 1 ≤ i ≤ |Tv| and each child
c of node v, v’s ith transmission slot should be scheduled
after c’s ith transmission slot if |Tc| > i, and after all of c’s
transmission slots if |Tc| ≤ i.

Theorem 4.1. Condition S is the necessary and sufficient
condition for enabling a node v to transmit all data in its
successive transmission slots starting from its first transmis-
sion slot, assuming that all of its children do so.

Proof: To prove the sufficiency, consider any schedule
that satisfies condition S. For each index 1 ≤ i ≤ |Tv|,
we show that if node v leaves its ith transmission slot idle,
it would not have anything to send in all its subsequent
transmission slots either. In fact, leaving its ith transmission
slot idle implies that node v has less than i packets available
for transmission by that time. This means that v has received
at most i − 1 packets from its children. For each child c of
v where |Tc| > i, based on condition S, c has i transmission
slots scheduled before v’s ith transmission slot. If v receives
at most i − 1 packets in total by its ith transmission slot,
at least one of the first i transmission slots of c must be
idle. This implies that c has finished transmitting all data.
On the other hand, for each child c of v where |Tc| ≤ i,

all of c’s transmission slots are scheduled before v’s ith
transmission slot according to condition S. So, c certainly
finishes transmission by v’s ith transmission slot. Therefore,
all of v’s children must have finished transmission before v’s
ith transmission slot. As a result, v would not have anything
to send after its ith transmission slot.

To prove the necessity, for each index 1 ≤ i ≤ |Tv|, consider
a traffic pattern in which node v needs to send a total of i
packets to its parent. For each child c of node v, if |Tc| > i, it
is possible that all these i packets are generated in the subtree
Tc and hence would be forwarded by c to v. Thus, it is essential
to schedule i transmission slots of c before v’s ith transmission
slot to guarantee successive transmission by v. Similarly, for
each child c of node v where |Tc| ≤ i, it is possible that |Tc|
out of the i packets that node v needs to send to its parent are
contributed by the subtree Tc. So, it is necessary to schedule
all of c’s transmission slots before v’s ith transmission slot to
guarantee successive transmission by v.

Hence, the theorem is proven.
Theorem 4.1 is generic and is applicable to any network

topology, radio propagation model and interference model. By
induction, we have the following corollary:

Corollary 4.2. If condition S is fulfilled at each node, all
the nodes in the network can transmit data in their successive
transmission slots starting from their first transmission slots.

4.3 Our Proposed Scheduling Algorithm

Our proposed scheduling algorithm is called TPO (Traffic
Pattern Oblivious) in that the constructed schedule effectively
deals with any network traffic pattern. The TPO scheduling
algorithm works in rounds. In each round, the algorithm
assigns one new transmission slot to each node that has not
been assigned its required number of transmission slots. Note
that a node rooted at a subtree of size x needs a total of x
transmission slots. Thus, each round i involves all the nodes
rooted at subtrees of sizes at least i. Fig. 4 shows the sets of
nodes involved in different rounds for the network of Fig. 1(a).
As can be seen, the nodes involved in each round induce a
subtree together with the base station.

Algorithm 1 presents the pseudo code of the TPO schedul-
ing algorithm, where C(v) denotes the set of node v’s children
in the routing tree, I(v) represents the set of nodes that conflict
with v, and TS(v) records all the transmission slots assigned
to node v. In each round (steps 5 to 9), the algorithm performs
scheduling by a post-order traversal of the subtree induced by
the nodes involved. As given in step 6 of Algorithm 1, to
fulfill condition S, each node v in the subtree is assigned a
new transmission slot that is after all the transmission slots that
have been assigned to itself and its children at that time, i.e.,
TS(v) ∪ ⋃c∈C(v) TS(c). In addition, to avoid conflicts, the
new transmission slot is different from all the transmission
slots that have been assigned to the nodes in I(v), i.e.,⋃

u∈I(v) TS(u).

Theorem 4.3. Algorithm 1 generates a conflict-free schedule
that fulfills condition S at each node in the network.
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Algorithm 1: TPO Scheduling Algorithm
1 let N be the list of all nodes in a post-order traversal;
2 for each node v in N do
3 TS(v)← ∅;
4 while N 6= ∅ do
5 for each node v in N do
6 t← min

{
s | s /∈

⋃
u∈I(v) TS(u) and s > j,

∀j ∈ TS(v) ∪
(⋃

c∈C(v) TS(c)
)}

;
7 TS(v)← TS(v) ∪ {t};
8 if |TS(v)| = |Tv| then
9 remove v from N ;

Proof: Please refer to Appendix A in the supplementary
file for the detailed proof.

Figs. 4(a) to (e) show an example execution of the TPO
algorithm for the network of Fig. 1(a) round by round. The
transmission slots assigned to the nodes involved in each round
are given by a table, in which the nodes are listed from the top
to the bottom based on the order in which they are assigned
new transmission slots. For example, in round 1, node G is the
first node to be assigned a new transmission slot and node B is
the last node to be assigned a new transmission slot. Node G is
first assigned slot 1. Node C must be assigned a transmission
slot after that of G, so C is assigned slot 2. Then, the algorithm
assigns a transmission slot to node H. Since H does not conflict
with G, H is also assigned slot 1. Node D must be assigned a
transmission slot after that of H. In addition, D conflicts with
C as they are both node A’s children. Therefore, the earliest
conflict-free slot for D is slot 3. Node A’s transmission slot
must be scheduled after those of C and D. Thus, A is assigned
slot 4, and so on and so forth.

Fig. 4(f) shows the entire schedule constructed by the TPO
algorithm and how the schedule handles the traffic pattern
in which only nodes A, B, D and E generate packets to
send to the base station. The fully shaded rectangles are the
actual transmissions that take place; the half shaded rectangles
represent that the sending node does not perform transmission,
but the receiving node listens for transmission in the time slot;
the non-shaded rectangles mean that the sending node does not
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Fig. 4: An example execution of the TPO algorithm for the
network of Fig. 1(a).

transmit and the receiving node does not listen either. As seen
from Fig. 4(f), the base station infers that nodes A and B have
finished transmission respectively when it observes that slots
8 and 9 are idle. So, the base station concludes data collection
at the end of slot 9. Therefore, the latency of data collection
is four slots shorter than that in the schedule of Fig. 1(c). In
addition, since nodes F, I and J do not generate packets, node
F leaves all its transmission slots (slots 3, 4 and 7) idle. Node
B, on observing that slot 3 is idle, does not need to listen in
slots 4 and 7. Thus, including listening to node E in slot 1, B
listens for a total of two slots only. As a result, the number
of time slots in which node B listens is reduced by half (from
four slots down to two) compared to the schedule of Fig. 1(c).

4.4 Distributed Implementation of TPO
In this section, we describe how to implement TPO scheduling
in a distributed manner. We assume that each sensor node
v knows its parent pv , its children C(v), and the size of
its subtree, i.e., |Tv|. Normally, such information is readily
available at each node after the routing tree is constructed.1 In
addition, each node v also knows the other nodes that conflict
with it, i.e., the set I(v). This can be obtained by having sensor
nodes broadcast to their neighbors [15] or using methods such
as RID [34].

In the distributed TPO algorithm, each node v maintains the
following information:
• TS(v), which records all the transmission slots assigned

to v. Initially, TS(v) = ∅.
• CN (v), which records v’s children that have not been

assigned the required numbers of transmission slots.
Initially, CN (v) = C(v).

• CTS(c), which records the transmission slots assigned
to each child c ∈ C(v). Initially, CTS(c) = ∅.

• IN (v), which records the nodes that conflict with v
and have not been assigned the required numbers of
transmission slots. Initially, IN (v) = I(v).

• CS(v), which records the time slots that cannot be
assigned to v due to conflicts. Initially, CS(v) = ∅.

Algorithm 2 presents the pseudo code of the distributed TPO
algorithm. In the scheduling process, each node chooses its
own transmission slots. Each round of scheduling is conducted
by circulating a TOKEN message to visit all the nodes that have
not chosen the required numbers of transmission slots in the
post order (see the example of Figs. 4(a) to (e)). Initially,
the base station generates a TOKEN and passes it to one of its
children (steps 1–3). When a sensor node v receives the TOKEN
from its parent pv , it indicates the beginning of a new round
(steps 23–24). Thus, v forwards the TOKEN to its children
in CN (v) one at a time (steps 25–27). After the TOKEN has
traversed all of v’s children in CN (v) and come back to v, v
chooses a new transmission slot t (steps 28–30). The selection
of t follows the same strategy as step 6 of Algorithm 1. Then, v
sends a notification messageMN to all nodes in the set IN (v)
(step 33), so that these nodes conflicting with v can record
slot t in their CS(·) and avoid choosing t as their transmission

1. The nodes can also acquire the information of subtree sizes by a post-
order traversal of the routing tree initiated by the base station [6].
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Algorithm 2: Distributed TPO Algorithm
// Algorithm executed by the base station s

1 Ctovisit ← CN (s); // Ctovisit: the children to visit
2 s sends TOKEN to a node w ∈ Ctovisit;
3 Ctovisit ← Ctovisit − {w};
4 while CN (s) 6= ∅ do
5 wait for a TOKEN message to arrive;
6 if TOKEN〈t,tag〉 is received from a child u then
7 CTS(u)← CTS(u) ∪ {t};
8 if tag = finished then CN (s)← CN (s)− {u};
9 if Ctovisit 6= ∅ then

10 s sends TOKEN to a node w ∈ Ctovisit;
11 Ctovisit ← Ctovisit − {w};
12 else Ctovisit ← CN (s);

// Algorithm executed by a sensor node v
13 while |TS(v)| 6= |Tv| do
14 wait for a message to arrive;
15 if MN 〈t,tag〉 is received from a node u then
16 CS(v)← CS(v) ∪ {t};
17 if tag = finished then IN (v)← IN (v)− {u};
18 else if a TOKEN message is received then
19 if TOKEN〈t,tag〉 is received from a child u then
20 CTS(u)← CTS(u) ∪ {t};
21 if tag = finished then
22 CN (v)← CN (v)− {u};
23 if TOKEN is received from parent pv then
24 Ctovisit ← CN (v); // Ctovisit: the children to visit
25 if Ctovisit 6= ∅ then
26 v sends TOKEN to a node w ∈ Ctovisit;
27 Ctovisit ← Ctovisit − {w};
28 else
29 t← min

{
s | s /∈ CS(v) and s > j,
∀j ∈ TS(v) ∪

(⋃
c∈C(v) CTS(c)

)}
;

30 TS(v)← TS(v) ∪ {t};
31 if |TS(v)| < |Tv| then tag = unfinished;
32 else tag = finished;
33 v sends a notification message MN 〈t,tag〉 to all

nodes in IN (v);
34 v sends TOKEN〈t,tag〉 back to parent pv;

slots. Acknowledgements from the nodes in IN (v) can be used
to guarantee successful transmission of message MN .2 Next,
v sends the TOKEN message back to its parent pv (step 34).

The notification message MN sent by v has the form of
〈t, tag〉, where t is v’s newly selected transmission slot and
the boolean tag indicates whether v has finished scheduling.
tag is computed by comparing |TS(v)| against |Tv| (steps
31–32). On receiving MN , each node x ∈ IN (v) inserts t
into its CS(x) (steps 15–16). Node x also removes v from its
IN (x) if MN indicates that v has finished scheduling (step
17). The TOKEN sent by node v to its parent pv also bears
the form 〈t, tag〉. On receiving the TOKEN, pv inserts t into
CTS(v) (steps 19–20), and removes v from its CN (pv) if the
TOKEN indicates that v has finished scheduling (steps 21–22).

Similar to sensor nodes, the base station s forwards the
TOKEN to its children in CN (s) one at a time (steps 9–11).
On receiving TOKEN〈t, tag〉 from a child u, s inserts t into
CTS(u) (steps 6–7), and removes u from its CN (s) if the
TOKEN indicates that u has finished scheduling (step 8). After

2. This is similar to employing the α-synchronizer at sensor nodes to ensure
that they stay in step with all their interferers [35].

the TOKEN has traversed all the children in CN (s) and come
back to s, s starts a new round of scheduling (step 12). This
process continues until all the children of the base station have
finished scheduling (step 4).

On completing the scheduling process, each node v would
know its transmission slots TS(v) and its listening slots
recorded in CTS(c) for each child c. A schedule constructed
by the TPO algorithm is to be consistently used throughout
the duration of continuous data collection, irrespective of the
traffic pattern. Thus, the scheduling overhead, amortized over
the duration of continuous data collection, would be minimal.

In essence, Algorithm 2 is a distributed implementation of
Algorithm 1 presented in Section 4.3. Thus, the schedules
constructed by these two versions of TPO are the same. Unless
stated otherwise, we shall not distinguish between these two
versions of TPO in the rest of this paper where we study the
performance of their constructed schedules.

5 PERFORMANCE ANALYSIS
In this section, we develop a mathematical model to analyze
the performance of the proposed TPO scheduling algorithm.

As shown in Fig. 5, we consider a complete k-ary routing
tree of d levels, where each internal node has k child nodes.
The base station is located at the tree root and all the other
nodes in the tree are sensor nodes. Suppose that data collection
has random network traffic patterns. At each sampling interval,
each sensor node generates a packet to report its acquired
data to the base station with a probability of p. For simplic-
ity, packet generation is assumed to be independent across
different sensor nodes and over different sampling intervals.
We again assume that the transmission from each node to its
parent conflicts with the transmissions of its siblings, parent
and grandparent in the tree.

We compare our TPO algorithm with a state-of-the-art
scheduling algorithm called TIGRA [9] and a yardstick ideal
schedule denoted by IDEAL. TIGRA constructs a conflict-
free schedule targeted on the full traffic pattern in which
each sensor node generates one packet to send to the base
station. IDEAL, on the other hand, builds a conflict-free
schedule for the actual traffic pattern of each sampling interval.
The TIGRA and IDEAL algorithms shall be elaborated later.
We analyze the schedules built by different algorithms for
the k-ary routing tree and compare their expected latency
and energy performance in one sampling interval under the
aforementioned random traffic patterns.

To simplify presentation, we shall denote by 4i the size
of the subtree rooted at a node located at level i of the k-ary
tree. For each 1 ≤ i ≤ d, 4i =

∑d−i
j=0 k

j .

level 1

Base Station

 

  level d

level d-1

level 2

 

level 3

k nodes

k2 nodes

k3 nodes

kd-1 nodes

kd nodes
k nodes

 

  

 

  

 

 

  

 

  

Fig. 5: A complete k-ary routing tree of d levels.
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k consecutive time slots in which the nodes at level 1 are each assigned one transmission slot

kd slots 3k(Δ3-1) slots 2k(Δ2-Δ3) slots k(Δ1-Δ2) slotsA3 A2 A1

c1 ck c1 ck c1 ck c1 ck c1 ck c1 ck c1 ck

c1 ck

k slots k slots k slots k slots k slots k slots k slots k slots

Fig. 6: The TPO schedule constructed for the k-ary routing tree shown in Fig. 5.

5.1 Performance of the TPO Algorithm
5.1.1 Latency performance
To compute the expected latency of data collection, we need
to find out the time slots at which the base station may
conclude data collection and the corresponding probabilities
of concluding data collection at these time slots. We start by
examining the structure of the TPO schedule built for the k-
ary routing tree shown in Fig. 5. Since the k leaf nodes having
the same parent at level d − 1 conflict with each other, they
must be assigned different time slots for transmission in round
1 of scheduling. The leaf nodes under different parents at level
d−1, on the other hand, can transmit together in the same time
slot. Thus, as shown in Fig. 6, k consecutive time slots (i.e.,
slots 1 to k) are needed for all leaf nodes at level d to complete
transmission to their parents. Then, similar to the leaf nodes,
k consecutive time slots (i.e., slots k+1 to 2k) are needed for
all nodes at level d − 1 to be assigned one transmission slot
each. Following this schedule pattern, in every k consecutive
time slots, the nodes at a new level closer to the base station
are each assigned one transmission slot. As a result, the nodes
at level 1 are each assigned their first transmission slots in the
group of slots (d− 1)k + 1 to dk.

In round 2 of scheduling, the nodes at level d − 1 are
each assigned their second transmission slots. To simplify the
analysis, we make an additional assumption that the nodes
that are one or two levels apart in the k-ary routing tree
cannot be scheduled to transmit concurrently. That is, when a
node at level i is transmitting, all nodes at levels i − 1 and
i − 2 are not allowed to transmit at the same time. Under
the above constraint, level-(d − 1) nodes cannot transmit in
slots 2k + 1 to 4k in which level-(d − 2) and level-(d − 3)
nodes are already scheduled to transmit. Level-(d − 1) nodes
are assigned their second transmission slots in the group of
slots 4k + 1 to 5k, in which the first transmission slots of
level-(d− 4) nodes are also scheduled. Similarly, level-(d− 2)
nodes are assigned their second transmission slots in the group
of slots 5k + 1 to 6k, and so on. Thus, level-1 nodes are
assigned their second transmission slots in the group of slots
(d+2)k+1 to (d+3)k. In subsequent rounds of scheduling,
each involved node is assigned a new transmission slot that is
3k time slots after its previous transmission slot. This schedule
pattern continues until level-3 nodes are assigned their required
numbers of transmission slots. Note that each level-3 node
needs 43 transmission slots. Therefore, as shown in Fig. 6,
the first 43 transmission slots of level-1 nodes are assigned
in the groups of slots (d − 1)k + 1 to dk, (d + 2)k + 1 to
(d + 3)k, (d + 5)k + 1 to (d + 6)k, · · · , and A3 − k + 1 to
A3, where A3 = (d+ 343 − 3)k.

By the end of slot A3, all the nodes at levels 3 and below

have finished scheduling. Starting from slot A3 + 1, only the
nodes at levels 1 and 2 need to be assigned more transmission
slots. Thus, the cycle of the schedule pattern reduces to 2k
time slots, in which slot assignment alternates between level-
1 nodes and level-2 nodes every k consecutive time slots.
This schedule pattern repeats until level-2 nodes are assigned
their required numbers of transmission slots. Note that each
level-2 node needs 42 transmission slots and has already
been assigned 43 transmission slots by slot A3. Therefore, as
shown in Fig. 6, the (43 + 1)-th to 42-th transmission slots
of level-1 nodes are assigned in the groups of slots A3+k+1
to A3 + 2k, A3 + 3k + 1 to A3 + 4k, · · · , and A2 − k + 1 to
A2, where A2 = A3+2(42−43)k = (d+43+242−3)k.

Starting from slot A2 + 1, only level-1 nodes need to be
assigned more transmission slots. Thus, each level-1 node is
assigned one transmission slot in every k consecutive time
slots. Since each level-1 node needs 41 transmission slots
and has been assigned 42 transmission slots by slot A2, the
TPO schedule ends at slot A1 = A2 + (41 − 42)k = (d +
43 +42 +41 − 3)k.

As summarized in Fig. 6, level-1 nodes perform transmis-
sion in 41 slot groups each consisting of k consecutive time
slots. Each slot group z begins at slot B(z)− k+1 and ends
at slot B(z), where

B(z) =

 dk + 3k(z − 1), if 1 ≤ z ≤ 43,
A3 + 2k(z −43), if 43 < z ≤ 42,
A2 + k(z −42), if 42 < z ≤ 41.

(1)

Let ci denote the ith node at level 1 (1 ≤ i ≤ k). The zth
transmission slot of ci is at slot B(z)− k + i.

In the TPO schedule, the base station can conclude data
collection only at the time slots in which level-1 nodes
transmit. Now, we analyze the probability for the base station
to conclude data collection at the ith slot of slot group z. For
ease of presentation, we shall denote by P (x, y) the probability
that among a set of x nodes, exactly y nodes generate packets
in a sampling interval. Given the packet generation probability
p, we have

P (x, y) =

(
x

y

)
py(1− p)x−y. (2)

Consider the following cases:
• z = 1, i.e., data collection concludes in the first slot group.

Since the base station needs to listen to each level-1 node for
at least one time slot, data collection can only be concluded
at the last slot in the first slot group. The corresponding
latency of data collection is B(1) slots. This happens when
no packet is generated by any node in the network, which
has a probability P (k41, 0) to occur, where k41 is the
total number of sensor nodes in the k-ary tree.
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• 2 ≤ z ≤ 41 − 1. To conclude data collection at the ith
slot of slot group z, the base station must be inferring that
level-1 node ci has finished transmission at this time slot.
Since this slot is the zth transmission slot of ci, the subtree
rooted at node ci must generate exactly z − 1 packets. The
probability for this to occur is P (41, z − 1). For level-1
nodes c1, c2, · · · , ci−1, the base station must be assured that
they have finished transmission by the ith slot of slot group
z. Thus, each of the subtrees rooted at c1, c2, · · · , ci−1
can generate at most z − 1 packets. The probability for
this to occur is

(∑z−1
j=0 P (41, j)

)i−1
. For level-1 nodes

ci+1, ci+2, · · · , ck, the base station must be assured that they
have finished transmission by the end of slot group z−1. So,
the subtrees rooted at ci+1, ci+2, · · · , ck each can generate
at most z − 2 packets. The probability for this to occur is(∑z−2

j=0 P (41, j)
)k−i

. Therefore, the overall probability of
concluding data collection at the ith slot of slot group z is(∑z−1

j=0 P (41, j)
)i−1 ·(∑z−2

j=0 P (41, j)
)k−i ·P (41, z−1).

The corresponding latency of data collection is B(z)−k+i
slots.

• z = 41, i.e., data collection concludes in the last slot
group. To conclude data collection at the ith slot of the
last slot group, the base station must be inferring that ci
has finished transmission at this time slot. Since this is
the last transmission slot of ci, the subtree rooted at ci
can generate either 41 − 1 or 41 packets.3 The proba-
bility for this to occur is P (41,41 − 1) + P (41,41).
Moreover, since the base station has listened to all the
transmission slots of nodes c1, c2, · · · , ci−1, each of the
subtrees rooted at these nodes can generate whatever num-
ber of packets from 0 to 41. On the other hand, the
base station must be assured that nodes ci+1, ci+2, · · · , ck
have all finished transmission by the end of slot group
41 − 1. Thus, the subtrees rooted at ci+1, ci+2, · · · , ck
each can generate at most 41 − 2 packets. The probability
for this to occur is

(∑41−2
j=0 P (41, j)

)k−i
. Therefore, the

overall probability of concluding data collection at the
ith slot of the last slot group is

(∑41−2
j=0 P (41, j)

)k−i ·
(P (41,41 − 1) + P (41,41)). The corresponding latency
of data collection is B(41)− k + i slots.

Thus, the expected latency of the TPO schedule is given by

B(1)P (k41, 0) +

41−1∑
z=2

k∑
i=1

(
(B(z)− k + i)

( z−1∑
j=0

P (41, j)

)i−1( z−2∑
j=0

P (41, j)

)k−i

P (41, z − 1)

)

+

k∑
i=1

(
(B(41)− k + i)

(41−2∑
j=0

P (41, j)

)k−i

(
P (41,41) + P (41,41 − 1)

))
, (3)

3. If the subtree rooted at ci generates 41 packets, the ith slot of the last
slot group is not idle. However, since it is the last transmission slot of ci, the
base station is still able to conclude data collection if it had inferred that all
the other level-1 nodes have already finished transmission.

where B(·) and P (·, ·) are given by formulas (1) and (2)
respectively.

5.1.2 Energy performance

For energy performance, we focus on the energy spent by
sensor nodes in transmitting data, receiving data and idle
listening. It is widely known that receiving data consumes the
same order of energy as transmitting data, and idle listening
consumes as much energy as receiving data [10], [36], [37].
In our analysis, we assume that each sensor node consumes
et energy unit for transmitting a packet in a time slot, and er
energy unit for listening for transmission in a time slot, be it
idle listening or receiving a packet.

The leaf nodes in the k-ary routing tree do not listen to any
other node. They simply transmit their generated packets (if
any) to their parents. So, the expected energy consumption of
each leaf node is et · p.

Consider an internal node v located at level i (i =
1, 2, · · · , d−1) of the k-ary tree. All the packets generated in
the subtree rooted at v need to be transmitted by v to its parent.
Since the size of the subtree rooted at v is 4i, the expected
number of packets generated in this subtree is p · 4i. Thus,
the expected energy consumption of v for transmitting data is
et ·p ·4i. The packets received by node v are those generated
in the subtrees rooted at v’s children. Since the total size of
these subtrees is k · 4i+1 = 4i − 1, the expected number
of packets generated in these subtrees is p · (4i − 1). So,
the expected energy consumption of v for receiving data is
er · p · (4i − 1). In the TPO schedule, node v listens to each
child for one idle slot unless the child sends packets in all
of its transmission slots which happens when every node in
the subtree rooted at the child generates a packet. Thus, the
probability for node v to perform one slot of idle listening to
a child is 1−p4i+1 . Since node v has k children, the expected
energy consumption of v for idle listening is er ·k ·(1−p4i+1).
Therefore, the expected total energy consumption of node v
is etp4i + erp(4i − 1) + erk(1− p4i+1).

Since the k-ary tree has d levels and there are ki

nodes at each level i, the expected total energy consump-
tion of all nodes in the network is given by kdetp +∑d−1

i=1 ki
(
etp4i + erp(4i − 1) + erk(1− p4i+1)

)
.

The network lifetime is largely determined by the most
energy-consuming node in the network [31]. From the above
analysis, the nodes with the highest expected energy consump-
tion are those located at level 1 of the k-ary tree. Each of them
has the expected energy consumption of etp41 + erp(41 −
1) + erk(1− p42).

We remark here that as shown by the above analysis, TPO
does not eliminate the problem that the nodes closer to the
base station generally suffer from heavier workload and higher
energy consumption than the other nodes in non-aggregate data
collection. The burden of these heavily loaded nodes could be
alleviated by enabling packet aggregation [9], or constructing
more balanced routing trees for data collection [31], [38].
These techniques are orthogonal to our TPO scheduling strat-
egy and can be used together with TPO to further improve the
energy efficiency of data collection.
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5.2 Performance of the TIGRA Algorithm
5.2.1 Latency performance
The TIGRA algorithm builds a conflict-free schedule for the
full traffic pattern where each sensor node generates one packet
to send to the base station [9]. The algorithm schedules one
time slot at a time and keeps track of the number of packets
held by each node in the scheduling process. Each time slot
is scheduled in a greedy manner by examining all the nodes
level-by-level down the routing tree. A node is scheduled to
transmit in the current time slot if the node holds at least one
packet and it does not conflict with any other node already
scheduled for transmission in the current slot. In the full traffic
pattern, each subtree rooted at a level-3 node generates 43

packets. Thus, each level-3 node needs 43 transmission slots
to forward these packets to its parent. The k level-3 nodes
under the same parent at level 2 cannot transmit concurrently.
So, the transmission slots of all level-3 nodes would occupy at
least k · 43 time slots. Similarly, the transmission slots of all
level-2 nodes would occupy at least k·42 time slots, and those
of all level-1 nodes would occupy k ·41 time slots. Under the
additional constraint that the nodes one or two levels apart
cannot transmit concurrently, all the above time slots must be
disjoint. Therefore, the total length of the TIGRA schedule is
at least k41 + k42 + k43 time slots. Since the base station
cannot conclude data collection until the end of the schedule,
no matter how the traffic pattern changes, the latency of data
collection is at least k41 + k42 + k43 slots.

5.2.2 Energy performance
The leaf nodes simply transmit their generated packets (if any)
to their parents. So, the expected energy consumption of each
leaf node is et · p.

Consider an internal node v located at level i (i =
1, 2, · · · , d − 1) of the k-ary tree. Similar to the analysis of
the TPO schedule, the expected energy consumption of v for
transmitting data is et · p · 4i. In addition, node v has to
listen in all the transmission slots of its children, irrespective
of the network traffic pattern. Note that node v has k children
and each child has 4i+1 transmission slots. Thus, the energy
consumption of v for receiving data and idle listening together
is er ·k ·4i+1 = er(4i−1). Hence, the expected total energy
consumption of node v is etp4i + er(4i− 1). Therefore, the
expected total energy consumption of all nodes in the network
is given by kdetp+

∑d−1
i=1 ki (etp4i + er (4i − 1)).

From the above analysis, the level-1 nodes in the k-ary tree
have the highest expected energy consumption. Each of them
has the expected energy consumption of etp41+ er(41−1).

5.3 Performance of the IDEAL Schedule
5.3.1 Latency performance
Finally, we analyze the performance of an IDEAL schedule.
The IDEAL schedule assumes a priori knowledge of the
network traffic pattern at each sampling interval. A conflict-
free schedule tailored to the traffic pattern of the sampling
interval is built for data collection at each sampling interval.
Since we do not account for the latency and energy overheads
of identifying the traffic pattern and constructing the schedule,

the IDEAL schedule is used as a yardstick on the performance
of data collection.

Since the IDEAL schedule is constructed for the actual traf-
fic pattern, the base station always concludes data collection
at the end of the schedule. Thus, the expected latency is equal
to the expected length of the schedule.

We apply similar analysis to that of TIGRA for deriving a
lower bound on the expected length of the IDEAL schedule.
Each level-3 node needs to forward all the packets generated
in its subtree to its parent, and each group of k level-3
nodes under the same parent cannot transmit concurrently.
So, the transmission slots of all level-3 nodes would occupy
x time slots, where x is the maximum number of packets
generated by all the groups of k level-3 nodes under the same
parent. Each group of k level-3 nodes generates i packets with
probability P (k43, i). Since there are k2 groups of level-3
nodes, the probability for all of them to generate at most
x packets is

(∑x
i=0 P (k43, i)

)k2

, and that for all of them

to generate at most x − 1 packets is
(∑x−1

i=0 P (k43, i)
)k2

.
Therefore, the probability for the transmission slots of all
level-3 nodes to occupy x time slots is

(∑x
i=0 P (k43, i)

)k2

−(∑x−1
i=0 P (k43, i)

)k2

. Similarly, the probability for the trans-
mission slots of all level-2 nodes to occupy x time slots
is
(∑x

i=0 P (k42, i)
)k − (∑x−1

i=0 P (k42, i)
)k

. On the other
hand, the expected total number of packets generated by all
nodes is pk41. Thus, the transmission slots of all level-1
nodes occupy an expected number of pk41 time slots. Under
the additional constraint that the nodes one or two levels
apart cannot transmit concurrently, all the above time slots
must be disjoint. Therefore, the expected length of the IDEAL
schedule is at least pk41 +

∑k42

x=0 x
((∑x

i=0 P (k42, i)
)k −(∑x−1

i=0 P (k42, i)
)k)

+
∑k43

x=0 x
((∑x

i=0 P (k43, i)
)k2

−(∑x−1
i=0 P (k43, i)

)k2)
time slots.

5.3.2 Energy performance
Since the IDEAL schedule well fits the actual network traffic
pattern, there is no idle listening in executing the schedule for
data collection. Similar to the analysis of the TPO schedule,
the expected energy consumption of each leaf node in the
IDEAL schedule is simply et · p. Each internal node in the
k-ary tree needs to receive all the packets generated in the
subtrees rooted at its children and forward them together with
its own generated packet (if any) to its parent. Thus, the
expected energy consumption of each internal node at level
i (i = 1, 2, · · · , d−1) is et·p·4i+er·p(4i−1). As a result, the
expected total energy consumption of all nodes in the network
is given by kdetp+

∑d−1
i=1 ki(etp4i + erp(4i − 1)).

From the above analysis, the nodes with the highest ex-
pected energy consumption are those located at level 1 of the
k-ary tree. Each of them has the expected energy consumption
of etp41 + erp(41 − 1).

5.4 Numerical Results and Comparison
Now, we show the numerical results obtained from the analysis
in the above sections. The power consumption of a Mica2
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Fig. 7: Performance for different packet generation probabilities for a 3-ary tree of 4 levels.
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Fig. 8: Performance for 3-ary tree of different depths (p = 0.2).
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Fig. 9: Performance for 4-level k-ary trees of different degrees (p = 0.2).

mote with a CC1000 transceiver is 60mW and 45mW for
transmitting and receiving (listening) respectively [10], [36].
Following this ratio, in computing the numerical results, we set
the energy costs for a sensor node to perform transmission and
listen for transmission in a time slot at et = 1 and er = 0.75
energy units respectively.

First, we consider a complete 3-ary tree of 4 levels. We vary
the probability p for each node to generate a packet from 0 to
1. Fig. 7(a) shows the expected latency of data collection for
different scheduling algorithms as a function of p. It can be
seen that TIGRA has the same latency for different p values,
because the base station cannot conclude data collection until
the end of the TIGRA schedule, irrespective of the network
traffic pattern. In contrast, the latency of both TPO and IDEAL
reduces with decreasing traffic load and is always shorter than
that of TIGRA when p < 1. In general, the latency of TPO is

quite close to that of IDEAL (i.e., the lower bound). Figs. 7(b)
and (c) show the energy performance of the three algorithms
for different p values. As can be seen, our TPO algorithm
consistently outperforms the TIGRA algorithm in terms of
both the total energy consumption in the whole network and
the energy consumption at the most energy consuming node.
The energy performance of our TPO algorithm is quite similar
to that of IDEAL (i.e., the lower bound). In contrast, since
TIGRA cannot avoid any idle listening, its energy waste
becomes more significant when the traffic load is lighter.
Thus, the performance difference between TIGRA and TPO
increases with decreasing traffic load.

Next, we study the impacts of tree depth and degree. We
first increase the depth d from 2 to 6 while keeping the
degree k at 3 and the packet generation probability p at 0.2.
Fig. 8 shows that the performance improvement of our TPO
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Fig. 10: Experimental settings.

algorithm over TIGRA generally increases with the tree depth.
Owing to idle listening, the energy consumption at the most
energy consuming node of TIGRA grows rapidly with the tree
depth. We then increase the degree k from 2 to 6 while keeping
the tree depth d at 4 and the packet generation probability p at
0.2. Fig. 9 shows similar performance trends to those observed
in Fig. 8. Our TPO algorithm consistently outperforms the
TIGRA algorithm and the performance improvement generally
increases with the degree. It can also be seen from Figs. 8 and
9 that the performance of TPO is fairly close to that of IDEAL
across various tree depths and degrees.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup
We developed a simulator to evaluate the performance of
the proposed TPO scheduling algorithm using real-world data
traces. We simulated a network of sensor nodes randomly
placed over a square field with the base station located at
the center of the field. The sensor nodes were assumed to
have equal radio transmission ranges. A breadth first search
tree rooted at the base station was constructed and used as the
routing tree for data collection [6], [8], [10], [32]. Following
other works [5]–[9], the following conflict constraints were
placed on scheduling: when a node is scheduled to receive data
from another node, no other neighbor of the receiving node is
allowed to be scheduled for transmission in the same time slot.
We have experimented with many randomly generated network
topologies and observed similar performance trends. Due to
space limitations, we shall focus on presenting the results for
a sample network topology of 100 nodes placed over a 1×1
field as shown in Fig. 10(a), in which the transmission range
of each node is set at 0.15 to ensure network connectivity.

We made use of the weather data provided by the LEM
project [39] at the University of Washington to simulate the
physical phenomena in the immediate surroundings of sensor
nodes. We used the temperature (TEMP) and solar radiation
(SOLAR) traces logged by the station at the University
of Washington from January 2003 to January 2009 in our
experiments. Each trace consisted of more than 3,000,000
readings acquired at one-minute intervals. Fig. 10(b) shows
some representative segments of these traces. For each of the

TEMP and SOLAR traces, we extracted a large number of
subtraces starting at randomly selected days and associated
different subtraces with different sensor nodes in the simulated
network. Each subtrace contained 20,000 readings.

To simulate dynamic network traffic patterns, we imple-
mented error-bounded approximate data collection that ex-
ploits temporal data correlations to trade data accuracy for less
network traffic [19]. Specifically, the base station would like
to be assured that its knowledge of sensor readings is always
kept within a required error bound e of the exact readings.
To suppress unnecessary updates with the base station, each
sensor node maintains a filter window [u− e, u+ e] centered
at the reading u that it last updated with the base station. At
each sampling interval, if the new reading acquired by the
node is within the filter window, no update is sent to the base
station. Otherwise, the node reports the new reading to the
base station and updates its filter window. It is intuitive that
the traffic load in the network decreases with an increasing
error bound. Fig. 10(c) shows the average proportion of sensor
nodes reporting data to the base station at a sampling interval
as a function of error bound for the TEMP and SOLAR traces.
In addition to approximate data collection, we also simulated
exact data collection with a full traffic pattern in which all
sensor nodes report their readings to the base station at every
sampling interval (denoted by “Full” in Fig. 10(c)).

Besides our proposed TPO algorithm, we also implemented
two state-of-the-art scheduling algorithms TIGRA [9] and
SPARSE [8]. TIGRA, as described in Section 5, constructs
a conflict-free schedule targeted on the full traffic pattern.
SPARSE, on the other hand, builds a conflict-free schedule
for a given traffic pattern. Both TIGRA and SPARSE aim to
reduce the length of the constructed schedule. In SPARSE, to
identify the traffic pattern and construct the schedule, messages
must flow over the entire routing tree to complete a depth-first
tree traversal and one top-down pass from the base station to
all sensor nodes [8]. In our simulation of SPARSE, at each
sampling interval, a new schedule tailored to the traffic pattern
of the sampling interval was first constructed by conducting
the tree traversal and top-down pass. Then, data collection
proceeded with the constructed schedule. We conservatively
assumed that all messages transmitted in the traversal and top-
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Fig. 11: Performance for different error bounds of approximate data collection (TEMP trace).
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Fig. 12: Performance for different error bounds of approximate data collection (SOLAR trace).

down pass can fit into one packet and accounted for the energy
and latency overheads due to these messages in SPARSE. In
contrast, TIGRA and our TPO algorithm consistently use a
single schedule throughout all sampling intervals.

Each simulation run was performed for 20,000 sampling
intervals. We compared different scheduling algorithms in
terms of time efficiency and energy efficiency. For time
efficiency, we recorded the latency of data collection at each
sampling interval and calculated the average latency over the
20,000 sampling intervals simulated. For energy efficiency,
as discussed in Section 5.4, the energy costs for a sensor
node to perform transmission and listen for transmission in a
time slot were set at 1 and 0.75 energy units respectively. We
recorded the total amount of energy consumed by each node
for transmitting data, receiving data and idle listening over the
20,000 sampling intervals simulated. Then, we added up these
amounts to obtain the total energy consumed in the whole
network. Since the network lifetime is largely determined by
the most energy-consuming node [31], we also found out the
node that consumed the largest amount of energy and plotted
this amount for performance comparison.

6.2 Performance for Different Traffic Patterns
Figs. 11 and 12 show the performance of different scheduling
algorithms as a function of the error bound of approximate
data collection for the TEMP and SOLAR traces respectively.
Figs. 11(a) and 12(a) show that the TIGRA schedule produces
the same latency of data collection for all error bounds. This
is because TIGRA targets at the full traffic pattern. But in

approximate data collection, the traffic pattern changes over
time in an unpredictable manner. Since the base station does
not know a priori which nodes would report data in a sampling
interval, it has to always listen until the end of the TIGRA
schedule to make sure that all data have been received. In
contrast, TPO and SPARSE are both able to take advantage
of lighter traffic load at larger error bounds to reduce the
latency of data collection. However, for the sample network
topology shown in Fig. 10(a), the latency overhead of SPARSE
for constructing a new schedule at each sampling interval is
136 time slots, which far outweighs the benefit of deploying
the new schedule for data collection. Therefore, as seen from
Figs. 11(a) and 12(a), the latency of SPARSE is much higher
than that of TIGRA, even when the error bound is large. Our
proposed TPO schedule considerably reduces the latency of
data collection compared to TIGRA and SPARSE over a wide
range of error bounds. Note that TPO also has decent latency
performance under the full traffic pattern (the leftmost points
in Fig. 11(a) and 12(a)) in that TPO has a similar latency
to TIGRA, which is a latency-optimized schedule designed
specifically for the full traffic pattern.

Figs. 11(b), (c) and 12(b), (c) show that our proposed TPO
schedule leads to significantly lower energy consumption than
TIGRA and SPARSE. In the TIGRA schedule, irrespective of
the traffic pattern, the number of time slots each node has
to listen always equals the number of its descendants in the
routing tree. Therefore, the nodes close to the base station
spend much energy in idle listening when the traffic load
is light. This explains why the energy consumption of the
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Fig. 13: Performance for different network sizes where the node density is kept constant (TEMP trace, error bound = 0.8 F).
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Fig. 14: Performance for different network sizes where the field size is kept constant (TEMP trace, error bound = 0.8 F).

most consuming node is generally much higher in TIGRA
than in the other schedules (see Figs. 11(b) and 12(b)). On
the other hand, while the SPARSE schedule is able to avoid
idle listening, the energy overhead for constructing a new
schedule at each sampling interval is substantial. Thus, as
shown in Figs. 11(c) and 12(c), SPARSE results in even higher
total energy consumption in the whole network than TIGRA.
Our proposed TPO schedule allows each node to transmit
all data in its successive transmission slots regardless of the
traffic pattern. Therefore, a receiving node can stop listening
to a sending node when it identifies the end of transmissions
performed by the sending node, thereby conserving energy.
Figs. 11(b) and 12(b) show that the most consuming node
in TPO spends much less energy compared to that in TIGRA
and SPARSE. This implies our TPO schedule can substantially
prolong network lifetime over the other two algorithms.

6.3 Impact of Network Size
To investigate the impact of network size, we performed
two experiments that increased the number of sensor nodes
in different ways. In the first experiment, we expanded the
field size and increased the number of nodes concurrently to
maintain the same node density. This makes the routing tree
become deeper when the network size grows. In the second
experiment, we maintained a constant field size as more nodes
were added into the network. This results in increasing node
density and hence makes the routing tree become fatter. Since
the experimental results for the TEMP and SOLAR traces
with different error bounds of data collection have similar

performance trends, we report only the results for the TEMP
trace with an error bound of 0.8 F in Figs. 13 and 14. As
can be seen, the latency of and the energy consumed for data
collection both increase with the network size. Our proposed
TPO schedule consistently results in significantly lower la-
tency and energy consumption than SPARSE and TIGRA for
different network sizes. The performance improvement of the
TPO schedule generally increases with the network size.

7 CONCLUSIONS
We have presented a TDMA schedule that is suited to con-
tinuous data collection with dynamic traffic patterns. Our
proposed schedule is traffic pattern oblivious in that it achieves
high energy efficiency and time efficiency of data collection
irrespective of the traffic pattern. In this schedule, the energy
consumed by sensor nodes for any traffic pattern is very close
to the minimum required by their workloads given in the
traffic pattern. The schedule also allows the base station to
conclude data collection as early as possible according to the
traffic load. We have theoretically analyzed the performance
of our proposed schedule and compared it with a state-of-
the-art TDMA schedule and a yardstick ideal schedule. We
have also conducted simulation experiments of approximate
data collection using real-world data traces. The analytical and
simulation results show that: (1) existing schedules built for
a static traffic pattern lead to a lot of idle listening and un-
necessary delay when handling traffic patterns of lighter loads;
(2) in continuous data collection with dynamic traffic patterns,
constructing and deploying a new schedule tailored to the new
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traffic pattern whenever the traffic pattern changes introduce
too much energy and latency overheads; (3) compared with ex-
isting schedules, our proposed schedule considerably reduces
the latency of data collection and achieves significant energy
savings for continuous data collection with dynamic traffic
patterns. For future work, we plan to show the effectiveness
of the proposed schedule on a real sensor network testbed.
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