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Abstract—Social media users are generating data on an un-
precedented scale. Distributed storage systems are often used
to cope with explosive data growth. Data partitioning and
replication are two inter-related data placement issues affecting
the inter-server traffic caused by user-initiated read and write
operations in distributed storage systems. This paper investigates
how to minimize the inter-server traffic among a cluster of social
media servers through joint data partitioning and replication
optimization. We formally define the problem and study its
hardness. We then propose a Traffic-Optimized Partitioning
and Replication (TOPR) method to continuously adapt data
placement according to various dynamics. Evaluations with real
Twitter and LiveJournal social graphs show that TOPR not only
reduces the inter-server traffic significantly but also saves much
storage cost of replication compared to state-of-the-art methods.
We also benchmark TOPR against the offline optimum by a
binary linear program.

Index Terms—Social media, distributed storage, graph parti-
tioning, data replication.

I. INTRODUCTION

SOCIAL media enable huge numbers of people to com-
municate and share information. The most popular social

media today include Facebook (1.71 billion monthly active
users or MAUs), QQ (899 million MAUs), WeChat (806
million MAUs), Tumblr (555 million MAUs), Instagram (550
million MAUs), Twitter (313 million MAUs), Weibo (282
million MAUs), LinkedIn (106 million MAUs), etc. According
to Nielsen’s latest report [30], people spent 20% of their PC
time and 30% of their mobile time on social media, much
more than that on other websites.

The amount of data maintained by social media increases
rapidly with their user base. Moreover, the user-generated
multimedia content, especially for image and video, produces
data on an unprecedented scale. For example, about 37% of
Sina Weibo microblogs contains images [7] and more than
400 hours of video were uploaded to YouTube every minute
[41] (as of 2015, the amount is continuously increasing). Some
recent work helps us understand what, when, where, and how
the data is created and propagated through social media [23],
[37], [48], [49]. Based on these behaviors, we are thinking of
how to build an effective storage system for hosting the social
media data.

Distributed storage systems are often used to cope with
explosive data growth. Data partitioning and replication are
two natural techniques to enable multiple servers to work
together and offer better quality of service [43]. Through
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partitioning, users are divided into smaller groups. Each user
group is assigned to one distinct server which hosts their
data. In this way, the data of different users can be served
by different servers in parallel. Through replication, the same
data may be copied and stored on multiple servers. In this way,
the data of the same user can be served by different servers
concurrently.

Many large-scale social media, e.g., Facebook [50] and
Twitter[3], are built on Apache Cassandra [22] which takes ad-
vantage of the consistent hashing scheme of Amazon Dynamo
[12] and the data model of Google BigTable [9]. However,
Cassandra cannot capture the data access patterns in social
media—a social media user frequently accesses her own data
as well as her directly connected neighbors’ data. For instance,
a user often logins Facebook to view her friends’ posts such
as status, figures, and videos. This feature is known as social
locality. Cassandra is blind to social locality since its hashing
scheme randomly partitions and replicates data across servers.
As a result, Cassandra is far from efficient for social media
since it gets stuck in high inter-server traffic caused by user
operations, which limits the scalability of distributed data
storage [33], [20], [44], [25], [19], [28], [18].

To preserve social locality in social media storage, a recent
SPAR method [33] replicates all the data of a user’s connected
neighbors on the server hosting this user. Such replication
avoids the inter-server traffic occurred at reading data. How-
ever, it introduces excessive inter-server traffic for synchroniz-
ing the replicas. In social media, the users constantly update
content, which makes the write-incurred traffic comparable to
the read-incurred traffic, particularly for the data replicated
with a high degree. For example, the inter-server traffic for
synchronization upon comment updates in Facebook could
reach 60 TB per day when perfect social locality is preserved,
which implies considerable consumption of server and band-
width resources [19]. Thus, the total inter-server traffic is not
optimized by maximizing the social locality. A smart way is to
replicate the data only when the read-incurred traffic saved is
more than the write-incurred traffic produced. SD3 mechanism
[25] uses such a scheme by assuming fixed data partitioning. In
fact, the amount of inter-server communication is affected by
not only data replication but also data partitioning. To the best
of our knowledge, there is hardly any work considering these
two inter-related data placement issues in an integrated manner
to optimize the total inter-server communication incurred at
reads and writes among a cluster of social media servers.

In this paper, we formulate an optimal data partitioning
and replication problem with the goal of minimizing the
inter-server traffic among a cluster of social media servers.
We propose a Traffic-Optimized Partitioning and Replication
(TOPR) method that performs social-aware partitioning and
adaptive replication of social media data in an integrated
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manner. TOPR not only adapts the partitioning to the data
access pattern dynamically by moving data but also tunes
the replicas under new partitioning to further reduce inter-
server communication. These adjustments are made based on
an analysis of how partitioning and replica allocation together
affect the inter-server traffic. Evaluations with the Twitter and
LiveJournal social graphs demonstrate that TOPR can save
the inter-server traffic significantly compared with various
state-of-the-art methods which either focus on one aspect of
partitioning and replication or optimize them separately. TOPR
performs close to the offline optimum by a binary linear
program.

This paper significantly extends a preliminary conference
version [42]. The rest of this paper is organized as follows.
We review the related work in Section II. We give the problem
formulation in Section III. Then, the design of our TOPR
method is elaborated in Section IV. We present the evaluation
in Section V. Finally, we make the conclusion in Section VI.

II. RELATED WORK

To scale social media with a cluster of servers, Pujol et
al. [34] proposed a one-hop replication scheme, where the
connected users always have their data co-located on the
same servers. Later, they further proposed a middleware called
SPAR [33] to minimize the number of replicas required for
one-hop replication while maintaining load balance among the
servers. SPAR preserves perfect social locality that eliminates
the read-incurred traffic for servers to acquire data from one
another. Some follow-up work of SPAR studied minimizing
the synchronization traffic among replicas [19] and using a
gossip-based heuristic to reduce the total number of replicas
needed [28]. Similarly, the S-CLONE method [44] aims at
maximizing the social locality with a budget limit for creating
replicas. However, such a replication mechanism may bring
a high amount of total inter-server traffic since the read-
incurred traffic saved can be less than the write-incurred traffic
introduced when replicating rarely read data. Jiao et al. [20],
[18] considered the scenario of geo-distributed clouds and op-
timized some different objectives. Their proposed algorithms
either preserve perfect social locality [20] or replicate the data
of each user with a certain degree [18]. Again, the inter-server
traffic cannot be minimized by either method.

Liu et al. [25] looked at the scenario of distributed data-
centers and proposed a selective data replication mechanism
named SD3 to optimize the inter-datacenter traffic through
replicating the data with high read rates and low write rates.
However, SD3 does not optimize the data partitioning—it sim-
ply assigns each user to the geographically closest datacenter.
SD3 also considered fine granularity for data replication based
on data types. This is orthogonal to our proposed method. Our
method can also separately consider different data types.

Community detection algorithms [29], [8] and graph parti-
tioning algorithms [21], [2] are also relevant to our problem.
The former targets at finding the communities in social media
and the later aims to minimize the inter-partition edges.
These algorithms are normally offline and the communities or
partitions produced are unstable even when user connections

are changed slightly. Thus, they cannot cope with the dynamics
in social media. Duong-Ba et al. [13] studied how to partition
social graphs to minimize a combined metric of the total
communication cost and load balance among all servers,
assuming no data replication. Chen et al. [10] investigated the
self-similar structure of interaction graphs and leveraged this
property to optimize the inter-server communication of explicit
interactions with community detection algorithms. However,
data replication was not applied and the latent interactions in
social media [6] were not considered.

Some recent studies [40], [46] used a streaming approach
to partition large-scale graphs. In this approach, the graph
is partitioned with balanced numbers of nodes among the
servers by examining individual nodes (and their immediate
neighbors) in a serial order. Each node, once examined, is
assigned to a server permanently by the streaming partitioning
algorithm. To further improve the performance, Nishimura
et al. [32] developed a restreaming method by transforming
streaming partitioning algorithms into an iterative procedure.
The restreaming partitioning algorithms allow the assigned
server of each node to be amended over successive iterations.
However, none of the above streaming and restreaming ap-
proaches considered data replication. Furthermore, while the
restreaming method [32] restreams all the nodes of a graph in
each iteration, we examine the relevant nodes only to adjust
partitioning when the data access pattern changes.

Nishida et al. [31] discussed the trade-off between inter-
server traffic and server load in distributed server systems.
Their problem formulation assumes a given number of servers
and aims to balance the load among servers (more specifically,
to minimize the weighted sum of the total communication load
and a Gini coefficient describing the load variations among
servers). We address the server load in a different manner.
Instead of reflecting the server load in the objective, we model
the server load as a constraint in our problem. We assume that
each server has a physical capacity and restrict that the server
should not be assigned load exceeding its capacity. Here, the
capacity is a pre-defined parameter describing the system’s
configuration. Our formulation is complementary to and more
comprehensive than that in [31]. In particular, Nishida et
al.’s formulation does not address how many servers to use
in the system. Regardless of the number of servers given,
their problem targets to balance the load across all these
servers. As a result, the clients will have to be distributed
to all the servers. If the number of servers is set large, the
total communication load may be unnecessarily high whereas
individual servers may be under-utilized. In contrast, with our
problem formulation, even if the number of servers is set
large, the partitioning solution may not assign clients to all the
servers – to reduce the inter-server traffic, the clients should
be distributed to as few servers as possible provided that the
servers are not overloaded. Thus, besides the partitioning and
replication, our formulation can also decide an appropriate
number of servers to use in the system. For example, if the
server capacity is large enough to host all the users, then the
optimal solution to our problem would allocate all the users
to one server so that no inter-server traffic will be produced.
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III. PROBLEM FORMULATION

A. System Model

The user data of a social media is hosted by a cluster of
servers. The data for each user has one master replica and
possibly multiple slave replicas. The server storing the user’s
master replica is called her master server and the servers
storing her slave data are called her slave servers. Different
users can have different servers as their master servers. As
many studies did [38], [4], [20], [18], we assume that a user
always connects to her master server, i.e., the read and write
requests made by a user u are always sent to u’s master server.
Upon serving a write request, for synchronization, the update
would be propagated from u’s master server to all of u’s
slave servers. Upon serving a read request of u for another
user v’s data, u’s master server would fetch the data from a
replica of v and then return the result to u if u’s master server
does not have v’s data. This is known as the relay model in
distributed data access [45]. Besides the relay model, redirect
is another commonly used model in distributed data access
[45]. As discussed in [45], the redirection model may bring
uncertain delay for establishing new client-server connections,
which may impair the user experience. Thus, the relay model
is more preferable if the internal network among servers is well
provisioned (e.g., among a cluster of servers). In this paper,
we focus on the relay model and shall discuss in Section III-D
how to adapt our problem formulation to the redirect model.

We use a social graph G = (V,E) to model the connec-
tions between users in a social media, where V is a set of
nodes representing users and E is a set of edges represent
the connections among users (e.g., followships on Twitter,
friendships on Facebook). Without loss of generality, the
social graph is directed. An undirected edge (u, v) such as
a friendship on Facebook, can be regarded as two directed
edges (u, v) and (v, u). For each directed edge (u, v) ∈ E,
v is u’s neighbor and u is v’s inverse neighbor. We define
Nu = {v : v ∈ V, (u, v) ∈ E} as the set of user u’s
neighbors. For each server s and each user u, let a binary
variable Ms,u describe whether u’s master replica is stored in
server s. Ms,u = 1 if and only if s is the master server of
u. Similarly, let another binary variable Ss,u describe whether
server s stores a slave replica of user u. Then, Ms,u’s describe
the partitioning scheme and Ss,u’s describe the replication
scheme.

B. Problem Definition

We consider two types of inter-server traffic – the read-
incurred traffic and the write-incurred traffic [25], [20], [18].
To model the read-incurred traffic, let ru,v denote the rate of
user u reading a neighbor v’s data. Similarly, let wu denote
the rate of user u writing her own data.1 We denote ψr as
the average data size returned by read operations and ψw as
the average data size of write updates. Then, the total inter-

1We can also handle the cross-user write operation that a user writes on a
neighbor’ data. Please refer to the appendix for detailed discussions.

server traffic produced by all the read and write operations on
a cluster of servers S is given by

Ψ = ψr ·
∑
u∈V

∑
v∈Nu

ru,v

(
1−

∑
s∈S

Ms,u(Ms,v + Ss,v)
)

+ ψw ·
∑
u∈V

(
wu ·

∑
s∈S

Ss,u

)
,

(1)

where the first term represents the read-incurred traffic when
a user reads her neighbors’ data stored in other servers
and the second term represents the write-incurred traffic
when a write update is pushed to her slave servers. In
the first term,

∑
s∈SMs,u (Ms,v + Ss,v) = 1 if and only

if user u’s master server stores user v’s data. Thus, if∑
s∈SMs,u (Ms,v + Ss,v) = 0, the read operation of u on v

generates inter-server traffic. In the second term,
∑
s∈S Ss,u is

the total number of u’s slave replicas. When u writes her own
data, the inter-server traffic is caused by the updates pushed
to all her slave servers.

To guarantee the service performance, we should prevent
overloading the servers. In the absence of slave replicas, the
workload or traffic handled by a server is directly determined
by the set of master replicas it hosts. Specificially, the server
needs to handle all the requests made by these users as well
as all the requests made by other users for the data of these
users. As discussed earlier, creating a slave replica can save
read-incurred traffic but introduce write-incurred traffic. To
optimize the total inter-server traffic, a slave replica should
be created only if the read-incurred traffic saved is more than
the write-incurred traffic introduced. Therefore, the traffic in
the case without slave replicas can be considered as an upper
bound on the server load. Thus, following previous studies
[33], [19], [28], we use the number of master replicas that
a server hosts to indicate the server load. Each server has a
capacity limit µ. Given a set of servers S such that their total
capacity µ · |S| ≥ |V |, we seek for the optimal data parti-
tioning and replication that minimize the inter-server traffic
subject to the server capacity constraints. This problem can
be represented by a zero-one quadratic program as follows:

min Ψ

s.t.
∑
s∈S

Ms,u = 1, ∀u ∈ V, (2)

Ms,u + Ss,u ≤ 1, ∀u ∈ V, s ∈ S, (3)∑
u∈V

Ms,u ≤ µ, ∀s ∈ S, (4)

Ms,u, Ss,u ∈ {0, 1}, ∀u ∈ V, s ∈ S, (5)

where Ψ is the total inter-server traffic defined in (1). Con-
straint (2) ensures that every user has exactly one master
replica. Constraint (3) captures the fact that at most one replica
of each user needs to be stored in one server. Constraint (4)
restricts each server to host a limited number of users within
its capacity. Constraint (5) reflects the existence status of the
master or slave replica.

Instead of optimizing a non-linear objective directly [20],
we shall linearize the above quadratic program. Then, we can
use existing solvers such as Gurobi [15] to find the optimal



1520-9210 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2017.2760627, IEEE
Transactions on Multimedia

4

solutions for small graphs. To this end, we define a new binary
variable Bu,v to describe whether it introduces read-incurred
traffic when user u reads a neighbor v’s data. That is, Bu,v = 1
if and only if v does not have any replica in u’s master server
su, i.e., Msu,v + Ssu,v = 0. Since Msu,u = 1, we can write
Bu,v as

Bu,v = Msu,u − (Msu,v + Ssu,v). (6)

For any other server s 6= su, by definition, we have Ms,u = 0
which implies Ms,u−(Ms,v+Ss,v) ≤ 0 ≤Msu,u−(Msu,v+
Ssu,v). Thus, (6) is equivalent to

Bu,v = max
s∈S
{Ms,u − (Ms,v + Ss,v)}. (7)

With Bu,v , the total inter-server traffic for all the read and
write operations can be rewritten as

Ψ′ = ψr ·
∑
u∈V

∑
v∈Nu

(
ru,v ·Bu,v

)
+ψw ·

∑
u∈V

(
wu ·

∑
s∈S

Ss,u

)
.

(8)
Since our objective is to minimize Ψ′, it is sufficient to
characterize only a lower bound of Bu,v , which can be
presented in the following linear form:

Bu,v ≥Ms,u − (Ms,v + Ss,v), ∀s ∈ S. (9)

Consequently, the optimization problem can be converted into
a Binary Linear Program (BLP) as follows:

min Ψ′

s.t. Constraints (2), (3), (4), (5),
Bu,v ≥Ms,u − (Ms,v + Ss,v),

∀u ∈ V, v ∈ Nu, s ∈ S. (10)

Lemma 1: The problem defined above is NP-hard.
Proof: Consider a special class of the problem instances

where the read rate between every pair of neighbors is 1 and
the write rate of every user is sufficiently large such that
ψw · wu > ψr · |E|. For any graph partitioning, creating a
slave replica of u would introduce ψw · wu amount of write-
incurred traffic and save no more than ψr · |E| amount of read-
incurred traffic. Thus, creating a slave replica always increases
the inter-server traffic since ψw · wu > ψr · |E|. This implies
that no slave replica should be created in the optimal solution.
As a result, the problem degenerates to the balanced graph
partitioning problem that minimizes the total number of cross-
partition edges, which is known to be NP-hard [1].

Andreev et al. [1] showed that the balanced partitioning
problem has no polynomial time approximation algorithm with
finite approximation factor unless P=NP when the graph has to
be divided into partitions of equal sizes. Based on the above
reduction, this indicates that our problem is inapproximable
when µ · |S| = |V | and for any |S| ≥ 2.

C. Motivation for Joint Optimization

We illustrate the advantage of joint partitioning and repli-
cation optimization with a simple example shown in Fig. 1.
Consider a social graph with 4 nodes in Fig. 1(a). We mark
each edge with a read rate and each node with a write rate.
Suppose that there are two servers available with a capacity of
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Fig. 1. An example to motivate joint partitioning and replication optimization.

µ = 2 each. We compare the inter-server traffic produced by
different partitioning and replication methods. For simplicity,
assume that the data size is one unit for all the read and write
operations.

RP (Fig. 1(b)) is a naive method that randomly and equally
partitions the users between the two servers without any
replication. RP does not conduct any optimization at all. The
write-incurred traffic is avoided since RP does not perform
replication. But the read operations produces a total of 150
traffic units.

RP+SR (Fig. 1(c)) selectively replicates some data if they
can save the inter-server traffic [25] based on the partitioning
of RP. For example, a slave replica of node A is created in the
right partition since it would save 2 + 40 = 42 units of read-
incurred traffic and just introduce 10 units of write-incurred
traffic so that overall, 32 traffic units are reduced. The same
reasoning applies to the creation of the slave replicas for B,
C and D. RP+SR conducts replication optimization only and
no partitioning optimization. It introduces 15 units of write-
incurred traffic while reducing the read-incurred traffic from
150 units down to 0. Thus, RP+SR produces a total inter-server
traffic of 15 units, which is less than RP.

The SPAR method [33] (Fig. 1(d)) minimizes the number
of replicas required for co-locating the neighbors on the same
servers. It conducts partitioning optimization only and no
replication optimization as slave replicas are blindly created
for all pairs of neighbors. The read-incurred traffic is avoided
since SPAR guarantees perfect social locality of data storage,
but the write operations generate a total of 13 traffic units.
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METIS [21] (Fig. 1(e)) aims at minimizing the total weight
of inter-partition edges, which represents the read-incurred
traffic in our problem. METIS does not perform any repli-
cation. Thus, it again conducts partitioning optimization only
and no replication optimization. The read-incurred traffic is
brought down to 81 units without introducing any write-
incurred traffic.

METIS+SR (Fig. 1(f)) selectively replicates some data
based on the partitioning of METIS. It conducts both par-
titioning optimization and replication optimization. However,
the two optimizations are applied separately. The total inter-
server traffic is further reduced to 12 units.

Unfortunately, the minimum inter-server traffic is not
achieved by any method above. The best solution obtained
by solving the BLP formulated in Section III-B is shown
in Fig. 1(g). Only 7 units of inter-server traffic is produced,
which significantly outperforms all the earlier methods. This
demonstrates the advantage of optimizing partitioning and
replication together.

D. Further Considerations

We do not explicitly restrict the number of slave replicas
in our problem definition. It is intuitive that creating too
many slave replicas (e.g., full replication) would produce a
huge amount of write-incurred traffic and result in high inter-
server traffic. Thus, even if there is no capacity limit enforced
on slave replicas, it would not lead to the creation of an
excessive and unrealistic number of slave replicas. This shall
be demonstrated by our experimental results in Section V-B.

Besides the relay model, redirect is another commonly used
model in distributed data access [45]. In the redirect model,
when a user u reads the data of another user v, u’s master
server redirects u to v’s master server (or any other replica of
v) to access v’s data if it does not have v’s data. Thus, the
read operation does not cause any inter-server communication,
but it still induces request processing at both servers. On
the other hand, a write operation has to produce inter-server
communication for synchronizing replicas and also needs to
be processed by multiple servers. Our problem formulation
can be adapted to minimize the total number of requests
processed by all servers in the redirect model. Note that
the initial requests sent by users to their master servers are
beyond the control of the distributed data storage system.
Therefore, minimizing the total number of requests processed
by all servers is equivalent to minimizing the total number
of redirected read requests and inter-server synchronization
requests. As a result, our optimization model can be tailored
to request volume minimization by setting ψr and ψw (the data
size of every read/write operation) to one unit in the objectives
(1) and (8).

IV. TRAFFIC-OPTIMIZED PARTITIONING AND
REPLICATION

To the best of our knowledge, solving the BLP problem in
Section III-B directly is not computationally feasible for large
graphs even with the state-of-the-art solvers [11], [15]. More-
over, social media are highly dynamic due to constant changes

TypeRead Write
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Update the read rate

Slight change in rate

N

Adjust partitioning and 

replication via Alg. 3

Y

Update the write rate

Slight change in rate

N

Adjust partitioning and 

replication via Alg. 5

Y

Fig. 2. Flowchart of TOPR

in data access patterns, creation/deletion of connections, and
addition of new users. Thus, rather than solving our opti-
mization problem statically and offline, we develop a Traffic-
Optimized Partitioning and Replication (TOPR) method that
continuously adapts data placement and keeps the system in
local optimums under the dynamics.

A. Overview

Fig. 2 shows the flowchart of our TOPR method. TOPR
dynamically adjusts the partitioning and replication to opti-
mize the inter-server traffic. Specifically, TOPR adjusts the
allocation of master and slave replicas together based on
the estimate of the read and write rates of the users. To
reduce computational overheads, the adjustments are made
when these rates change beyond some given thresholds via
Algorithms 3 and 5 which will be introduced later.

Previous work attempted to optimize either the read-
incurred traffic by assuming no write-incurred traffic (e.g.,
METIS [21]) or the write-incurred traffic by assuming no
read-incurred traffic (e.g., SPAR [33]) or the total inter-server
traffic under a given partitioning (e.g., SD3 [25]). Different
from these methods, TOPR is designed to optimize the total
inter-server traffic directly through joint data partitioning and
replication. Each adjustment of data partitioning and repli-
cation by TOPR aims to reduce the expected total inter-
server traffic. Compared to METIS and SPAR, our objective
combines both read-incurred traffic and write-incurred traffic,
while compared to SD3, our method also adjusts partitioning
rather than replication only. Therefore, our methods would
produce less inter-server traffic than the existing methods.

B. Traffic Effect by Partitioning and Replication

To elaborate the data placement strategies of TOPR, we
first study two basic building blocks for data partitioning and
replication: (1) how to optimally allocate the slave replicas
when the master replicas are given; and (2) how the movement
of a master replica affects the inter-server traffic. For ease of
reference, Table I summarizes the notations that we use.

Consider a user u whose master server is su. Obviously,
there is no inter-server communication for all the read accesses
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TABLE I
FREQUENTLY USED NOTATIONS

Notation Description
G = (V,E) a social graph G with a node set V and an edge set E
u, v, v∗ a user (or node)
Nu the set of u’s neighbors
Iu the set of u’s inverse neighbors
s, s∗ a server
su user u’s master server
S a server set

Ms the set of master replicas hosted by server s
Ls the set of slave replicas hosted by server s
ru,v the rate of user u reading user v’s data
Rs,u the aggregate rate of server s reading user u’s data
wu the rate of user u writing her own data
ψr the average data size returned by read operations
ψw the average data size of write updates

Ψs,v v-relevant traffic between server s and v’s master server sv

on u from the users whose master servers are also su. For
any other server s 6= su, since each inverse neighbor v of u
performs read operations on u at the rate of rv,u, we have the
server s reading user u’s data at an aggregate rate of

Rs,u =
∑

v∈Ms∩Iu

rv,u, (11)

where Ms contains all master replicas hosted by s, and
Iu = {v : v ∈ V, (v, u) ∈ E} denotes the set of u’s inverse
neighbors. If server s does not host a slave replica of u, the
read operations on u introduce ψr ·Rs,u amount of inter-server
traffic between s and su. If server s hosts a slave replica
of u, no read-incurred traffic is produced between s and su.
However, to synchronize the slave with the master, there would
be ψw · wu amount of write-incurred traffic between s and
su. Therefore, server s should store a slave replica of u if it
reduces the inter-server traffic, i.e.,

ψr ·Rs,u > ψw · wu. (12)

It can be seen that under a given allocation of master replicas,
the optimal allocation of slave replicas can be independently
constructed for each user and each server. Algorithm 1 decides
whether a slave replica of a user u is created on a server s,
where Ls contains all the slave replicas hosted by s.

Algorithm 1: allocateSlave(u, s)

1 if ψr ·Rs,u > ψw · wu then
2 Ls ← Ls ∪ {u}; // add u’s slave to s
3 else
4 Ls ← Ls \ {u}; // remove u’s slave from s

Let the u-relevant traffic represent the traffic caused by read
and write operations on user u between two servers. Then, the
u-relevant traffic between su and s when u’s slave replicas are
optimally allocated is min{ψr·Rs,u, ψw·wu}. Therefore, under
the optimal allocation of slave replicas, the total inter-server
traffic is given by∑

u∈V

∑
s6=su

min{ψr ·Rs,u, ψw · wu}. (13)

Next, we analyze what is the impact on the inter-server
traffic by moving a master replica, assuming that slave replicas
are always allocated optimally as above before and after the
movement. Consider the master replica movement of a user u
from server su to another server s. With the movement, the u-
relevant traffic between su and s, and the traffic relevant to u’s
neighbors involving su and s would be affected. Specifically,
based on the earlier analysis, the u-relevant traffic between
su and s prior to the movement is min{ψr · Rs,u, ψw · wu}.
After the movement, the u-relevant traffic between su and s
becomes min{ψr · Rsu,u, ψw · wu}. Thus, the inter-server u-
relevant traffic is reduced by

min{ψr ·Rs,u, ψw · wu} −min{ψr ·Rsu,u, ψw · wu}. (14)

For each neighbor v of u, if sv 6= su, before the movement
of u’s master replica, the v-relevant traffic between v’s master
server sv and su is

Ψsu,v = min{ψr ·Rsu,v, ψw · wv}. (15)

After u’s master replica is moved away from su, the v-relevant
traffic between sv and su becomes

Ψ′su,v = min{ψr · (Rsu,v − ru,v), ψw · wv}. (16)

Similarly, if sv 6= s, before the movement of u’s master
replica, the v-relevant traffic between sv and s is

Ψs,v = min{ψr ·Rs,v, ψw · wv}. (17)

After u’s master replica is moved to s, the v-relevant traffic
between sv and s becomes

Ψ′s,v = min{ψr · (Rs,v + ru,v), ψw · wv}. (18)

Thus, the inter-server v-relevant traffic is reduced by
Ψsu,v −Ψ′su,v, if sv = s,
Ψs,v −Ψ′s,v, if sv = su,
Ψsu,v −Ψ′su,v + Ψs,v −Ψ′s,v, otherwise.

(19)

According to the above analysis, Algorithm 2 gives a
calculation of the total traffic reduction when a user u’s master
replica is moved from server su to another server s.

Algorithm 2: calMoveMaster(u, s)

// reduction of u-relevant traffic by (14)
1 δ ← min{ψw ·wu, ψr ·Rs,u}−min{ψw ·wu, ψr ·Rsu,u};
// reduction of v-relevant traffic by (19)

2 foreach v ∈ Nu do
3 if sv 6= s then
4 δ ← δ + min{ψr ·Rs,v, ψw · wv}

−min{ψr · (Rs,v + ru,v), ψw · wv};
5 if sv 6= su then
6 δ ← δ + min{ψr ·Rsu,v, ψw · wv}

−min{ψr · (Rsu,v − ru,v), ψw · wv};

7 return δ;

We remark that the overhead of moving the replicas is not
explicitly considered in our model. This is because the replica
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Algorithm 3: checkRead(u, v)

1 if su 6= sv then
2 δ2 ← −∞;
3 δ3 ← −∞;

// compute the gain of moving u to sv
4 if |Msv |+ 1 ≤ µ then
5 δ2 ← calMoveMaster(u, sv); // Alg. 2

// compute the gain of moving v to su
6 if |Msu |+ 1 ≤ µ then
7 δ3 ← calMoveMaster(v, su); // Alg. 2

// identify and execute the best strategy
8 if δ2 ≥ δ3 and δ2 > 0 then
9 moveMaster(u, sv); // Alg. 4

10 else if δ3 ≥ δ2 and δ3 > 0 then
11 moveMaster(v, su); // Alg. 4
12 else
13 allocateSlave(v, su); // Alg. 1

Algorithm 4: moveMaster(u, s)

1 Msu←Msu\{u}; // removeu’s masterfromsu
2 Ms ←Ms ∪ {u}; // add u’s master to s
3 allocateSlave(u, su); // Alg. 1
4 Ls ← Ls \ {u}; // remove u’s slave from s
// relocate the slaves of u’s neighbors

5 foreach v ∈ Nu do
6 Rsu,v ← Rsu,v − ru,v;
7 Rs,v ← Rs,v + ru,v;
8 if sv 6= su then
9 allocateSlave(v, su); // Alg. 1

10 if sv 6= s then
11 allocateSlave(v, s); // Alg. 1

12 su ← s;

movement is a one-off overhead while our main focus is on the
long-term traffic for serving read and write requests. We shall
experimentally evaluate the overhead of replica movements
(in Section V-B) to show that the overhead is negligible for
TOPR.

C. Adjust Partitioning and Replication

We now introduce the data placement strategies of TOPR.
Algorithm 3 describes how to check and perform partitioning
and replication adjustments upon read operations. When a
read operation is conducted by a user u on another user v, if
their master replicas are hosted by the same server, no further
action is required since there is no inter-server communication
involved (line 1). Otherwise, three possible adjustments are
considered as follows: (1) adjust v’s slave replica on su
according to the new estimate of ru,v without changing the
allocation of master replicas for both u to v; (2) move the
master replica of u to server sv hosting v’s master replica;
and (3) move the master replica of v to server su hosting u’s

Algorithm 5: checkWrite(u)

1 δ2 ← −∞;
2 δ3 ← −∞;
// find the best server to move u to

3 foreach s ∈ {sv : v ∈ Iu, sv 6= su} do
4 if |Ms|+ 1 ≤ µ then
5 δ ← calMoveMaster(u, s); // Alg. 2
6 if δ > δ2 then
7 δ2 ← δ;
8 s∗ ← s;

// find the best user to move to su
9 if |Msu |+ 1 ≤ µ then

10 foreach v ∈ Iu \Msu do
11 δ ← calMoveMaster(v, su); // Alg. 2
12 if δ > δ3 then
13 δ3 ← δ;
14 v∗ ← v;

// identify and execute the best strategy
15 if δ2 ≥ δ3 and δ2 > 0 then
16 moveMaster(u, s∗); // Alg. 4
17 else if δ3 ≥ δ2 and δ3 > 0 then
18 moveMaster(v∗, su); // Alg. 4

19 foreach s ∈ S \ {su} do
20 allocateSlave(u, s); // Alg. 1

master server. The traffic reductions of cases (2) and (3) with
respect to case (1) can be calculated by Algorithm 2 (lines 4–
7). Recall that there is a capacity limit for each server that
the number of master replicas allocated to each server cannot
exceed µ. Thus, cases (2) and (3) are checked only if there
is spare capacity for the respective servers sv and su to host
more master replicas (lines 4 and 6). Finally, the adjustment
with largest inter-server traffic reduction is chosen to execute
(lines 8–13).

Algorithm 4 performs the relevant updates when moving a
user u’s master replica to another server s. First, it updates
the sets of master replicas hosted by the existing/new master
server su/s (lines 1–2). Then, u’s slave replica at su after
the movement is regulated to optimal based on Algorithm 1
(line 3). After that, it removes u’s slave replica at s (if any)
since s is the new master server of u (line 4). Finally, for
each neighbor v of u, it updates the aggregate read rates of
su and s on v (lines 6–7) since u’s master server is changed,
and recomputes the optimal allocation of v’s slave replicas at
su and s using Algorithm 1 (lines 8–11).

Algorithm 5 describes how to check and perform partition-
ing and replication adjustments upon write operations. Note
that the slave replicas of a user are created only on the
master servers of its inverse neighbors. Thus, when a write
operation is conducted by a user u on her data, three possible
adjustments are considered as follows: (1) maintain status quo
of the master replicas of u and her inverse neighbors; (2)
move u’ master replica to the master server hosting one of
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u’s inverse neighbors; and (3) move the master replica of
one of u’s inverse neighbors to server su hosting u’s master
replica. For case (2), it finds the best server s∗ that can reduce
the inter-server traffic most for hosting u’s master replica via
Algorithm 2 (lines 3–8). To account for the capacity limit,
only the servers with ability to accommodate more master
replicas are considered (line 4). For case (3), it selects the best
inverse neighbor v∗ of u with the lowest inter-server traffic for
moving its master replica to server su (lines 9–14). Due to the
capacity limit, case (3) is checked only if there is space for
server su hosting more master replicas (line 9). Again, the
adjustment with largest inter-server traffic reduction is chosen
to execute (lines 15–18). Finally, the algorithm regulates u’s
slave replicas to optimal on the relevant servers according to
the change in write rate wu (lines 19–20).

D. Threshold-Based Adjustment and Rate Estimation

To estimate the read rates, we maintain the expected time
interval tu,v between two successive read operations of u on
v for each pair of neighbors u and v. Specifically, for every
read operation of u on v, we record the time interval τ since
the last read operation between them. The new estimate of
tu,v is updated by an Exponentially Weighted Moving Average
(EWMA) [35] with parameter α. i.e.,

tu,v = (1− α) · tu,v + α · τ. (20)

A larger value of α gives more weight to the most recent inter-
request interval τ in the estimation and less weight to the past
inter-request intervals. The read rate of u on v is given by
ru,v = 1/tu,v . The intuition behind is that the read/write rates
in OSNs are relatively stable over a reasonable period, e.g.,
one day [47].

Naively, for every read operation, we can check for possible
adjustments of master and slave replicas for potential reduction
in the inter-server traffic. However, since user operations
are large in number, this strategy would suffer from high
computational overheads. Intuitively, it does not deserve any
adjustment when the read rate of a user on a neighbor is
changed slightly. Thus, the computational overheads can be
reduced by setting a threshold θr (θr ≥ 1.0) to guard the
checking for possible adjustments. We check for and carry
out possible adjustments only if the relative change in read
rate ru,v since the last check is greater than a factor of θr,
i.e., ru,v

last ru,v
≥ θr or last ru,v

ru,v
≥ θr. When θr is set to 1.0,

the algorithm checks for possible adjustments whenever a read
operation is performed, which degenerates to the naive case.
We would evaluate the impact of the guard threshold on the
computational overheads and inter-server traffic.

Similarly, to estimate the write rates, we maintain the
expected time interval tu between two successive write oper-
ations of each user u by the EWMA with the same parameter
α, i.e.,

tu = (1− α) · tu + α · τ. (21)

The write rate of user u is estimated as wu = 1/tu. Possible
partitioning and replication adjustments are checked when the
relative change in write rate wu is greater than a factor of θw,

i.e., wu

last wu
≥ θw or last wu

wu
≥ θw, where θw ≥ 1.0 is a guard

threshold.

E. Distributed Implementation

Our TOPR method can be implemented in a distributed
manner. In the distributed implementation, each server s
maintains the following local information:
• Ms: the set of master replicas hosted by s as defined

earlier.
• N s and Is: adjacency lists recording the neighbors and

inverse neighbors of the users hosted by server s, i.e.,
N s
u = Nu and Isu = Iu for every user u ∈Ms.

• rs: an adjacency dictionary recording the read rates be-
tween every user u hosted by server s and her neighbors,
i.e., rsu,v = ru,v for every u ∈Ms and v ∈ N s

u .
• Rs: an dictionary recording the aggregate read rates of
s reading each user v who is either hosted by s or a
neighbor of some user hosted by s, i.e., Rsv = Rs,v =∑
rsu,v for every v ∈

(
Ms ∪

⋃
u∈Ms

N s
u

)
.

• ws: an dictionary recording the write rates of each
user v who is either hosted by s or a neighbor of
some user hosted by s, i.e., wsv = wv for every v ∈(
Ms ∪

⋃
u∈Ms

N s
u

)
.

The major computation of TOPR is done in Algorithms 1, 2
and 4 which are based on (12) and (14)-(18). With the above
information maintained at each server, these formulas can be
rewritten as follows:

ψw · wsu < ψr ·Rsu, (22)
min{ψw · wsu, ψr ·Rsu} −min{ψw · wsuu , ψr ·Rsuu }, (23)
Ψsu,v = min{ψw · wsuv , ψr ·Rsuv }, (24)
Ψ′su,v = min{ψw · wsuv , ψr · (Rsuv − rsuu,v)}, (25)

Ψs,v = min{ψw · wsv, ψr ·Rsv}, (26)
Ψ′s,v = min{ψw · wsv, ψr · (Rsv + rsuu,v}. (27)

This means that Algorithm 1 can be executed by server s based
on its local information, whereas Algorithms 2 and 4 can be
executed by servers su and s based on their local information.
In this way, TOPR can be implemented in a distributed manner.

F. Complexities

The time complexity of our TOPR method is mainly
determined by that for checking possible adjustments via
checkRead() and checkWrite(). To check possible ad-
justments, Algorithm 2 is commonly used, which has a
time complexity of O(|Nu|), where |Nu| is the number of
u’s neighbors. In checkRead() (Algorithm 3), it takes
O(|Nu|) and O(|Nv|) time to calculate potential traffic re-
ductions of cases (2) and (3) respectively via Algorithm 2.
At most one master replica is moved for each adjustment,
which means the time complexity of executing Algorithm
4 is O(max{|Nu|, |Nv|}). Consequently, checkRead()
has a total time complexity of O(|Nu|) + O(|Nv|) +
O(max{|Nu|, |Nv|}) = O(|Nu|+ |Nv|). In checkWrite()
(Algorithm 5), it takes O(|Nu|×|S|) time to determine the best
server to host u in case (2) using Algorithm 2, where |S| is the
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number of servers. It takes O(
∑
v∈Iu |Nv|) time to select the

best inverse neighbor of u to move in case (3) via Algorithm
2, where O(

∑
v∈Iu |Nv|) is the number of users who share

an inverse neighbor with u in the social graph. Again, at most
one master replica is moved for the selected adjustment. Thus,
it takes O(max{|Nu|,maxv∈Iu{|Nv|}}) time to perform the
adjustment by Algorithm 4. Therefore, checkWrite() has
a total time complexity of O(|Nu| × |S| +

∑
v∈Iu |Nv|).

The above analysis shows that both checkRead() and
checkWrite() are lightweight as only the nodes in the
immediate neighborhood of u and v are involved.

The space complexity of our TOPR method is mainly
determined by that for storing ru,v’s, wu’s and Rs,u’s,
which in turn are dependent on the numbers of each
node’s neighbors and inverse neighbors as well as the
number of servers. In a centralized implementation, it
takes O

(∑
u∈V (|Nu|+ |Iu|) + |S||V |

)
= O(|E| + |S||V |)

space. In a distributed implementation, the space complex-
ity for N s (or rs) and Is is O

(∑
u∈Ms

(|Nu|+ |Iu|)
)

whereas that for Rs (or ws) is O
(
|Ms|+

∑
u∈Ms

|Nu|
)
.

Thus, the total space complexity for each server s is
O
(∑

u∈Ms
(1 + |Nu|+ |Iu|)

)
. On average, each node has

O(|E|/|V |) neighbors and inverse neighbors in the social
graph. Thus, the expected space complexity for each server
s is O (|Ms|(1 + |E|/|V |)) = O (µ(1 + |E|/|V |)).

G. Other Events

In social media, besides read and write operations, some
other types of events can change the topology of the social
graph, including adding and removing edges (connections) and
nodes (users). We can easily handle these events. When a new
edge (u, v) is added, since no read operation of u on v is
performed yet, the read rate ru,v should be initialized at 0.
Consequently, no further action is required and the optimal
allocation of slave replicas remains. When an existing edge
(u, v) is removed, if their master replicas are not hosted by
the same server, we can simply adjust v’s slave replica at u’s
master server by Algorithm 1. When a new user u is created,
we simply allocate u’s master replica to the server hosting the
minimum number of master replicas for the purpose of load
balancing. When an existing user u is deleted, all of u’s master
and slave replicas should be removed. Meanwhile, the slave
replicas of u’s neighbors at u’s master server are adjusted by
Algorithm 1 to account for the removal of the edges incident
on u.

From the storage system’s perspective, the changes in the
number of servers can also affect the inter-server communi-
cation. Typically, the servers are added dynamically with the
growing user base. When a new server is added to the system,
the incoming new users would be allocated to this server for
the purpose of load balancing. When an existing server is
removed for reasons such as server crash, a simple strategy
is to temporarily relocate the users on the removed server to
the alive servers via the aforementioned scheme as if they are
new users.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Two real social graphs are selected to evaluate our algo-
rithms: a Twitter social graph comprised of 81, 306 nodes and
1, 768, 149 edges, and a LiveJournal social graph consisting of
4, 847, 571 nodes and 68, 993, 773 edges [24]. Furthermore, to
explore how close our proposed TOPR method is compared
to the offline optimum by BLP, we also test synthetic social
graphs of controlled sizes generated by the Barabási-Albert
model [5]. The Barabási-Albert model is commonly used
for generating random scale-free power-law graphs which
many social media follow [14], [26]. We have experimented
with many synthetic graphs and observed similar performance
trends. Due to space limitations, we report here the results for
a sample graph of 100 nodes and 392 edges.

TABLE II
GRAPH STATISTICS.

Dataset No. of Nodes No. of Edges Avg. Social Out-Degree
Twitter 81, 306 1, 768, 149 21.7

LiveJournal 4, 847, 571 68, 993, 773 14.2
Synthetic 100 392 3.9

Due to commercial competition or privacy protection rea-
sons, the data of user activities is seldom published by the
social media providers. Moreover, various mechanisms are
deployed to defend against crawlers by most social media
providers [27]. Thus, it is difficult to obtain the interaction
trace among social media users. Similar to other work [18],
we generate user interactions for our simulations based on the
features reported by some empirical studies [6], [17], [36].

Specifically, the read rates and write rates for all users
follow the power-law distribution with an exponent of 3.5
according to the measurement of Jiang et al. [17]. According to
studies on user interactions using clickstreams [6], [36], 92%
of user activities on social media are profile browsing. Thus,
we set a ratio of 0.92/0.08 between the total read rate and the
total write rate. Based on the above settings, a read rate and a
write rate are assigned to each user. We control the Spearman’s
rank correlation coefficient [39] between the social degree of
each user (the number of her neighbors) and her read/write
rate to be 0.7 as observed in [17]. The assigned read rate
of each user represents the aggregate rate of she reading all
of her neighbors while the assigned write rate of each user
represents the rate of she updating her data. After that, we use
the preferential model [16] to distribute the aggregate read
rate among the neighbors. That is, for each neighbor, we set a
read rate proportional to the neighbor’s social degree. After the
distribution, the read rates on edges have a mean of 0.80 per
unit time for Twitter and 1.24 for LiveJournal, and the write
rates of users have a mean of 1.66 for Twitter and 1.67 for
LiveJournal. Finally, we generate the read and write operation
trace according to the assigned rates via a Poisson process.
Assuming the social graph is empty at the beginning, a new
user is created (i.e., a node is added to the social graph) with
the first operation relevant to the user. Similarly, a connection
is established (i.e., an edge is added to the social graph) with
the first read operation involving a pair of neighbors.
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The total inter-server traffic among a cluster of servers is
the main performance metric studied in our evaluation. The
data size of each read operation is normalized to ψr = 1.
For each read operation by a user u on another user v, ψr
amount of traffic is added to the total inter-server traffic if v’s
replica does not exist in u’s master server at the time of read.
The data size ψw of each write operation is varied to reflect
different traffic ratios between read and write operations. For
each write operation by u, ψw · cu amount of traffic is added
to the total inter-server traffic, where cu is the number of u’s
slave replicas at the time of write. By default, ψw is set to 1.

We assume that all the servers have the same capacity. For
the real Twitter and LiveJournal social graphs, the default
capacities are set at 1, 000 and 20, 000 respectively. Thus,
the minimum number of servers required to host all users is
d 81,3061,000 e = 82 for the Twitter social graph and d 4,847,57120,000 e =
243 for the LiveJournal social graph. The number of servers
available is set to this minimum required number. We also
experiment with the case where servers are dynamically added.
For the synthetic graph, the server capacity is set at 50 and
we test the cases of 2 and 4 servers.

All the methods described in Section III-C are compared
with our proposed TOPR method in the evaluation.

Random Partitioning: As mentioned earlier, the distributed
storage system for many popular social media uses random
partitioning as the de facto default mechanism [50], [3]. Thus,
the basic method of random partitioning without replication
(RP) is implemented, in which there is no slave replica created
for any user.

METIS: METIS [21] optimizes the inter-server commu-
nication by conducting graph partitioning and assuming no
replication. However, METIS cannot dynamically adapt data
partitioning on the fly as it is an offline algorithm. To evaluate
METIS, we first count the numbers of reads and writes in
the operation trace and use the results to pre-compute the
METIS partitioning. We then measure the inter-server traffic
by simulating the operation trace. In this way, METIS has
an unfair advantage of priori knowledge on the data access
pattern.

Selective Replication: We apply the selective slave replica
allocation scheme designed in Algorithm 1 (Section IV-B)
to the data partitions created by the random partitioning and
METIS methods. That is, slave replicas are created only if they
can reduce the inter-server traffic. We use real-time EWMA
estimates of read and write rates to dynamically adjust the
replication. We refer to the resultant methods as random
partitioning with selective replication (RP+SR) and METIS
with selective replication (METIS+SR).

SPAR: SPAR [33] replicates data to preserve perfect social
locality. That is, for each user, her master server always
has a master/slave replica for each of her neighbors. SPAR
minimizes the total number of replicas created by carefully
planned data partitioning. Reducing the number of replicas
can cut the inter-server traffic caused by propagating the data
updates at write operations.

BLP: As discussed in Section III-B, the partitioning and
replication problem we have defined can be formulated as a
Binary Linear Program (BLP) so that the optimal solution can

be computed by existing solvers. Note that such an optimal
solution is offline in nature since it assumes that all the
read and write rates are known and do not change. In our
experiments, the read and write rates are pre-computed using
the same methodology as that for METIS. To the best of our
knowledge, all the existing solvers can solve the BLP only
when the problem size is small. Thus, we benchmark the
proposed TOPR method against BLP only for synthetic graphs
of controlled sizes. We use Gurobi 6.0.3 [15] to solve the BLP.

To adjust the replication on the fly, dynamic estimation
of data read and write rates is required for the RP+SR,
METIS+SR and TOPR methods. The factor α is set at 0.5 by
default for EWMA estimation in these methods, which weighs
the most recent and past inter-request intervals equally. The
default guard thresholds θr and θw are set at 1.0 for checking
possible partitioning and replication adjustments in our TOPR
method.

B. Comparison of Different Methods

Inter-Server Traffic: Figs. 3 and 4 show the instantaneous
inter-server traffic per unit time produced by different methods
for the synthetic and real social graphs respectively. The first
5 time units are a warm-up period for users to join the social
media. After most users join, as RP does not perform any
optimization at all, it produces the highest inter-server traffic
among the methods tested. Compared to RP, even though
METIS does not conduct replication either, it reduces the
inter-server traffic significantly. We observe from Figs. 3 and
4 that RP+SR and METIS+SR considerably outperform RP
and METIS respectively since the selective replication scheme
creates slave replicas when the read-incurred traffic saved
is more than the write-incurred traffic introduced. However,
these two methods separately carry out selective replication
from partitioning, whereas the partitioning and replication are
optimized in an integrated manner by our proposed TOPR
method. As a result, TOPR performs the best among all
the methods tested except for BLP. For the synthetic graph
(Fig. 3), on average, TOPR reduces the inter-server traffic by
55.2% (2 servers) and 74.7% (4 servers) over RP+SR, and
by 14.5% (2 servers) and 38.7% (4 servers) over METIS+SR.
For real social graphs (Fig. 4), on average, TOPR reduces the
inter-server traffic by 89.5% (Twitter) and 78.2% (LiveJournal)
over RP+SR and by 86.0% (Twitter) and 28.1% (LiveJournal)
over METIS+SR. These results demonstrate the effectiveness
of joint partitioning and replication optimization. The SPAR
method, which conducts replication with perfect social locality
with the structure of the social graph considered in the parti-
tioning, also performs far worse than TOPR. This indicates that
aggressively maximizing the social locality of data placement
is not very effective for reducing the inter-server traffic. Fig. 3
also shows that the inter-server traffic produced by our TOPR
method is only slightly higher than the minimum achievable
by BLP. This implies that the TOPR method performs quite
close to the optimal solution. Since the offline BLP method is
computationally feasible for small and static graphs only, it is
not included in the rest of this paper where we focus on the
real Twitter and LiveJournal social graphs.
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(b) Four servers

Fig. 3. Inter-server traffic for a Barabási-Albert
random graph.
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(a) Twitter
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(b) LiveJournal

Fig. 4. Inter-server traffic for Twitter and
LiveJournal.
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Fig. 5. Number of slave replicas for Twitter
and LiveJournal.

TABLE III
AMORTIZED NUMBER OF REPLICA MOVEMENTS PER USER OPERATION.

Dataset RP+SR METIS+SR TOPR
Twitter 0.0349 0.0254 0.0064

LiveJournal 0.0395 0.0216 0.0187

Overheads for Dynamic Adjustment: It would produce
overheads on the inter-server traffic for the methods that
dynamically adjust the replication when master/slave replicas
are moved according to real-time data access patterns. We
explore the overheads for dynamic adjustment for the RP+SR,
METIS+SR and TOPR methods. Table III gives a comparison
of the amortized number of replica movements per read/write
operation. We can see that the overheads are minor compared
to the traffic generated for handling user-initiated read/write
operations. In particular, the traffic overheads introduced by
our proposed TOPR method are much lower than those by
RP+SR and METIS+SR. Thus, optimizing partitioning and
replication in an integrated manner can also help to reduce
the traffic overheads for adjusting the replication.

Number of Slave Replicas: Fig. 5 shows the total num-
ber of slave replicas created for the methods that conduct
replication. We observe that SPAR creates the highest number
of slave replicas since it maintains perfect social locality of
data storage, whereas TOPR creates much fewer slave replicas
than all the other methods. This implies that besides inter-
server traffic, the storage cost of replication is also significantly
decreased by TOPR.

In summary, TOPR can substantially reduce the inter-server
traffic and the storage cost of replication compared to the other

methods.

C. Sensitivity of TOPR to Algorithm Parameters

EWMA Parameter α: Fig. 6 shows the impact of the
EWMA parameter α used for estimating the read and write
rates. The estimates of read and write rates are used by the
selective replication scheme to adjust the replication. Thus,
we only explore the effect on the RP+SR, METIS+SR and
TOPR methods. The value of α is varied from 0.2 to 0.8
in the EWMA function. It can be seen from Fig. 6 that the
performance variation of each method does not exceed 20%
and their relative performance keeps similar over different α
values. These observations indicate that the methods perform-
ing selective replication are not very sensitive to α.

Thresholds θr and θw: Fig. 7 shows the proportions of
the checked read and write operations in TOPR when the
guard thresholds θr and θw are varied from 1.0 to 3.0.
Recall that with the default thresholds θr = θw = 1.0,
possible partitioning and replication adjustments are checked
at every read and write operation. As shown in Fig. 7, the
number of checks can be reduced significantly even for small
thresholds. For example, the number of checks reduced by
setting θr = θw = 1.5 is more than 50% compared to setting
θr = θw = 1.0. The number of checks can be cut over 85%
by even larger thresholds of θr = θw = 3.0. Thus, we can
dramatically reduce the computational overheads of TOPR by
making use of the guard thresholds. Meanwhile, as shown in
Fig. 8, the inter-server traffic of TOPR is not affected much
by different thresholds θr and θw. Larger thresholds just bring
very little extra inter-server traffic to TOPR.
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Fig. 6. Impact of EWMA estimation.
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Fig. 7. Workload of checking in TOPR.
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Fig. 8. Impact of guard threshold on TOPR.

TABLE IV
INTER-SERVER TRAFFIC NORMALIZED BY TOPR ON TWITTER.

ψw RP RP+SR SPAR METIS METIS+SR TOPR
0.01 478.87 10.29 1.97 415.74 7.02 1.00
0.1 77.11 11.39 3.17 66.95 7.68 1.00
1.0 20.40 9.54 8.40 17.71 7.14 1.00

10.0 5.76 5.00 23.71 5.00 4.24 1.00
100.0 3.32 3.27 136.71 2.88 2.84 1.00

TABLE V
INTER-SERVER TRAFFIC NORMALIZED BY TOPR ON LIVEJOURNAL.

ψw RP RP+SR SPAR METIS METIS+SR TOPR
0.01 244.09 4.86 1.52 75.50 1.51 1.00
0.1 32.70 4.76 2.03 10.11 1.46 1.00
1.0 8.44 4.58 5.25 2.61 1.39 1.00

10.0 3.78 3.70 23.54 1.17 1.06 1.00
100.0 3.17 3.16 197.52 1.18 1.06 1.00

D. Impact of Write-to-Read Traffic Ratio

Tables IV and V report the average inter-server traffic per
time unit by different methods when the data size ψw of a
write operation varies from 0.01 to 100. The traffic value of
each method is normalized by that of TOPR. Recall that we
fix the data size ψr of a read operation to 1. When ψw = 0.01,
it is close to a read-only scenario where the read operations
are much more data-intensive than the write operations. In this
case, nearly perfect social locality in data storage is attained
by the selective replication scheme. As a result, RP+SR,
METIS+SR and TOPR preserve nearly perfect social locality,
and their inter-server traffic is dominated by the write-incurred
traffic just like SPAR. TOPR still substantially outperforms
SPAR because SPAR partitioning does not differentiate the

users by their write rates. On the other hand, compared to the
above methods, the methods without replication such as RP
and METIS, produce much higher inter-server traffic by up to
two orders of magnitude. When ψw increases, the performance
gap between RP+SR (METIS+SR) and RP (METIS) demotes
since selective replication creates less slave replicas. When
ψw = 100, it is close to an archiving scenario where the
write operations are much more data-intensive than the read
operations. In this case, there is little incentive to create slave
replicas by selective replication. As a result, the inter-server
traffic of RP+SR and METIS+SR is dominated by the read-
incurred traffic since they degenerate to RP and METIS respec-
tively. Due to partitioning optimization, METIS+SR performs
closer to our TOPR method than RP+SR. This scenario is
adverse to SPAR because the large number of slave replicas
created to guarantee perfect social locality would produce a
huge amount of inter-server traffic as much as two orders of
magnitude higher than the other methods. In summary, Tables
IV and V show that our proposed TOPR method consistently
outperforms all the other methods across different write-to-
read intensities. This demonstrates the robustness of TOPR.

E. Dynamic Server Addition

So far, we have assumed a fixed and pre-determined number
of servers in the simulations. Finally, we study the impact of
dynamic server addition. In the sequence of read and write
operations described in Section V-A, almost all the users are
created in the very beginning (less than 5 time units while
the total time duration of the sequence is 50 time units). To
evaluate the effect of dynamic server addition, we assume
that the users join the social media at a constant rate in
the first 40 time units. To simulate this scenario, we discard
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Fig. 9. Impact of dynamic server addition on Twitter.

some operations from the sequence of operations generated.
Specifically, if there are n users in the social graph, we let
user i (1 ≤ i ≤ n) join the social media at time i · 40

n by
removing all the operations involving user i before time i · 40n
from the operation sequence. In our experiments, we monitor
the minimum number of users hosted by a single server among
all the existing servers. Denote this minimum number by m. A
new server is added when m reaches a fraction θµ (θµ ≤ 1.0)
of the server capacity. We refer to θµ as the upgrade threshold.
For example, when θµ is set to 1.0, a new server is added when
all the existing servers are fully occupied; when θµ is set to
0.6, a new server is added when all the existing servers are at
least 60% occupied.

Figs. 9 and 10 show the impact of dynamic server addition.
In these experiments, since the topologies of the social graphs
are constantly changing as new users are gradually added, it is
difficult for METIS to produce stable partitions. Thus, we only
compare the methods that can adapt to the dynamics, including
RP, RP+SR, SPAR and TOPR. As can be seen, the inter-server
traffic produced by these methods grows almost linearly in the
first 40 time units. This is because the total write and read rates
of all users are roughly proportional to the number of users.
When the rates become quite stable after 40 time units, all
the methods produce relatively stable inter-server traffic. RP
and RP+SR always produce high levels of inter-server traffic
due to the random allocations of master replicas. When the
upgrade threshold θµ is set at 1.0 (Figs. 9(a) and 10(a)), it
is more difficult for SPAR and TOPR to find servers with
spare capacity to receive the master replicas of the proposed
movements. When the upgrade threshold θµ decreases to 0.6
(Figs. 9(b) and 10(b)), both SPAR and TOPR can adjust the
allocations of master replicas more flexibly. Therefore, the
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Fig. 10. Impact of dynamic server addition on LiveJournal.

inter-server traffic produced by SPAR and TOPR is reduced
compared to the case of θµ = 1.0. Even with significant
reduction, the inter-server traffic produced by SPAR is still
11 and 6 times higher than that by TOPR for Twitter and
LiveJournal respectively. These results show that TOPR can
gracefully handle server addition and generate less inter-server
traffic than the other methods when servers are dynamically
added with the increasing number of users.

VI. CONCLUSION

Distributed data storage systems are the key infrastruc-
tures for scaling social media. The amount of inter-server
communication is an important scalability indicator for these
systems. In this paper, we have formally defined an optimal
data partitioning and replication problem for minimizing the
inter-server traffic among a cluster of social media servers
and proposed a method called TOPR to address the prob-
lem. TOPR carries out social-aware partitioning and adaptive
replication of user data in an integrated manner. The data of
strongly connected users cluster together in the same server
and the data is replicated only when it can save the inter-server
communication. Lightweight algorithms are developed for
adjusting partitioning and replication on the fly based on real-
time data read and write rates. Experimental evaluations not
only demonstrate the effectiveness and robustness of TOPR,
but also show that TOPR performs close to the offline optimum
by a binary linear program.
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APPENDIX

Our model can also handle the cross-user write operation in
which a user writes on a neighbor’ data. To model the read-
incurred traffic, let ru,v denote the rate of user u reading a
neighbor v’s data. To model the write-incurred traffic, let wu
denote the rate of user u writing her own data and let wu,v
denote the rate of user u writing a neighbor v’s data. Let ψr
and ψw denote the average data sizes for the read and write
operations. Then, the total inter-server traffic produced by all
the read and write operations on a cluster of servers S is given
by

Ψ =
∑
u∈V

∑
v∈Nu

(
ψr · ru,v

(
1−

∑
s∈S

Ms,u(Ms,v + Ss,v)
))

+
∑
u∈V

(
ψw · wu ·

∑
s∈S

Ss,u

)
+
∑
u∈V

∑
v∈Nu

(
ψw · wu,v ·

(
1 +

∑
s∈S

Ss,v

))
(28)

−
∑
u∈V

∑
v∈Nu

(
ψw · wu,v ·

∑
s∈S

Ms,u(Ms,v + Ss,v)
)
.

The first and second terms of the above formula are similar
to those in (1). The first term represents the read-incurred
traffic when a user reads her neighbors’ data stored in other
servers. In the first term,

∑
s∈SMs,u (Ms,v + Ss,v) = 1 if

and only if user u’s master server stores user v’s data. Thus,
if
∑
s∈SMs,u (Ms,v + Ss,v) = 0, the read operation of u on

v generates inter-server traffic. The second term represents
the write-incurred traffic when a write update by a user on
her own data is pushed to her slave servers. In the second
term,

∑
s∈S Ss,u is the total number of u’s slave replicas.

When u writes her own data, the inter-server traffic is caused
by the updates pushed to all her slave servers. The third and
fourth terms represent the write-incurred traffic when a user
writes her neighbors’ data. Specifically, when a user u writes
her neighbor v’s data, the third term describes the inter-server
traffic for pushing the write update from u’s master server to
v’s master server and synchronizing v’s data across v’s slave
servers. However, if u and v have the same master server, the
first push is not needed. Moreover, if u’s master server stores
a slave replica of v, we do not need a redundant push from v’s
master replica back to this slave replica for synchronization.
Therefore, in the fourth term, if user u’s master server stores
user v’s data, we take away one unit of inter-server traffic.
Note that we can rewrite the third and fourth terms as∑
u∈V

∑
v∈Iu

(
ψw · wv,u ·

∑
s∈S

Ss,u

)
+
∑
u∈V

∑
v∈Nu

(
ψw · wu,v

(
1−

∑
s∈S

Ms,u(Ms,v + Ss,v)
))

=
∑
u∈V

( ∑
v∈Iu

(
ψw · wv,u

)
·
∑
s∈S

Ss,u

)

+
∑
u∈V

∑
v∈Nu

(
ψw · wu,v

(
1−

∑
s∈S

Ms,u(Ms,v + Ss,v)
))

where Iu = {v : v ∈ V, (v, u) ∈ E} denotes the set of u’s
inverse neighbors. Now, the third and fourth terms have the
same formats as the second and first terms respectively. Thus,
we can rewrite the total inter-server traffic as∑
u∈V

∑
v∈Nu

((
ψrru,v + ψwwu,v

)(
1−

∑
s∈S

Ms,u(Ms,v + Ss,v)
))

+
∑
u∈V

((
ψw ·

(
wu +

∑
v∈Iu

wv,u
))
·
∑
s∈S

Ss,u

)
.

Comparing with (1), it can be seen that considering the cross-
user write operations just introduces slight changes to the coef-
ficients of the two terms in the inter-server traffic. The format
of the inter-server traffic expression remains unchanged. Thus,
the algorithms proposed in this paper can be easily extended
to handle the cross-user write operations.
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M. Láeon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” in Proc.
CIDR, 2011, pp. 223–234.

[5] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[6] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characterizing
user behavior in online social networks,” in Proc. ACM IMC, 2009, pp.
49–62.

[7] J. Bian, Y. Yang, H. Zhang, and T. S. Chua, “Multimedia summarization
for social events in microblog stream,” IEEE Transactions on Multime-
dia, vol. 17, no. 2, pp. 216–228, 2015.

[8] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Trans. Comput. Syst., vol. 26,
no. 2, pp. 1–26, 2008.

[10] H. Chen, H. Jin, N. Jin, and T. Gu, “Minimizing inter-server communi-
cations by exploiting self-similarity in online social networks,” in Proc.
IEEE ICNP, 2012.

[11] I. I. CPLEX, “V12. 1: Users manual for cplex,” 2009. [Online]. Avail-
able: http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 205–220, 2007.

[13] T. Duong-Ba, T. Nguyen, B. Bose, and D. A. Tran, “Distributed client-
server assignment for online social network applications,” IEEE Trans.
Emerging Topics in Computing, vol. 2, no. 4, pp. 422–435, 2014.

[14] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in Proc. ACM SIGCOMM, 1999, pp.
251–262.

[15] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2015.
[Online]. Available: http://www.gurobi.com

[16] I. Hoque and I. Gupta, “Disk layout techniques for online social network
data,” IEEE Internet Computing, vol. 16, no. 3, pp. 24–36, 2012.

[17] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, and B. Y. Zhao,
“Understanding latent interactions in online social networks,” in Proc.
ACM IMC, 2010, pp. 369–382.

http://www.informationweek.com/software/operating-systems/twitter-drops-mysql-for-cassandra-/d/d-id/1087210
http://www.informationweek.com/software/operating-systems/twitter-drops-mysql-for-cassandra-/d/d-id/1087210
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.gurobi.com


1520-9210 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2017.2760627, IEEE
Transactions on Multimedia

15

[18] L. Jiao, J. Li, W. Du, and X. Fu, “Multi-objective data placement for
multi-cloud socially aware services,” in Proc. IEEE INFOCOM, 2014,
pp. 28–36.

[19] L. Jiao, J. Li, and X. Fu, “Optimizing data center traffic of online social
networks,” in Proc. IEEE LANMAN, 2013.

[20] L. Jiao, J. Li, T. Xu, and X. Fu, “Optimizing cost for online social
networks on geo-distributed clouds,” IEEE/ACM Trans. on Networking,
vol. 24, no. 1, pp. 99–112, 2016.

[21] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, 1998.

[22] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
2010.

[23] C. Lei, D. Liu, and W. Li, “Social diffusion analysis with common-
interest model for image annotation,” IEEE Transactions on Multimedia,
vol. 18, no. 4, pp. 687–701, 2016.

[24] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[25] G. Liu, H. Shen, and H. Chandler, “Selective data replication for online
social networks with distributed datacenters,” in Proc. IEEE ICNP, 2013.

[26] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proc.
ACM IMC, 2007, pp. 29–42.

[27] M. Mondal, B. Viswanath, A. Clement, P. Druschel, K. P. Gummadi,
A. Mislove, and A. Post, “Defending against large-scale crawls in online
social networks,” in Proc. ACM CoNEXT, 2012, pp. 325–336.

[28] M. A. U. Nasir, F. Rahimian, and S. Girdzijauskas, “Gossip-based parti-
tioning and replication for online social networks,” in Proc. IEEE/ACM
ASONAM, 2014, pp. 33–42.

[29] M. E. Newman, “Modularity and community structure in networks,”
Proc. Nat. Acad. Sci. (PNAS), vol. 103, no. 23, pp. 8577–8582, 2006.

[30] Nielsen, “State of the media: The social media report 2012,” Dec. 2012.
[Online]. Available: http://www.nielsen.com/us/en/insights/reports/2012/
state-of-the-media-the-social-media-report-2012.html

[31] H. Nishida and T. Nguyen, “Optimal client-server assignment for inter-
net distributed systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 3, pp. 565–575, 2013.

[32] J. Nishimura and J. Ugander, “Restreaming graph partitioning: Simple
versatile algorithms for advanced balancing,” in Proc. ACM KDD, 2013,
pp. 1106–1114.

[33] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: Scaling online social
networks,” in Proc. ACM SIGCOMM, 2010, pp. 375–386.

[34] J. M. Pujol, G. Siganos, V. Erramilli, and P. Rodriguez, “Scaling online
social networks without pains,” in Proc. NETDB, 2009.

[35] S. W. Roberts, “Control chart tests based on geometric moving aver-
ages,” Technometrics, vol. 1, no. 3, pp. 239–250, 1959.

[36] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding online social network usage from a network perspective,”
in Proc. ACM IMC, 2009, pp. 35–48.

[37] Y.-C. Song, Y.-D. Zhang, J. Cao, T. Xia, W. Liu, and J.-T. Li, “Web
video geolocation by geotagged social resources,” IEEE Transactions
on Multimedia, vol. 14, no. 2, pp. 456–470, 2012.

[38] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in Proc. ACM SOSP, 2011, pp. 385–400.

[39] C. Spearman, “The proof and measurement of association between two
things,” The American journal of Psychology, vol. 15, no. 1, pp. 72–101,
1904.

[40] I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in Proc. ACM KDD, 2012, pp. 1222–1230.

[41] Statista, “Hours of video uploaded to youtube every minute as of july
2015,” 2015. [Online]. Available: https://www.statista.com/statistics/
259477/hours-of-video-uploaded-to-youtube-every-minute/

[42] J. Tang, X. Tang, and J. Yuan, “Optimizing inter-server communication
for online social networks,” in Proc. IEEE ICDCS, 2015, pp. 215–224.

[43] D. A. Tran, Data Storage for Social Networks: A Socially Aware
Approach, ser. SpringerBrief in Optimization Series. Springer, 2012.

[44] D. A. Tran, K. Nguyen, and C. Pham, “S-clone: Socially-aware data
replication for social networks,” Comput. Netw., vol. 56, no. 7, pp. 2001–
2013, 2012.

[45] N. Tran, M. K. Aguilera, and M. Balakrishnan, “Online migration for
geo-distributed storage systems,” in Proc. USENIX ATC, 2011.

[46] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “FEN-
NEL: Streaming graph partitioning for massive scale graphs,” in Proc.
ACM WSDM, 2014, pp. 333–342.

[47] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “User
interactions in social networks and their implications,” in Proc. ACM
EuroSys, 2009, pp. 205–218.

[48] Y. Wu, N. Cao, D. Gotz, Y.-P. Tan, and D. A. Keim, “A survey on
visual analytics of social media data,” IEEE Transactions on Multimedia,
vol. 18, no. 11, pp. 2135–2148, 2016.

[49] Z. Xu, Y. Zhang, and L. Cao, “Social image analysis from a non-iid
perspective,” IEEE Transactions on Multimedia, vol. 16, no. 7, pp. 1986–
1998, 2014.

[50] C. Yen, “Cassandra comes home: Facebook’s parse
chooses cassandra for mobile app development
platform,” Planet Cassandra, 2013. [Online]. Available:
http://www.planetcassandra.org/blog/interview/cassandra-comes-home-
facebooks-parse-chooses-cassandra-for-mobile-app-development-
platform/

Jing Tang (S’16) received the B.Eng. degree in
computer science and technology from University
of Science and Technology of China (USTC), Hefei,
China, in 2012. He is currently pursuing the Ph.D.
degree at Nanyang Technological University (NTU),
Singapore. His research interests include online so-
cial networks, viral marketing, distributed systems,
big data and network economics. He received the
Best Paper Award from IEEE ICNP 2014.

Xueyan Tang (M’04–SM’09) received the B.Eng.
degree in computer science and engineering from
Shanghai Jiao Tong University in 1998, and the
Ph.D. degree in computer science from the Hong
Kong University of Science and Technology in
2003. He is currently an Associate Professor with
the School of Computer Science and Engineering,
Nanyang Technological University, Singapore. His
research interests include distributed systems, cloud
computing, mobile and pervasive computing, and
wireless sensor networks. He has served as an As-

sociate Editor of IEEE Transactions on Parallel and Distributed Systems, and
a Program Co-Chair of IEEE ICPADS 2012 and CloudCom 2014.

Junsong Yuan (M’08–SM’14) received his Ph.D.
from Northwestern University and M.Eng. from Na-
tional University of Singapore. Before that, he grad-
uated from the Special Class for the Gifted Young
of Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2002.

He is currently an Associate Professor at School
of Electrical and Electronics Engineering (EEE),
Nanyang Technological University (NTU). His re-
search interests include computer vision, video ana-
lytics, gesture and action analysis, large-scale visual

search and mining. He received best paper award from Intl. Conf. on
Advanced Robotics (ICAR’17), 2016 Best Paper Award from IEEE Trans.
on Multimedia, Doctoral Spotlight Award from IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR’09), Nanyang Assistant Professorship
from NTU, and Outstanding EECS Ph.D. Thesis award from Northwestern
University.

He is currently an Associate Editor of IEEE Trans. on Image Processing
(T-IP), IEEE Trans. on Circuits and Systems for Video Technology (T-
CSVT), Journal of Visual Communications and Image Representations (JVCI),
and The Visual Computer journal (TVC), and served as Guest Editor of
International Journal of Computer Vision (IJCV). He is Program Co-chair
of ICME’18 and VCIP’15, and Area Chair of CVPR’17, ICIP’17, ICPR’16,
ICME’15’14, ACCV’14, and WACV’14.

http://snap.stanford.edu/data
http://www.nielsen.com/us/en/insights/reports/2012/state-of-the-media-the-social-media-report-2012.html
http://www.nielsen.com/us/en/insights/reports/2012/state-of-the-media-the-social-media-report-2012.html
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
http://www.planetcassandra.org/blog/interview/cassandra-comes-home-facebooks-parse-chooses-cassandra-for-mobile-app-development-platform/
http://www.planetcassandra.org/blog/interview/cassandra-comes-home-facebooks-parse-chooses-cassandra-for-mobile-app-development-platform/
http://www.planetcassandra.org/blog/interview/cassandra-comes-home-facebooks-parse-chooses-cassandra-for-mobile-app-development-platform/

