
1

Update Scheduling for Improving Consistency
in Distributed Virtual Environments

Xueyan Tang, Member, IEEE , and Suiping Zhou, Member, IEEE

Abstract—The fundamental goal of distributed virtual environments (DVEs) is to create a common and consistent presentation of
the virtual world among a set of computers inter-connected by a network. This paper investigates update scheduling algorithms to
make efficient use of network capacity and improve consistency in DVEs. Our approach is to schedule state updates according to their
potential impacts on consistency. In DVEs, the perceptions of participants are affected by both the spatial magnitude and temporal
duration of inconsistency in the virtual world. Using the metric of time-space inconsistency, we analytically derive the optimal update
schedules for minimizing the impact of inconsistency. Based on the analysis, we propose a number of scheduling algorithms that
integrate spatial and temporal factors. These algorithms also take into consideration the effect of network delays. The algorithms
can be used on top of many existing mechanisms such as dead reckoning. Experimental results show that our proposed algorithms
significantly outperform the intuitive algorithms that are based on spatial or temporal factors only.

Index Terms—distributed virtual environment, time-space consistency, state update, scheduling.

✦

1 INTRODUCTION

A distributed virtual environment (DVE) allows partici-
pants at different locations to communicate and interact
with each other in a virtual world [10], [14]. DVEs
have been widely used in many areas such as mili-
tary training [6], collaborative design [1], e-learning [2]
and network-based multi-user games [13]. As shown
in Figure 1, a DVE normally comprises a group of
inter-connected computers (nodes) that simulate a set of
entities evolving in a virtual world.

Fig. 1. Distributed virtual environment.

The fundamental goal of DVEs is to create a com-
mon and consistent presentation of the virtual world
among the participants. When an action is taken by
a participant, or the state of an entity changes in the
virtual world, all participants should be able to see the
change in real time. However, due to the constraints
of limited network capacity and message transmission
delays, a consistent view among different participants is
not guaranteed automatically. If some state updates are
not timely disseminated to all nodes, inconsistency is
likely to occur in a DVE application. Inconsistent views

• X. Tang and S. Zhou are with the School of Computer Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore 639798.
E-mail: {asxytang, asspzhou}@ntu.edu.sg.

of the virtual world can seriously affect meaningful in-
teractions among the participants (e.g., it may give some
participants advantages over the others in an air combat
game). The consistency problem is exacerbated as the
size of the system increases. Therefore, an important
issue in DVEs is how to make effective use of the limited
network capacity to reduce inconsistency.

In this paper, we investigate update scheduling al-
gorithms to efficiently utilize the network capacity for
improving consistency in DVEs. Our approach is to
schedule state updates according to their potential im-
pacts on consistency. In DVEs, the perceptions of par-
ticipants are affected by both the spatial magnitude and
temporal duration of inconsistency in the virtual world.
The participants may not spot inconsistency lasting for
short periods even if the spatial difference is relatively
large, but they may notice inconsistency lasting for long
periods even if the spatial difference is small. To this
end, a metric called time-space inconsistency has been
proposed and shown to effectively reflect the impact of
inconsistency on a participant’s perception and decision-
making in DVE applications [11].

Using the metric of time-space inconsistency, we an-
alytically derive the optimal update schedules for mini-
mizing the impact of inconsistency. Based on the analy-
sis, we propose a number of scheduling algorithms that
integrate spatial and temporal factors. These algorithms
also take the effect of network delays into consideration.
The proposed algorithms are generic and can be used
on top of many existing mechanisms such as dead
reckoning [3] and relevance filtering [8] for improving
consistency. Experimental results show that our algo-
rithms significantly outperform the intuitive algorithms
that are based on spatial or temporal factors only.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 introduces the
system model. Two intuitive update scheduling algo-

2

rithms are presented in Section 4. Section 5 analyzes
the optimal update schedules. Based on the analytical
results, Section 6 proposes a number of update schedul-
ing algorithms for improving consistency in DVEs. The
experimental setup and results are discussed in Section 7.
Finally, Section 8 concludes the paper.

2 RELATED WORK

Some work exists on reducing the amount of data ex-
changed over the network in DVEs. Two widely used
techniques are dead reckoning (DR) and relevance filter-
ing. In dead reckoning [3], [7], each node maintains a DR
model for each moving entity to extrapolate the entity
state between updates. This helps to cut down the num-
ber of state updates needed to keep the node’s view con-
sistent. Different from dead reckoning, relevance filtering
reduces network traffic by disseminating updates only to
interested nodes [5], [8]. For example, a participant may
just be interested in the state updates of the entities close
to its avatar in the virtual environment. Though these
techniques are successful in reducing network traffic,
the total traffic volume may still be very high for large-
scale DVEs with massive number of entities. Our update
scheduling algorithms complement these techniques in
the sense that they can be used on top of them. When the
number of state updates that a node needs to send (as
required either by dead reckoning or relevance filtering)
exceeds the network capacity, our algorithms determine
the priority of disseminating these updates according to
their potential impacts on consistency.

Lui [4] analyzed the optimal synchronization interval
for dead reckoning with an objective of bounding the
maximum phase difference. A priority round-robin al-
gorithm was presented in [20] to reduce the expected
spatial difference in entity states. Though this algorithm
shared the spirit with an intuitive SPACE algorithm we
present in Section 4, it did not take into account the
impact of network delays. Similarly, Yu [21] et al. studied
the optimization of bandwidth allocation for minimizing
the expected spatial difference in entity states. However,
none of the above studies has considered time-space in-
consistency. It has been shown that in addition to spatial
magnitude, the temporal duration of inconsistency also
affects human perception significantly in DVE applica-
tions [11]. Zhou et al. [11] defined a metric for char-
acterizing time-space consistency in DVEs but did not
propose any update scheduling algorithm for improving
time-space consistency. Also relevant to our work is the
synchronization of distributed databases. A commonly
used consistency metric in database synchronization is
freshness, which indicates whether data objects are up-
to-date [18]. Olston et al. [19] presented a more general
metric called divergence. They aimed at minimizing
time-averaged divergence between source data objects
and cached copies by selectively refreshing modified
objects. These metrics, however, are not adequate to
characterize the impact of inconsistency in DVEs, which

is dependent on both the spatial magnitude and tempo-
ral duration of inconsistency. As shall be discussed in
Section 3, time-space inconsistency in DVEs is defined
over periods known as situations [11] that are driven
by the instantaneous spatial magnitude of inconsistency
in entity states. Moreover, the above work on database
synchronization did not consider the network delays
in update dissemination as it is normally negligible
compared to the inter-update periods. Nevertheless, the
impact of network delays cannot be ignored in DVEs
as the entity states are often updated continuously. Due
to network delays, inconsistency continues to grow, at
possibly different rates for different entities, when state
updates are in transmission. Therefore, it is important
to take the impact of network delays into account in
determining the priority of state updates.

3 SYSTEM MODEL

There are generally two types of architectures for or-
ganizing the nodes interacting in a DVE. In the client-
server architecture [15], [16], [17], [24], all entity states
are maintained by one or more nodes called servers.
The remaining nodes, known as clients, connect to the
servers to send their actions and receive state updates.
In the peer-to-peer architecture [12], [13], each node is
responsible for maintaining the states of the entities
under its control. The node processes local actions and
delivers state updates to the other nodes. Without loss
of generality, in this paper, we consider update dissemi-
nation from a node hosting the entities to another node
receiving the state updates. The former node is termed
the server, which can either be a server in the client-server
architecture or a peer in the peer-to-peer architecture.
The server periodically refreshes the entity states based
on their kinetics and user actions. The period between
two successive refreshes is known as a frame. The node
receiving the updates is termed the client. Though we
shall focus on one client in this paper, our analysis and
proposed methods can easily be applied to multiple
clients by conceptually considering the same entity in
different clients’ views as different entities.

In this paper, we focus on the updates of entity
positions in the virtual world, which are a common type
of entity states requiring constant updates. Our proposed
techniques are generally applicable to updating any
numerical entity states provided that a norm function
‖A,B‖ is defined to measure the difference between two
entity states A and B.1

We denote the entity positions in the virtual world
by multi-dimensional vectors. Let ~S(t) be the position
of an entity as a function of time in the server’s view,
and ~C(t) be the position of the same entity in the client’s
view. In the simplest update model [4], at each update,

1. We remark that updates to non-numerical entity states (e.g.,
changing the state of an avatar from “alive” to “dead”) normally occur
much less frequently. These updates are often disseminated to the client
immediately.

3

the server sends the latest entity position to the client.
The client maintains the entity position last received
from the server till the next update. Suppose that the
network delay between the server and the client is d.
Then, the latest update received by the client at time
t is the one last sent by the server before time t − d.
It follows that ~C(t) = ~S(tL), where tL ≤ t − d is
the time of the update last sent by the server before
t − d. More sophisticatedly, the server can send extra
information to the client to help it to predict the entity
position between updates. For example, in the first-order
dead reckoning (DR) model [3], [11], the server also
sends the moving speed of the entity to the client at
an update. On receiving the update, the client starts
extrapolating the entity position using the DR model.

As a result, ~C(t) = ~S(tL) + (t − tL) ·
∂~S(t)

∂t

∣∣
t=tL

. The

construction of extrapolation models is orthogonal to the
focus of this paper and beyond our scope. Without loss
of generality, we shall denote by S(t) the entity state in
the server’s view at time t (including the entity position
and other information such as moving speed needed by
the extrapolation model in use if any) and express ~C(t)
by

~C(t) = F(S(tL), t− tL),

meaning that the entity position in the client’s view is
a function F (determined by the extrapolation model
in use) of the entity state in the server’s view at the
last update before t− d, and the time elapsed since this
last update. We assume that the server is aware of the
extrapolation model used by the client. Thus, the server
is able to estimate the entity position in the client’s view
provided that it knows the network delay. The delay is
affected by the network state and traffic level. It can be
obtained through the network by means of measurement
tools such as King [9] and QStat [25].

As discussed earlier, due to network delays and lim-
ited network capacity, inconsistency is likely to occur be-
tween the server and client views. The effect of inconsis-
tency on a participant’s perception has been shown to be
highly dependent on a metric called time-space inconsis-
tency [11], which combines the spatial difference between
entity positions and its temporal duration in evaluating
the magnitude of inconsistency. Let ∆(t) = ‖ ~C(t), ~S(t)‖
be the spatial difference (e.g., Euclidean distance in the
virtual world) between ~S(t) and ~C(t) for an entity as
a function of time. Let ǫ be a predefined application-
dependent parameter that represents the minimum dis-
tance discernible by the participants. Suppose that ∆(t)
starts to exceed ǫ at time tb and persists till time te
when it falls back below ǫ. Then, the interval [tb, te] is
referred to as a situation (denoted by s). The time-space
inconsistency of the situation is defined as

∫ te

tb

∆(t) dt.

The impact of a situation on a participant’s percep-

tion generally increases with its time-space inconsis-
tency [11]. Without loss of generality, we define the
impact as a non-decreasing function I(·) of the time-
space inconsistency, i.e., the impact of a situation s is
given by

Ω(s) = I
(∫ te

tb

∆(t) dt
)
.

The entities of interest to the client may be either the
global set maintained at the server or a subset chosen
by relevance filtering. Suppose that due to the limitation
of network capacity, in each frame, the server is allowed
to update only a given number of c entities with the
client. When the number of entities relevant to the client
exceeds c, the server would not be able to update the
states of all these entities with the client. Therefore, the
server has to decide which entities to update with the
client in each frame. Our goal is to reduce the impact
of inconsistency in DVEs by properly scheduling the
updates of various entities from the server to the client
subject to the constraint of network capacity. We consider
two different performance objectives.

• The first objective O1 is to minimize the total impact
of all situations over different entities, i.e.,

(O1) minimize
∑

s

Ω(s).

• The second objective O2 is to minimize the highest
impact of all situations over different entities, i.e.,

(O2) minimize max
s

Ω(s).

4 INTUITIVE UPDATE SCHEDULING ALGO-
RITHMS

4.1 Round-Robin Algorithm

Round-Robin (RR) algorithm repeatedly updates the po-
sitions of the entities in circular order. At each frame,
the server updates with the client the c entities whose
positions have not been updated for the longest periods.
The RR algorithm considers only the temporal factor
in scheduling. It does not take into account the spatial
difference between entity positions in the server and
client views. All entities are simply updated with the
same frequency. Thus, the RR algorithm is expected to
result in large time-space inconsistency for entities that
move quickly.

4.2 SPACE Algorithm

To improve consistency, entities with big spatial differ-
ence between the server and client views should be
given high priorities in update scheduling. SPACE is an
intuitive algorithm that schedules the updates based on
the instantaneous spatial difference of the entities. Let d
be the mean network delay measured between the server
and the client. Then, it is anticipated that an update sent
by the server at any time t would not affect the client’s
view until time t+d. Therefore, in deciding which entities

4

to update at time t, the SPACE algorithm estimates the
expected spatial difference of the entities at time t + d,
and selects to update the top c entities in terms of spatial
difference.

The estimation of spatial difference should take into
consideration all updates that have been sent by the
server before t, including those that might still be in
transmission at time t due to network delays. To do so,
the server maintains, for each entity, the time tL of the
last update and the entity state SL in the server’s view
at the last update. SL is expected to be the server state
used by the extrapolation model at the client at time
t+d. Therefore, the entity position in the client’s view at
time t+ d is estimated as F(SL, t+ d − tL). Meanwhile,
the server also uses the current state S of the entity to
estimate its position in the server’s view at time t+d, i.e.,
F(S, d). Then, the expected spatial difference between
entity positions in the server and client views at time
t+ d is given by

‖F(SL, t+ d− tL),F(S, d)‖.

Figure 2 shows the pseudo code for the SPACE algo-
rithm, where the subscripts i in the notations stand for
entity i.

let t be the current time;
for each entity i do {

refresh its state Si based on kinetics and user actions;
compute expected spatial difference at time t + d as

‖F(SL,i, t + d − tL,i),F(Si, d)‖;
}

select the top c entities in terms of spatial difference
and update them with the client;

for each entity i updated with the client do {
record tL,i = t;
record SL,i = Si;
}

Fig. 2. SPACE algorithm.

The SPACE algorithm, while intuitive, considers only
the spatial factor in scheduling. It does not take into
account how long the spatial difference has persisted
and will persist. As shall be shown by our experimental
results in Section 7, the SPACE algorithm does not
minimize time-space inconsistency. To reduce time-space
inconsistency, it is desirable to consider both temporal
and spatial factors in update scheduling.

5 ANALYSIS OF OPTIMAL UPDATE SCHED-
ULES

We now analyze the optimal update schedules in terms
of objectives O1 and O2 under some simplifying as-
sumptions. Our analysis is inspired by [19]. The analyt-
ical results shall be used to guide the design of update
scheduling algorithms in Section 6.

We start by considering a single entity. Assume that
in the absence of network delays, after each update, the
spatial difference between entity positions in the server

and client views grows in the same manner following a
non-decreasing function δ(·) of the time elapsed since the
update. Then, at any time t, the spatial difference is given
by ∆(t) = δ(t − tL), where tL is the time of the update
last sent by the server before t (see Figure 3(a)). Suppose
the network delay between the server and the client is d.
In the presence of network delays, an update sent by the
server at time t would not take effect in the client’s view
until time t+ d. Therefore, the spatial difference is given
by ∆(t) = δ(t−tL), where tL is the time of the update last
sent by the server before t−d (see Figure 3(b)). We shall
assume that δ(d) < ǫ, i.e., the spatial difference is brought
below the minimum discernible distance when the client
updates the entity position on receiving a state update
from the server. This is a reasonable assumption because
otherwise, the spatial difference would never be smaller
than ǫ no matter how frequently the server updates the
entity position with the client.

server

client

update

server

client

update

t − d

time

time

time

time

(b) with network delay(a) without network delay

δ(t − tL)δ(t − tL)

t

tt

ttL

tL

tL

tL + d

Fig. 3. Impact of network delay on spatial difference.

Recall that only the spatial differences greater than the
minimum discernible distance ǫ contribute to time-space
inconsistency. To simplify the presentation, we define a
new function δ∗(·) by filtering out the spatial difference
less than ǫ in δ(·), i.e.,

δ∗(t) =

{
0 if δ(t) < ǫ,
δ(t) if δ(t) ≥ ǫ.

Then, after the client receives a state update, the growth
of the time-space inconsistency for the entity is given by

a function

∫ τ

d

δ∗(t) dt of the duration τ since the update

is sent out by the server. In the analysis, we assume that
the impact of inconsistency goes up more rapidly as time
elapses if the server does not update the entity position
with the client. That is,

dI
(∫ τ

d

δ∗(t) dt
)

dτ

is non-decreasing, or

d2I
(∫ τ

d

δ∗(t) dt
)

dτ2 ≥ 0.

This is plausible since otherwise, it leads to a paradox
that a state update by the server with the client (which
reduces the instantaneous spatial difference to δ(d)) may
increase the growth rate of the impact of inconsistency.

5

We first show that the total impact of time-space
inconsistency and the highest impact of all situations
are both minimized when the server updates the entity
position with the client periodically.

Theorem 1: Given a fixed number of updates allowed
in a period delineated by two updates of an entity,
periodic updates result in the minimum total impact
of time-space inconsistency over the period and the
minimum highest impact of all situations therein.

Proof: Suppose that two updates of the entity are sent
by the server to the client at times t0 = 0 and tk+1 = T ,
and the entity is allowed to be updated k times in the
period [0, T].

Assume that the server updates the entity position
with the client at times 0 < t1 < t2 < · · · < tk < T .
Since these updates would only affect the client’s view
between times d and T + d (see Figure 4, where d is the
network delay) and hence the spatial difference therein,
we shall focus on the time-space inconsistency over the
period [d, T + d].

server

client

updates

time

time

tk+1 = Ttkt0 = 0 t1

t1 + dt0 + d = d tk+d tk+1+d=T +d

Fig. 4. A period delineated by two updates.

For each 0 ≤ i ≤ k, the spatial difference in the period
[ti + d, ti+1 + d] is governed by the update sent by the
server at time ti, i.e.,

∆(t) =

δ(t− t0) if t0 + d ≤ t < t1 + d,
δ(t− t1) if t1 + d ≤ t < t2 + d,
· · · · · ·
δ(t− tk) if tk + d ≤ t < tk+1 + d.

Since δ(·) is non-decreasing and δ(d) < ǫ, there is
at most one situation in each period [ti + d, ti+1 + d].
Therefore, the total impact of time-space inconsistency
over the period [d, T + d] is given by

k∑

i=0

I
(∫ ti+1+d

ti+d

δ∗(t− ti) dt
)

=

k∑

i=0

I
(∫ ti+1−ti+d

d

δ∗(t) dt
)
.

Let τi = ti+1−ti be the periods between two successive
updates, where i = 0, 1, · · · , k. Then, the total impact of
time-space inconsistency can be written as

k∑

i=0

I
(∫ τi+d

d

δ∗(t) dt
)
.

We first prove that for all i 6= j,

I
(∫ τi+d

d

δ∗(t)dt
)
+I

(∫ τj+d

d

δ∗(t)dt
)
≥ 2·I

(∫ τi+τj

2
+d

d

δ∗(t)dt
)
.

Without loss of generality, suppose τi ≥ τj . Since

dI
(∫ τ

d

δ∗(t) dt
)

dτ
is non-decreasing, we have

I
(∫ τi+d

d

δ∗(t) dt
)
− I

(∫ τi+τj

2
+d

d

δ∗(t) dt
)

≥
τi − τj

2
·

dI
(∫ τ

d

δ∗(t) dt
)

dτ

∣∣∣
τ=

τi+τj

2
+d

≥ I
(∫ τi+τj

2
+d

d

δ∗(t) dt
)
− I

(∫ τj+d

d

δ∗(t) dt
)
.

Thus,

I
(∫ τi+d

d

δ∗(t)dt
)
+I

(∫ τj+d

d

δ∗(t)dt
)
≥ 2·I

(∫ τi+τj

2
+d

d

δ∗(t)dt
)
.

This implies that balancing two different inter-update
periods τi and τj never increases the total impact of time-
space inconsistency. Therefore, the total impact of time-
space inconsistency is minimized when τ0 = τ1 = · · · =
τk.

Since I(·) is non-decreasing, minimizing the highest
impact of all situations is equivalent to minimizing the
highest time-space inconsistency of them which is given
by

max
0≤h≤k

∫ τh+d

d

δ∗(t) dt.

Suppose that the situation of the highest time-space
inconsistency is produced between two updates at ti and
ti+1, i.e.,

∫ τi+d

d

δ∗(t) dt = max
0≤h≤k

∫ τh+d

d

δ∗(t) dt.

It follows that τi must be the longest inter-update
period among τ0, τ1, · · · , τk . Consider any other inter-
update period τj ≤ τi. Since δ∗(t) ≥ 0, we have

∫ τj+d

d

δ∗(t) dt ≤

∫ τi+τj

2
+d

d

δ∗(t) dt ≤

∫ τi+d

d

δ∗(t) dt.

Therefore,

∫ τi+τj

2
+d

d

δ∗(t) dt ≤ max
(∫ τj+d

d

δ∗(t) dt,

∫ τi+d

d

δ∗(t) dt
)
.

This implies that balancing τi with another inter-
update period τj never increases the highest time-space
inconsistency of all situations. Therefore, the highest
impact of all situations is minimized when τ0 = τ1 =
· · · = τk.

Hence, the theorem is proven. �

Now, we investigate the optimal update schedules for
a set of n entities. Assume that the spatial difference
between entity i’s positions in the server and client
views follows a non-decreasing function δi(·) of the time
elapsed since its last update. Denote by δ∗i (·) the function

6

resulting from filtering out indiscernible difference in
δi(·). The result of Theorem 1 simplifies the problem of
finding the optimal update schedules to determining the
inter-update periods of the entities. Let the inter-update
period of entity i be pi. Then, entity i’s time-space incon-
sistency between the receipt of two successive updates
at the client is given by

∫ pi+d

d

δ∗i (t) dt.

Over a sufficiently long period T , the number of

updates for entity i can be approximated by
T

pi

. Thus,

the total impact of time-space inconsistency for entity i
over the period is

T

pi

· I
(∫ pi+d

d

δ∗i (t) dt
)
.

Therefore, the total impact of time-space inconsistency
for all entities is

n∑

i=1

T

pi

· I
(∫ pi+d

d

δ∗i (t) dt
)
. (1)

Recall that the server can update only c entities with
the client at each frame. Let f be the length of a frame.
Then, pi’s are constrained by

n∑

i=1

T

pi

= c ·
T

f
. (2)

Therefore, the scheduling problem for objective O1
is to minimize (1) subject to constraint (2). This is a
constrained-minimum problem. It can be solved by us-
ing the Lagrange multiplier theorem.

Theorem 2: The total impact of time-space inconsis-
tency (1) is minimized when every pair of inter-update
periods pi and pj (1 ≤ i, j ≤ n) satisfy

pi · I
′
(∫ pi+d

d

δ∗i (t) dt
)
· δ∗i (pi + d) − I

(∫ pi+d

d

δ∗i (t) dt
)

= pj · I
′
(∫ pj+d

d

δ∗i (t) dt
)
· δ∗j (pj + d) − I

(∫ pj+d

d

δ∗j (t) dt
)
,

where I ′(·) is the first-order derivative of I(·).
Proof: Since

n∑

i=1

T

pi

− c ·
T

f
= 0,

to minimize (1), it is equivalent to minimize

ζ =

n∑

i=1

T

pi

· I
(∫ pi+d

d

δ∗i (t) dt
)

+ γ ·
(n∑

i=1

T

pi

− c ·
T

f

)
,

where γ can be any constant value.
The minimum or maximum value of ζ is reached when

for every 1 ≤ i ≤ n,

∂ζ

∂pi

= 0. (3)

Since

∂ζ

∂pi

=

d

(
T

pi

· I
(∫ pi+d

d

δ∗i (t) dt
))

dpi

+ γ ·
(
−
T

p2
i

)

=
T

pi

·

dI
(∫ pi+d

d

δ∗i (t) dt
)

dpi

−
T

p2
i

· I
(∫ pi+d

d

δ∗i (t) dt
)
− γ ·

T

p2
i

=
T

pi

· I ′
(∫ pi+d

d

δ∗i (t) dt
)
· δ∗i (pi + d)

−
T

p2
i

· I
(∫ pi+d

d

δ∗i (t) dt
)
− γ ·

T

p2
i

=
T

p2
i

(
pi · I

′
(∫ pi+d

d

δ∗i (t) dt
)
· δ∗i (pi + d)

−I
(∫ pi+d

d

δ∗i (t) dt
)
− γ

)
,

(3) implies that

pi · I
′
(∫ pi+d

d

δ∗i (t) dt
)
· δ∗i (pi + d) − I

(∫ pi+d

d

δ∗i (t) dt
)

is a constant.

When (3) is satisfied, we have

∂2ζ

∂p2
i

=
T

pi

·

d2I
(∫ pi+d

d

δ∗i (t) dt
)

dp2
i

−
T

p2
i

·

dI
(∫ pi+d

d

δ∗i (t) dt
)

dpi

−
T

p2
i

·

dI
(∫ pi+d

d

δ∗i (t) dt
)

dpi

+ 2 ·
T

p3
i

· I
(∫ pi+d

d

δ∗i (t) dt
)

+ 2γ ·
T

p3
i

=
T

pi

·

d2I
(∫ pi+d

d

δ∗i (t) dt
)

dp2
i

− 2 ·
T

p2
i

· I ′
(∫ pi+d

d

δ∗i (t) dt
)
· δ∗i (pi + d)

+ 2 ·
T

p3
i

· I
(∫ pi+d

d

δ∗i (t) dt
)

+ 2γ ·
T

p3
i

=
T

pi

·

d2I
(∫ pi+d

d

δ∗i (t) dt
)

dp2
i

−
2

pi

·
∂ζ

∂pi

=
T

pi

·

d2I
(∫ pi+d

d

δ∗i (t) dt
)

dp2
i

.

7

Note that

dI
(∫ pi+d

d

δ∗i (t) dt
)

dpi

=

dI
(∫ pi+d

d

δ∗i (t) dt
)

d(pi + d)
·
d(pi + d)

dpi

=

dI
(∫ pi+d

d

δ∗i (t) dt
)

d(pi + d)
,

and thus,

d2I
(∫ pi+d

d

δ∗i (t) dt
)

dp2
i

=

d

(dI
(∫ pi+d

d

δ∗i (t) dt
)

dpi

)

dpi

=

d

(dI
(∫ pi+d

d

δ∗i (t) dt
)

d(pi + d)

)

d(pi + d)
·
d(pi + d)

dpi

=

d2I
(∫ pi+d

d

δ∗i (t) dt
)

d(pi + d)2
.

Since

d2I
(∫ τ

d

δ∗(t) dt
)

dτ2 ≥ 0,

it follows that

∂2ζ

∂p2
i

=
T

pi

·

d2I
(∫ pi+d

d

δ∗i (t) dt
)

d(pi + d)2
≥ 0.

Also note that for all i 6= j (1 ≤ i, j ≤ n),

∂2ζ

∂pi∂pj

= 0.

Therefore, ζ is indeed minimized when (3) is satisfied.
Hence, the theorem is proven. �

Since I(·) is non-decreasing, minimizing the highest
impact of all situations is equivalent to minimizing the
highest time-space inconsistency of them. Therefore, the
scheduling problem for objective O2 is to minimize

max
1≤h≤n

∫ ph+d

d

δ∗h(t) dt (4)

subject to constraint (2). We consider the non-trivial case
where for every 1 ≤ h ≤ n, δ∗h(t) does not remain at
0 when t → ∞, i.e., the spatial difference between the
entity positions in the server and client views would
eventually become discernible if the server does not
update the entity position with the client. Thus, all inter-
update periods pi’s must be finite.

Theorem 3: The highest time-space inconsistency of all
situations (4) is minimized when every pair of inter-
update periods pi and pj (1 ≤ i, j ≤ n) satisfy

∫ pi+d

d

δ∗i (t) dt =

∫ pj+d

d

δ∗j (t) dt.

Proof: Let (p1, p2, · · · , pn) be a set of inter-update periods
minimizing (4). Suppose that in this schedule, the situa-
tion of the highest time-space inconsistency is produced
by entity i, i.e.,

∫ pi+d

d

δ∗i (t) dt = max
1≤h≤n

∫ ph+d

d

δ∗h(t) dt.

The theorem is trivial if
∫ pi+d

d

δ∗i (t) dt = 0.

We consider the non-trivial case where
∫ pi+d

d

δ∗i (t) dt > 0.

Assume that there exists another entity j such that
∫ pi+d

d

δ∗i (t) dt >

∫ pj+d

d

δ∗j (t) dt. (5)

Then, there must exist a p′i where 0 < p′i < pi such
that ∫ p′

i+d

d

δ∗i (t) dt =

∫ pj+d

d

δ∗j (t) dt.

Let

ψ =
1

pj

+
1

pi

.

It is obvious that

1

ψ −
1

p′i

> pj ,

and hence,
∫ 1

ψ−
1

p′
i

+d

d

δ∗j (t) dt >

∫ pj+d

d

δ∗j (t) dt =

∫ p′

i+d

d

δ∗i (t) dt. (6)

Now, consider the function

ζ(x) =

∫ 1

ψ−
1
x

+d

d

δ∗j (t) dt−

∫ x+d

d

δ∗i (t) dt.

It follows from (6) that ζ(p′i) > 0. On the other hand,
(5) implies that ζ(pi) < 0. Therefore, there must exist a
p̃i where p′i < p̃i < pi such that ζ(p̃i) = 0. As a result,

max
(∫ 1

ψ−
1
p̃i

+d

d

δ∗j (t) dt,

∫ p̃i+d

d

δ∗i (t) dt
)

=

∫ p̃i+d

d

δ∗i (t) dt <

∫ pi+d

d

δ∗i (t) dt

= max
(∫ pi+d

d

δ∗i (t) dt,

∫ pj+d

d

δ∗j (t) dt
)
.

This implies that setting the inter-update periods of

entities i and j at p̃i and
1

ψ − 1
p̃i

respectively reduces

the highest time-space inconsistency of all situations
compared to setting them at pi and pj , which contradicts
the optimality of (p1, p2, · · · , pn).

Hence, the theorem is proven. �

8

Theorems 2 and 3 imply that in the optimal update
schedule for objective O1, all entities should have the
same value of

pi ·I
′
(∫ pi+d

d

δ∗i (t) dt
)
·δ∗i (pi +d)−I

(∫ pi+d

d

δ∗i (t) dt
)

(7)

and in the optimal update schedule for objective O2, all
entities should have the same value of

∫ pi+d

d

δ∗i (t) dt. (8)

These results indicate that the optimal update schedules
are determined by both the network delay d and the
growth of spatial difference δi(t). The latter, in turn,
depends on the trajectories as well as the moving speeds
of entities.

6 CONSISTENCY AWARE UPDATE SCHEDUL-
ING ALGORITHMS

In the above analytical results, pi refers to the inter-
update period of entity i. If we replace the inter-update
period of an entity by the time elapsed since its last
update and consider the entity’s behavior since this last
update, (7) and (8) can be rewritten as

(t−tL)·I′
(∫ t+d

tL+d

∆∗(x) dx
)
·∆∗(t+d)−I

(∫ t+d

tL+d

∆∗(x) dx
)
,

(9)
and ∫ t+d

tL+d

∆∗(x) dx, (10)

where t is the current time, tL is the last update time
before t, d is the network delay, and ∆∗(x) is the spatial
difference at time x filtered by the minimum discernible
distance ǫ, i.e.,

∆∗(x) =

{
0 if ∆(x) < ǫ,
∆(x) if ∆(x) ≥ ǫ.

The analytical results imply that for objective O1 (or
objective O2), the update scheduling algorithm should
attempt to minimize the differences of (9) (or (10)) over
different entities at the times when the server updates
them with the client. To do so, the server can select to
update the entities with the highest values of (9) (or (10))
at each frame.

To demonstrate these design principles, in this section,
we present a number of update scheduling algorithms
for improving consistency based on two different impact
functions I1(x) = x and I2(x) = x2. Function I1

represents that the impact of time-space inconsistency is
linearly proportional to time-space inconsistency. Under
I1, objective O1 degenerates to minimizing the total
time-space inconsistency, and (9) can be rewritten as

(t− tL) · ∆∗(t+ d) −

∫ t+d

tL+d

∆∗(x) dx. (11)

In this special case, the impact of time-space inconsis-
tency is proportional to the time-averaged divergence

in [19]. The update scheduling algorithm proposed for
objective O1 under I1 shall be called TotalTS.

Function I2 represents a scenario under which the
impact of inconsistency grows superlinearly with time-
space inconsistency: situations of large time-space in-
consistency have disproportionally greater impacts than
situations of small time-space inconsistency. Under I2,
objective O1 degenerates to minimizing the 2-norm of
time-space inconsistency over all situations, and (9) can
be rewritten as

2(t− tL) ·

∫ t+d

tL+d

∆∗(x) dx ·∆∗(t+ d)−
(∫ t+d

tL+d

∆∗(x) dx
)2

.

(12)
The update scheduling algorithm proposed for objective
O1 under I2 shall be called 2NormTS.

For both impact functions I1 and I2, objective O2
remains equivalent to minimizing the highest time-space
inconsistency of all situations (i.e., the inconsistency of
the most noticeable situation). Thus, the update schedul-
ing algorithm proposed for objective O2 shall be called
MaxTS.

The key to the TotalTS, 2NormTS and MaxTS al-
gorithms for reducing time-space inconsistency is the
estimation of (11), (12) and (10) respectively for each
entity, which basically involves estimating the following
two items:

∆∗(t+ d),

and ∫ t+d

tL+d

∆∗(x) dx.

The item ∆∗(t + d) refers to the expected spatial
difference of the entity at d time later, where t is the
current time and d is the mean network delay measured
between the server and the client. ∆∗(t+ d) is estimated
using the same method as that in the SPACE algorithm of
Section 4.2. That is, the server maintains, for each entity,
the time tL of the last update and the entity state SL

in the server’s view at the last update. Together with
the current state S of the entity, the expected spatial
difference at time t+ d is computed as

‖F(SL, t+ d− tL),F(S, d)‖,

which provides an estimate of ∆∗(t + d) after filtering
out indiscernible difference.

The item

∫ t+d

tL+d

∆∗(x) dx refers to the time-space incon-

sistency in the period [tL + d, t+ d], where tL is the time
of the last update and t is the current time. Note that the
server refreshes and updates entity positions periodically
in frames rather than completely continuously. Let f
be the length of a frame. Without loss of generality,
assume that the network delay d = l · f , where l is an
integer. Suppose that the server last updates an entity
with the client at the time that is w frames prior to the
current frame, i.e., t = tL + wf . Then, we approximate

9

∫ t+d

tL+d

∆∗(x) dx by

f ·

w+l∑

j=l+1

∆∗(tL + jf) (13)

As shown in Figure 5, the above summation can be
divided into two portions A+B, where

A =
w∑

j=l+1

∆∗(tL + jf),

and

B =

w+l∑

j=w+1

∆∗(tL + jf) =

l∑

j=1

∆∗(t+ jf).

Portion A refers to the accumulated spatial difference
since l frames after the last update, and portion B refers
to the total spatial difference of the next l frames in the
future. When l ≥ w, A is null and equals 0.

server

client

server

client
time

(b) l ≥ w(a) l < w

lf lf
wf

tL t

time

BAframes

t

lf
lf

wf

Bframes

time

time

tL

Fig. 5. Division of expression (13).

Portion A can be incrementally maintained by the
server. At each frame, if the server updates the entity
with the client, it resets A to 0. Otherwise, the server
checks the duration since the last update of the entity. If
the duration is less than or equal to l frames, A remains
0. If the duration is longer than l frames, A is increased
by the spatial difference at the current frame if it is
discernible, which is estimated as

‖F(SL, t− tL),F(S, 0)‖.

Portion B, on the other hand, estimates the spatial
difference of the entity in the future. For each 1 ≤ j ≤ l,
∆∗(t+ jf) is estimated as

‖F(SL, t+ jf − tL),F(S, jf)‖,

if it is discernible.
In the TotalTS algorithm, at each frame, the server

selects to update the top c entities in terms of the
estimated value of (11). Figure 6 shows the pseudo code,
where the subscripts i in the notations stand for entity
i. Similarly, in the 2NormTS and MaxTS algorithms, the
server updates with the client the top c entities in terms
of the estimated values of (12) and (10) respectively. The
pseudo code of the 2NormTS and MaxTS algorithms is
omitted due to space limitations.

let t be the current time;
for each entity i do {

refresh its state Si based on kinetics and user actions;
if t − tL,i > lf and ‖F(SL,i, t − tL,i),F(Si, 0)‖ ≥ ǫ

set Ai = Ai + ‖F(SL,i, t − tL,i),F(Si, 0)‖;
if ‖F(SL,i, t + d − tL,i),F(Si, d)‖ ≥ ǫ

set Di = (t − tL,i)·‖F(SL,i, t + d − tL,i),F(Si, d)‖;
else

set Di = 0;
set Bi = 0;
for each 1 ≤ j ≤ l do {

if ‖F(SL,i, t + jf − tL,i),F(Si, jf)‖ ≥ ǫ
set Bi =Bi+‖F(SL,i, t + jf − tL,i),F(Si, jf)‖;

}
}

select the top c entities in terms of Di − Ai − Bi

and update them with the client;
for each entity i updated with the client do {

record tL,i = t;
record SL,i = Si;
reset Ai = 0;
}

Fig. 6. TotalTS algorithm.

We remark that the TotalTS, 2NormTS and MaxTS
algorithms can be tailored to handle scenarios where the
entity set of interest to the client change dynamically due
to relevance filtering. When a new entity becomes rele-
vant to the client in a frame, the server sends an update
to the client immediately for initializing the entity state
in the client’s view. Meanwhile, the remaining network
capacity in the frame is used for updating existing
entities with the client. The entities with the highest
estimated values of (11), (12) or (10) are updated with
the client. On the other hand, when an existing entity is
no longer relevant to the client, the server simply stops
considering the entity in update scheduling.

7 EXPERIMENTAL EVALUATION

7.1 Experimental Setup

We have conducted a wide range of simulation experi-
ments to evaluate the proposed update scheduling algo-
rithms. The virtual world in our experiments contained
a total of 10000 entities moving in a two-dimensional
space. We simulated a server that hosts the virtual world
and a client that maintains a local view of the virtual
world. The length of a frame was set at 0.025 second, i.e.,
there were 40 frames per second. The network capacity
between the server and the client was set to allow the
server to update a given number of c entities with the
client at each frame out of the 10000 entities simulated.
The value of c was varied to produce different levels of
network capacity constraints.

The client implemented the first-order dead reckon-
ing model described in Section 3 to extrapolate entity
positions between updates received from the server. To
facilitate controlling how actual entity movements differ
from the prediction model, the entities were set to move
around circles in the virtual world. The radii of the

10

2.0

1.5

1.0

0.5

0
 250 225 200 175 150 125 100 75 50

T
ot

al
 T

im
es

pa
ce

 I
nc

on
si

st
en

cy
(×

10
6 s

ec
on

d
×

 d
is

ta
nc

e
un

it)

Network Capacity (entity updates per frame)

RR
SPACE
TotalTS

(a) Total time-space inconsistency.

4.0

3.0

2.0

1.0

0
 250 225 200 175 150 125 100 75 50

2-
N

or
m

 T
im

es
pa

ce
 I

nc
on

si
st

en
cy

(×
10

5 s
ec

on
d2 ×

 d
is

ta
nc

e
un

it2)

Network Capacity (entity updates per frame)

RR
SPACE

2NormTS

(b) 2-norm time-space inconsistency.

 0.01

 0.1

 1

 10

 100

 1000

 250 225 200 175 150 125 100 75 50H
ig

he
st

 I
nc

on
si

st
en

cy
 o

f
A

ll
Si

tu
at

io
ns

(s
ec

on
d
×

 d
is

ta
nc

e
un

it,
 lo

gs
ca

le
)

Network Capacity (entity updates per frame)

RR
SPACE
MaxTS

(c) Highest time-space inconsistency of all situ-
ations.

Fig. 7. Time-space inconsistency vs. network capacity.

circles and the rotational speeds of the entities provide
two tuning knobs for adjusting the extent to which entity
movements at the server differ from the extrapolation
model used by the client. Specifically, the radii of the cir-
cles determine how the trajectories of the entities deviate
from the straight lines predicted by the first-order dead
reckoning model. Smaller radii result in more significant
deviations. The rotational speeds, on the other hand,
determine how fast the entities move along their trajec-
tories. By default, the radii of the circles were randomly
assigned from a uniform distribution between 0.1 and
9.9 distance units. The rotational speeds of the entities
were randomly assigned from a uniform distribution
between 0.01π and 0.09π per second. These distribution
parameters were varied widely in our experiments to
study the impact of heterogeneity in entity movements
(see Section 7.3). Given a radius r and a rotational speed
ω, the actual moving speed of an entity is r·ω. During the
simulation, we changed the moving speeds of the entities
periodically by reassigning their rotational speeds from
the uniform distribution once every minute of simulated
time. The minimum discernible distance was set at 0.1
distance unit.

In our experiments, the network delays of transmitting
messages between the server and the client were mod-
eled by a shifted exponential distribution with a prob-
ability density function f(x) = λe−λ(x−µ) (x ≥ µ). This
model was shown to well approximate the distribution
of packet delays in the Internet [22]. By default, we set
µ = 0.95 · d and λ = 20/d, where d is the mean network
delay. We also tested network delays with larger variance
by setting µ = 0.5 · d and λ = 2/d (see Section 7.4). A
logical clock mechanism [23] was implemented for the
client to filter out-of-order message receipts so that an
entity position in the client’s view was always extrapo-
lated based on the most recent update message among
those received. The default mean network delay d was
set at 0.1 second and the performance impact of network
delays and their measurement accuracy is investigated
in Section 7.4.

We simulated the Round-Robin (RR), SPACE, TotalTS,
2NormTS and MaxTS algorithms for update scheduling.

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0.60.50.40.30.20.10.0

N
um

be
r

of
 S

itu
at

io
ns

 (
×

10
6)

Time-Space Inconsistency (second × distance unit)

RR
SPACE
TotalTS

2NormTS
MaxTS

Fig. 8. Distribution of time-space inconsistencies of all situations.

Each experiment run started with synchronized server
and client views and simulated the virtual world for a
period of 12 minutes. The first 2 minutes of simulated
time was considered the warm up period for bringing
the system into a relatively steady state. Statistics were
collected for the remaining 10 minutes of simulated
time. We measured the spatial difference between entity
positions in the server and client views at each frame.
Time-space inconsistency, as defined in Section 3, was
computed over all entities for performance comparison.

7.2 Impact of Network Capacity Constraints

Figure 7 shows time-space inconsistency as a function of
the network capacity between the server and the client.
As can be seen, when the network capacity allows more
than 200 entities to be updated at each frame, the tested
scheduling algorithms perform similarly in general. This
is because all entities can be updated frequently in
this case and thus inconsistency is low. Lower network
capacity makes the capacity constraint more serious,
thereby increasing time-space inconsistency. Figure 7
shows that the proposed TotalTS, 2NormTS and MaxTS
algorithms significantly outperform the RR and SPACE
algorithms when the server is allowed to update less
than 200 entities with the client at each frame.

To assist in explaining the performance trends, we plot
in Figure 8 the distribution of time-space inconsistencies

11

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0
[0.1, 9.9][1, 9][2, 8][3, 7][4, 6][5, 5]

T
ot

al
 T

im
es

pa
ce

 I
nc

on
si

st
en

cy
(×

10
5 s

ec
on

d
×

 d
is

ta
nc

e
un

it)

Radius Variance of Trajectory (distance unit)

RR
SPACE
TotalTS

(a) Total time-space inconsistency.

1.5

1.2

0.9

0.6

0.3

0
[0.1, 9.9][1, 9][2, 8][3, 7][4, 6][5, 5]

2-
N

or
m

 T
im

es
pa

ce
 I

nc
on

si
st

en
cy

(×
10

5 s
ec

on
d
×

 d
is

ta
nc

e
un

it)

Radius Variance of Trajectory (distance unit)

RR
SPACE

2NormTS

(b) 2-norm time-space inconsistency.

 0.01

 0.1

 1

 10

[0.1, 9.9][1, 9][2, 8][3, 7][4, 6][5, 5]H
ig

he
st

 I
nc

on
si

st
en

cy
 o

f
A

ll
Si

tu
at

io
ns

(s
ec

on
d
×

 d
is

ta
nc

e
un

it,
 lo

gs
ca

le
)

Radius Variance of Trajectory (distance unit)

RR
SPACE

 MaxTS

(c) Highest time-space inconsistency of all situ-
ations.

Fig. 9. Time-space inconsistency vs. radius variance of trajectory.

of all situations when the network capacity allows 150
entities to be updated at each frame. A point (x, y) on
the curve means that a total of y situations encountered
have time-space inconsistency greater than x. Recall that
the RR algorithm performs the same number of updates
for each entity regardless of their moving speeds and
trajectories. Though this helps to cut down the spatial
difference of slowly moving entities, a large number of
situations with high time-space inconsistency would be
generated by fast moving entities. Figure 8 shows that
more than 600000 situations have time-space inconsis-
tency greater than 0.25 second × distance unit. Thus,
the RR algorithm shows poor performance in terms of
the total, 2-norm and highest time-space inconsistencies
of all situations (see Figure 7).

By scheduling updates based on the instantaneous
spatial difference of the entities, the SPACE algorithm
substantially reduces the number of situations with high
time-space inconsistency. Figure 8 shows that only about
50000 situations have time-space inconsistency greater
than 0.25 second × distance unit. However, SPACE does
not take into account how long the spatial difference
has persisted and will persist. An entity with small
spatial difference hardly gets a chance to be updated by
SPACE. As a result, the spatial difference may persist for
a long period, producing high time-space inconsistency.
Therefore, SPACE is not effective in reducing time-space
inconsistency. As seen from Figure 7, at a network capac-
ity that allows 150 entities to be updated per frame, the
total, 2-norm and highest time-space inconsistencies of
all situations in SPACE are 1.33, 2.27 and 8.81 times as
much as those in the proposed TotalTS, 2NormTS and
MaxTS algorithms respectively. Figure 7(c) also shows
that at a severely constrained network capacity of 50
entity updates per frame, SPACE performs even worse
than RR by a factor of 5 in terms of the highest time-
space inconsistency of all situations (note that the y-axis
is in logscale).

Our proposed TotalTS, 2NormTS and MaxTS algo-
rithms integrate temporal and spatial factors in schedul-
ing. Thus, they are able to reduce time-space incon-
sistency substantially. Figure 8 shows that TotalTS and

2NormTS hardly produce any situation of time-space
inconsistency over 0.25 second × distance unit, and
MaxTS completely eliminates situations of time-space
inconsistency greater than 0.25 second × distance unit.
Therefore, as shown in Figure 7, TotalTS, 2NormTS and
MaxTS cut down time-space inconsistency significantly
compared to the RR and SPACE algorithms.

7.3 Impact of Heterogeneity in Entity Movements

We first examine the impact of heterogeneity in the
trajectories of the entities. To this end, we set the moving
speeds of all entities at 0.25π distance unit per second.
The radii of entity trajectories were randomly assigned
from uniform distributions over different ranges: [5, 5]
(i.e., the trajectories of all entities have the same radius),
[4, 6], [3, 7], [2, 8], [1, 9] and [0.1, 9.9] (distance unit).
Given a radius r of the trajectory, the rotational speed
of an entity was set to 0.25π/r per second. For example,
if the radius is 5 distance units, the rotational speed is
then 0.05π per second. Figure 9 shows the performance
results for a network capacity that allows 150 entities to
be updated per frame. Experimental results with other
network capacities have similar performance trends and
are not shown here due to space limitations. Since the
entities move at the same speed, when the trajectories
of all entities have the same radius, entity movements
are homogeneous. In this case, as seen from the leftmost
points in Figure 9, the RR, SPACE and proposed update
scheduling algorithms perform the same because they
all update various entities with the same frequency.
When the radii of entity trajectories are different, the
trajectories deviate, to different extents, from the straight
lines predicted by the first-order dead reckoning model.
Smaller radii give rise to more significant deviations. As
a result, the spatial difference between entity positions
in the server and client views grows in different man-
ners for different entities even if the entities move at
the same speed. Thus, it is important for the network
capacity to be properly allocated to updating differ-
ent entities for reducing inconsistency. As seen from
Figure 9, the proposed TotalTS, 2NormTS and MaxTS
algorithms outperform the RR and SPACE algorithms

12

5.0

4.0

3.0

2.0

1.0

0
[0, 10][1, 9][2, 8][3, 7][4, 6][5, 5]

T
ot

al
 T

im
es

pa
ce

 I
nc

on
si

st
en

cy
(×

10
5 s

ec
on

d
×

 d
is

ta
nc

e
un

it)

Variance of Rotational Speed (×0.01π per second)

RR
SPACE
TotalTS

(a) Total time-space inconsistency.

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0
[0, 10][1, 9][2, 8][3, 7][4, 6][5, 5]

2-
N

or
m

 T
im

es
pa

ce
 I

nc
on

si
st

en
cy

(×
10

4 s
ec

on
d
×

 d
is

ta
nc

e
un

it)

Variance of Rotational Speed (×0.01π per second)

RR
SPACE

2NormTS

(b) 2-norm time-space inconsistency.

 0.01

 0.1

 1

 10

[0, 10][1, 9][2, 8][3, 7][4, 6][5, 5]H
ig

he
st

 I
nc

on
si

st
en

cy
 o

f
A

ll
Si

tu
at

io
ns

(s
ec

on
d
×

 d
is

ta
nc

e
un

it,
 lo

gs
ca

le
)

Variance of Rotational Speed (×0.01π per second)

RR
SPACE

 MaxTS

(c) Highest time-space inconsistency of all situ-
ations.

Fig. 10. Time-space inconsistency vs. variance of rotational speed.

1.0

0.8

0.6

0.4

0.2

0
 0.5 0.4 0.3 0.2 0.1 0

T
ot

al
 T

im
es

pa
ce

 I
nc

on
si

st
en

cy
(×

10
6 s

ec
on

d
×

 d
is

ta
nc

e
un

it)

Mean Network Delay (second)

RR
SPACE
TotalTS

(a) Total time-space inconsistency.

5.0

4.0

3.0

2.0

1.0

0
 0.5 0.4 0.3 0.2 0.1 0

2-
N

or
m

 T
im

es
pa

ce
 I

nc
on

si
st

en
cy

(×
10

5 s
ec

on
d2 ×

 d
is

ta
nc

e
un

it2)

Mean Network Delay (second)

RR
SPACE

2NormTS

(b) 2-norm time-space inconsistency.

 0.1

 1

 10

 100

 0.5 0.4 0.3 0.2 0.1 0H
ig

he
st

 I
nc

on
si

st
en

cy
 o

f
A

ll
Si

tu
at

io
ns

(s
ec

on
d
×

 d
is

ta
nc

e
un

it,
 lo

gs
ca

le
)

Mean Network Delay (second)

RR
SPACE
MaxTS

(c) Highest time-space inconsistency of all situ-
ations.

Fig. 11. Time-space inconsistency vs. mean network delay.

in terms of time-space inconsistency when the radii
of entity trajectories are different. The improvement of
the proposed algorithms becomes more significant with
increasing variance in the radii of entity trajectories.

We then examine the impact of heterogeneity in the
moving speeds of the entities. To do so, we set the
radii of all entity trajectories at 5 distance units. The
rotational speeds of the entities were randomly assigned
from uniform distributions over different ranges: [0.05π,
0.05π] (i.e., all entities move at the same speed), [0.04π,
0.06π], [0.03π, 0.07π], [0.02π, 0.08π], [0.01π, 0.09π], [0,
0.1π] (per second). Figure 10 shows the performance
results for a network capacity that allows 150 entities to
be updated per frame. It is seen that when all entities
move at the same speed (the leftmost points in Fig-
ure 10), the RR, SPACE and proposed update scheduling
algorithms perform the same since all of them update
various entities at the same frequency. When the moving
speeds of the entities are different, the spatial difference
between entity positions in the server and client views
grows at different rates for different entities. If an entity
moves faster than others, its spatial difference grows
more rapidly. Therefore, it is critical to assign proper
update frequencies to different entities for reducing
inconsistency. As shown in Figure 10, the proposed
TotalTS, 2NormTS and MaxTS algorithms outperform
the RR and SPACE algorithms in terms of time-space
inconsistency when the entities move at different speeds.

The improvement of the proposed algorithms becomes
greater with increasing variance in the moving speeds
of the entities.

7.4 Impact of Network Delays

Figure 11 shows time-space inconsistency as a function
of mean network delay. Due to space limitations, we re-
port only the experimental results for a default network
capacity that allows the server to update 150 entities with
the client at each frame. Similar performance trends have
been observed in the experimental results with other
network capacities.

Due to network delays, when state updates arrive
at the client, the actual entity positions at the server
would have changed. As a result, time-space incon-
sistency is affected by network delays and generally
increases with the delays. The relative performance of
the update scheduling algorithms remains similar over
a wide range of network delays. As seen from Figure 11,
TotalTS outperforms RR by 35% – 67% and outperforms
SPACE by 18% – 28% in terms of total time-space
inconsistency; 2NormTS normally outperforms RR and
SPACE by an order of magnitude in terms of 2-norm
time-space inconsistency; MaxTS outperforms RR by an
order of magnitude and outperforms SPACE by about
50% in terms of highest time-space inconsistency of all
situations.

13

1.0

0.8

0.6

0.4

0.2

0
 0.5 0.4 0.3 0.2 0.1 0

T
ot

al
 T

im
es

pa
ce

 I
nc

on
si

st
en

cy
(×

10
6 s

ec
on

d
×

 d
is

ta
nc

e
un

it)

Mean Network Delay (second)

RR
SPACE
TotalTS

(a) Total time-space inconsistency.

5.0

4.0

3.0

2.0

1.0

0
 0.5 0.4 0.3 0.2 0.1 0

2-
N

or
m

 T
im

es
pa

ce
 I

nc
on

si
st

en
cy

(×
10

5 s
ec

on
d2 ×

 d
is

ta
nc

e
un

it2)

Mean Network Delay (second)

RR
SPACE

2NormTS

(b) 2-norm time-space inconsistency.

 0.1

 1

 10

 100

 0.5 0.4 0.3 0.2 0.1 0H
ig

he
st

 I
nc

on
si

st
en

cy
 o

f
A

ll
Si

tu
at

io
ns

(s
ec

on
d
×

 d
is

ta
nc

e
un

it,
 lo

gs
ca

le
)

Mean Network Delay (second)

RR
SPACE
MaxTS

(c) Highest time-space inconsistency of all situ-
ations.

Fig. 12. Time-space inconsistency vs. mean network delay (large delay variance).

1.0

0.8

0.6

0.4

0.2

0
 0.5 0.4 0.3 0.2 0.1 0

T
ot

al
 T

im
es

pa
ce

 I
nc

on
si

st
en

cy
(×

10
6 s

ec
on

d
×

 d
is

ta
nc

e
un

it)

Mean Network Delay (second)

TotalTS
TotalTS(+)
TotalTS(−)

(a) Total time-space inconsistency.

5.0

4.0

3.0

2.0

1.0

0
 0.5 0.4 0.3 0.2 0.1 0

2-
N

or
m

 T
im

es
pa

ce
 I

nc
on

si
st

en
cy

(×
10

5 s
ec

on
d2 ×

 d
is

ta
nc

e
un

it2)

Mean Network Delay (second)

2NormTS
2NormTS(+)
2NormTS(−)

(b) 2-norm time-space inconsistency.

 0.1

 1

 10

 100

 0.5 0.4 0.3 0.2 0.1 0H
ig

he
st

 I
nc

on
si

st
en

cy
 o

f
A

ll
Si

tu
at

io
ns

(s
ec

on
d
×

 d
is

ta
nc

e
un

it,
 lo

gs
ca

le
)

Mean Network Delay (second)

MaxTS
MaxTS(+)
MaxTS(−)

(c) Highest time-space inconsistency of all situ-
ations.

Fig. 13. Time-space inconsistency vs. mean network delay (large delay variance, imperfect network delay knowledge).

Then, we simulated network delays with larger vari-
ance by setting µ = 0.5·d and λ = 2/d in the delay model,
where d is the mean network delay. Figure 12 shows the
performance results for different update scheduling al-
gorithms. When the variance of network delays is large,
the periods between successive updates received by the
client are more diverse, which increases the chance of
producing situations with higher time-space inconsis-
tency. Therefore, as seen by comparing Figures 11 and 12,
time-space inconsistency generally increases with the
variance of network delays. The relative performance of
the update scheduling algorithms in Figure 12 is similar
to that in Figure 11. The proposed TotalTS, 2NormTS
and MaxTS algorithms continue to outperform RR and
SPACE even in the presence of large delay variance.

So far, we have assumed that the server has the
knowledge of mean network delay to the client. Fi-
nally, we study the effect of imperfect network delay
knowledge. In this set of experiments, network delays
were also set with large variance (i.e., µ = 0.5 · d
and λ = 2/d). We tested two scenarios in which the
mean network delay was overestimated and under-
estimated relatively by 50% in the proposed TotalTS,
2NormTS and MaxTS algorithms. These two scenar-
ios are identified by “+” and “−” in Figure 13 (e.g.,
TotalTS(+)/TotalTS(−) denotes the TotalTS algorithm
that overestimates/underestimates the mean network
delay relatively by 50% in its calculation). As seen from

Figure 13, the TotalTS, 2NormTS and MaxTS algorithms
are not very sensitive to the inaccuracy in the knowledge
of network delays.

8 CONCLUSION

In this paper, we have investigated update schedul-
ing algorithms for reducing time-space inconsistency
in DVEs. Based on the theoretical analysis of optimal
update schedules, we have proposed three scheduling
algorithms TotalTS, 2NormTS and MaxTS with the ob-
jectives of minimizing the total, 2-norm and highest
time-space inconsistencies of all situations respectively.
These algorithms integrate spatial and temporal fac-
tors in scheduling and take into consideration network
delays by estimating future inconsistency due to the
delays. The algorithms are generic in that they can be
used on top of many existing mechanisms such as dead
reckoning. Experimental results show that: (1) the pro-
posed algorithms significantly outperform the intuitive
algorithms that are based on spatial or temporal factors
only; (2) the improvement of the proposed algorithms
over the intuitive algorithms generally increases with
the heterogeneity in entity movements; (3) the proposed
algorithms are not very sensitive to inaccurate estimation
of network delays.

14

ACKNOWLEDGMENTS

This work was supported in part by the Singapore Na-
tional Research Foundation under Grant NRF2007IDM-
IDM002-052.

REFERENCES

[1] J. Dias, R. Galli, A. Almeida, C. Belo and J. Rebordao, “mWorld: A
Multiuser 3D Virtual Environment”, IEEE Computer Graphics and
Applications, Vol. 17, No. 2, pp. 55-65, February 1997.

[2] T. Nitta, K. Fujita, and S. Cono, “An Application of Distributed
Virtual Environment to Foreign Language Education”, Proc. 30th
IEEE Frontiers in Education Conference, October 2000.

[3] S. Goel and K. Morris, “Dead Reckoning for Aircraft in Dis-
tributed Interactive Simulation”, Proc. AIAA Flight Simulation
Technology Conference, 1992.

[4] J. Lui, “Constructing Communication Subgraphs and Deriving
an Optimal Synchronization Interval for Distributed Virtual En-
vironment Systems”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 13, No. 5, pp. 778-792, Sep/Oct 2001.

[5] M. Bassiouni, M. Chiu, M.Loper, and M. Garnsey, “Performance
and Reliability Analysis of Relevance Filtering for Scalable Dis-
tributed Interactive Simulation”, ACM Transactions on Modeling
and Computer Simulation, Vol. 7, No. 3, pp. 293-331, July 1997.

[6] D. Miller and J. Thorpe, “SIMNET: The Advant of Simulator
Networking”, Proceedings of the IEEE, Vol. 83, No. 8, pp. 1114-
1123, August 1995.

[7] S. Singhal and D. Cheriton, “Exploiting Position History for Effi-
cient Remote Rendering in Networked Virtual Reality”, Presence:
Teleoperators and Virtual Environments, Vol. 4, No. 2, pp. 169-193,
1995.

[8] K. Morse, L. Bic, and M. Dillencourt, “Interest Management
in Large-Scale Virtual Environments”, Presence: Teleoperators and
Virtual Environments, Vol. 9, No. 1, pp. 52-68, Winter 2000.

[9] K. Gummadi, S. Saroiu, and S. Gribble, “King: Estimating La-
tency between Arbitrary Internet End Hosts”, Proc. 2nd ACM
SIGCOMM Workshop on Internet Measurment, pp. 5-18, November
2002.

[10] S. Singhal and M. Zyda, “Networked Virtual Environments: De-
sign and Implementation”, Addison-Wesley, Reading, MA, 1999.

[11] S. Zhou, W. Cai, B.-S. Lee, and S. Turner, “Time-Space Consistency
in Large-Scale Distributed Virtual Environments”, ACM Transac-
tions on Modeling and Computer Simulation, Vol. 14, No. 1, pp. 31-47,
January 2004.

[12] C. Diot and L. Gautier, “A Distributed Architecture for Multi-
player Interactive Applications on the Internet”, IEEE Network,
Vol. 13, No. 4, pp. 6-15, April 1999.

[13] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-Peer Support
for Massively Multiplayer Games”, Proc. IEEE INFOCOM’04,
March 2004.

[14] R. Waters and J. Barrus, “The Rise of Shared Virtual Environ-
ments”, IEEE Spectrum, Vol. 34, No. 3, pp. 20-25, March 1997.

[15] J. Lui and M.F. Chan, “An Efficient Partitioning Algorithm for
Distributed Virtual Environment Systems”, IEEE Trans. on Parallel
and Distributed Systems, Vol. 13, No. 3, pp. 193-211, March 2001.

[16] P. Morillo, J. Orduna, M. Fernandez, and J. Duato, “Improving the
Performance of Distributed Virtual Environment Systems”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 16, No. 7, pp.
637-649, July 2005.

[17] B. Ng, R. Lau, A. Si, and F. Li, “Multiserver Support for Large-
Scale Distributed Virtual Environments”, IEEE Transactions on
Multimedia, Vol. 7, No. 6, pp. 1054-1065, December 2005.

[18] A. Labrinidis and N. Roussopoulos, “Update Propagation Strate-
gies for Improving the Quality of Data on the Web”, Proc.
VLDB’01, September 2001.

[19] C. Olston and J. Widom, “Best-Effort Cache Synchronization with
Source Cooperation”, Proc. ACM SIGMOD’02, June 2002.

[20] C. Faisstnauer, D. Schmalstieg, and W. Purgathofer, “Priority
Scheduling for Networked Virtual Environments”, IEEE Computer
Graphics and Applications, Vol. 20, No. 6, pp. 66-75, Nov/Dec 2000.

[21] Y. Yu, Z. Li, L. Shi, Y.-C. Chen, and H. Xu, “Network-Aware State
Update for Large Scale Mobile Games”, Proc. IEEE ICCCN’07,
August 2007.

[22] A. Corlett, D. I. Pullin, and S. Sargood, “Statistics of One-Way
Internet Packet Delays”, Proc. 53rd IETF, March 2002.

[23] C. Fidge, “Logical Time in Distributed Computing Systems”, IEEE
Computer, Vol. 24, No. 8, pp. 28-33, August 1991.

[24] D. Ta and S. Zhou, “Efficient Client-to-Server Assignments for
Distributed Virtual Environments”, Proc. IEEE IPDPS’06, April
2006.

[25] QStat – Real-Time Game Server Statistics, http://www.qstat.org/,
2008.

