
Busy-Time Scheduling on Heterogeneous Machines
Runtian Ren

School of Computer Science and Engineering
Nanyang Technological University, Singapore 639798

renr0002@ntu.edu.sg

Xueyan Tang
School of Computer Science and Engineering

Nanyang Technological University, Singapore 639798
asxytang@ntu.edu.sg

Abstract—We study a busy-time scheduling problem on het-
erogeneous machines (BSHM) which is motivated by server
acquisition and task dispatching in cloud computing. The input of
BSHM is a set of interval jobs, each specified by a size, an arrival
time and a departure time. When a job arrives, it must be placed
onto a machine immediately. The execution of a job cannot be
interrupted until it departs. At any time, the total size of the jobs
running on a machine cannot exceed the machine’s capacity. m
different types of machines are available and abundant machines
are provided for each type. A type-i machine has a capacity gi
and is charged at a cost rate ri when busy (running jobs). The
target of BSHM is to schedule the given set of jobs onto machines
with the minimum accumulated cost. Suppose the machine types
are sorted by their capacities so that g1 ≤ g2 ≤ · · · ≤ gm. We first
consider two typical cases of BSHM. In BSHM-DEC, ri

gi
≥ ri+1

gi+1

holds for each i. In BSHM-INC, ri
gi

≤ ri+1

gi+1
holds for each i.

For each case, we propose a O(1)-approximation algorithm in
the offline setting and a O(µ)-competitive algorithm in the non-
clairvoyant online setting. Finally, we discuss how the scheduling
strategies developed for these two cases can be combined to deal
with the general BSHM problem.

I. INTRODUCTION

We study the following busy-time scheduling problem on
heterogeneous machines (BSHM). Each job is specified by a
size, an arrival time and a departure time. Once a job arrives, it
must be placed onto a machine and start running immediately.
The execution of a job cannot be interrupted until it departs.
At any time, the total size of the jobs running on a machine
cannot exceed the machine’s capacity. Assume that m different
types of machines are available and abundant machines are
provided for each type. A type-i machine has a capacity gi
and is charged at a cost rate ri when being busy (running at
least one job). The target of BSHM is to schedule all the jobs
onto machines with the minimum accumulated cost.

Our BSHM problem is motivated by the server acquisition
and job dispatching issues in cloud computing. In the past
decade, renting computing resources on demand from the
cloud has become a popular way for users to run their
jobs. Due to the low maintenance overhead of cloud services
and the widely-accepted “pay-as-you-go” billing mechanism,
numerous companies have moved their business onto the
clouds. The major providers of cloud computing services
including Amazon EC2, Google Cloud and Microsoft Azure
all prepare different types of predefined virtual machines for
the customers to rent [1]–[3]. A natural issue faced by cloud
users is to decide on the type and number of machines to rent
in order to minimize the total renting cost for processing jobs.

In this paper, we focus on two typical and common cases
of BSHM. Let the machine types be sorted in an increasing

order of their capacities, i.e., g1 ≤ g2 ≤ · · · ≤ gm. In the
first case called BSHM-DEC, we assume ri

gi
≥ ri+1

gi+1
for each

i, which implies that the amortized cost rate per resource unit
decreases with the machine capacity (following for example
the convention that bulk purchase can normally receive a
discount). In the second case called BSHM-INC, we assume
ri
gi
≤ ri+1

gi+1
for each i, which indicates that the amortized cost

rate per resource unit increases with the machine capacity (due
to reasons such as new architecture design and support for
higher capacity). We also discuss how the scheduling strategies
developed for these two cases can be integrated to address
the general BSHM problem with an arbitrary sequence of
amortized cost rates over the machine types.

A. Related Work

The interval scheduling problem with bounded parallelism
can be seen as a special case of BSHM and has been studied
extensively over the past decade. In this problem, all the
interval jobs are of uniform size and only one type of machine
is available for processing jobs. At any time, each machine
can run at most g jobs concurrently. The objective is to
minimize the total machine usage time for processing a set
of jobs. Winker and Zhang [16] first defined this problem
and proved its NP-hardness through a reduction from the
Circular Arc Coloring problem. Alicherry and Bhatia [4]
developed a 2-approximation algorithm in the offline setting
through a network flow formulation. Kumar and Rudra [10]
proposed another 2-approximation algorithm based on the 2-
allocation technique introduced by Gergov [8]. Flammini et
al. [7] introduced a greedy First-Fit algorithm which gives
a 4-approximation. Recently, Chang et al. [6] proposed a 3-
approximation algorithm called GreedyTracking. In addition,
several special cases (the proper case, the clique case, etc.)
of the problem were investigated by Flammini et al. [7] and
Mertzios et al. [12]. Shalom et al. [15] established a tight
bound g on the competitiveness of this problem in the online
setting and also studied several special cases where better
competitiveness can be achieved.

BSHM is also a generalization of the MinUsageTime Dy-
namic Bin Packing (DBP) problem, which generalizes the
interval scheduling problem with bounded parallelism by
allowing each interval job to have an arbitrary size. For the
offline version of the MinUsageTime DBP problem, Khan-
dekar et al. [9] first proposed a 5-approximation algorithm.
In our earlier work [13], we introduced a 4-approximation
Dual Coloring algorithm by extending the algorithm of Kumar
and Rudra [10]. There are two settings for the online version

of the problem: a non-clairvoyant setting and a clairvoyant
setting. In the non-clairvoyant setting, the departure time of
a job is not known at its arrival and thus cannot be used
for the scheduling purpose. Li et al. [11] established a lower
bound of µ on the competitiveness in this setting, where µ
represents the max/min job duration ratio among all the jobs to
schedule. In our earlier work [14], we showed that the First Fit
packing algorithm achieves a competitive ratio of µ+3 which
closely matches the lower bound. In the clairvoyant setting,
the departure time of a job is revealed at its arrival and thus
can be used for the scheduling purpose. Azar and Vainstein [5]
established a tight bound Θ(

√
logµ) on the competitiveness

in this setting. However, none of the above work has studied
busy-time scheduling on heterogeneous machines.

B. Contributions

For BSHM-DEC, we first propose a O(1)-approximation
algorithm in the offline setting which places jobs onto ma-
chines in an iterative manner. Next, based on the First-Fit
rule, we propose a O(µ)-competitive online algorithm in the
non-clairvoyant setting, where µ is the max/min job duration
ratio. For BSHM-INC, we introduce a partitioning strategy,
which can be used to design a O(1)-approximation algorithm
and a O(µ)-competitive algorithm in the offline and non-
clairvoyant online settings respectively. Finally, we discuss
how to deal with the general case of BSHM by combining
these algorithms.

II. PRELIMINARIES

We first introduce some key notations. Given any time inter-
val I , we use I− and I+ to denote the left and right endpoints
of I respectively. For technical reasons, we shall view intervals
as half-open, i.e., I = [I−, I+). Let len(I) = I+−I− denote
the length of interval I . For notational convenience, given a
set I of intervals that are pairwise disjoint, we shall denote
their total length by len(I)=

∑
I∈I len(I).

For each job J , we use s(J) to denote J’s size and use I(J)
to denote J’s active interval which is the time interval from its
arrival to departure. Then, J’s arrival and departure times can
be represented by I(J)− and I(J)+ respectively. We say that
J is active during I(J). The length len(I(J)) is known as J’s
duration. Given a set of jobs J , let s(J, t) denote the total size
of the jobs active at time t, i.e., s(J, t) =

∑
J∈J :t∈I(J) s(J).

m different types of machines are available for processing
jobs and abundant machines are provided for each machine
type. A type-i machine has a capacity gi and is charged at
a cost rate ri when it is busy (running at least one job).
For notational convenience, we define g0 = 0. Without loss
of generality, suppose the machine types are sorted in an
increasing order of their capacities, i.e., g1 < g2 < · · · < gm.
Consequently, we must have r1 < r2 < · · · < rm.1 For
simplicity, we further assume that each ri is a power of 2.
This can be achieved by selecting a subset of machine types for

1Otherwise, if gi ≤ gi+1 and ri ≥ ri+1, then no type-i machine is
needed for processing jobs, since a type-i machine can always be replaced
by a type-(i+ 1) machine with no extra cost incurred.

processing jobs as follows. First, we normalize the cost rates
by setting ri← ri

r1
for each machine type i. Consequently, r1

is normalized to 1. Next, each ri is rounded up to the nearest
number which is a power of 2, i.e., if 2ki−1<ri≤2ki , we set
ri← 2ki . Then, if two successive machine types i and i+1
satisfy ri =ri+1, we delete the machine type i and never use
any type-i machine for processing jobs. It is easy to infer that
if a type-i machine is ever used in an optimal schedule, we can
always replace it by a machine of a higher-indexed type with a
cost rate no larger than twice that of a type-i machine. In this
way, the assumption that each ri is a power of 2 only causes
us to lose at most a factor of 2 in deriving the approximation
(competitive) ratio for any offline (online) algorithm.

Next, we establish a lower bounding scheme for any BSHM
instance, which shall be used to analyze the algorithms for
BSHM. The lower bounding scheme relaxes the require-
ment that each job must be processed by a single machine
throughout its active interval. Specifically, we focus on seeking
a minimum-cost machine configuration for each time point
t∈
⋃

J∈J I(J). Let J (t) = {J ∈J : t∈ I(J)} denote all the
jobs active at time t and J≥i(t) = {J ∈ J (t): s(J) > gi−1}
denote those that must be placed onto machines of type at
least i. Let w(i, t) denote the number of type-i machines
used at time t. In any feasible BSHM solution for schedul-
ing jobs J ,

∑m
j=i w(j, t) · gj ≥ s(J≥i(t), t) must hold for

each i ∈ {1, . . . ,m}. Thus, we aim to construct a machine
configuration at time t satisfying these constraints. The target
is to minimize the total cost rate

∑m
i=1 w(i, t) · ri of all the

machines used. We refer to the machine configuration with
minimum cost rate as the optimal machine configuration. By
using w∗(i, t) (i∈{1, . . . ,m}) to denote the optimal machine
configuration at time t, we can easily establish that:

OPTBSHM(J) ≥
∫
⋃

J∈J I(J)

(m∑
i=1

w∗(i, t) · ri
)

dt, (1)

where OPTBSHM(J) is the optimal (minimum) cost for an
BSHM instance J .

III. BSHM-DEC

In this section, we study a particular case BSHM-DEC in
which ri

gi
≥ ri+1

gi+1
holds for each i∈{1, . . . ,m−1}. In this case,

it is generally desirable to assign all the jobs to the highest-
indexed machine type m since it has the lowest amortized cost
rate. However, if the total size of the active jobs is far smaller
than the capacity of a type-m machine, then a lower-indexed
machine type may be more cost-effective to use. Thus, job
scheduling should strike a balance between the sizes of active
jobs and the machine types to use. This is further challenged
by the constraint that each job has to run on a single machine
throughout its active interval. If a job is assigned to a high-
indexed machine type at its arrival, it cannot be reassigned to
a low-indexed machine type later even if the total size of the
active jobs drops.

demand

time
t

the total size of the
jobs active at time t

J
I(J)

s(J)

g
1 / 2

g
1

strip 1

strip 2

Fig. 1. Job placement in the demand chart

A. Offline Setting

In the offline setting, the information of all the jobs is known
before the scheduling process. Inspired by the idea of the
Dual Coloring algorithm designed for the MinUsageTime DBP
problem [13], we propose a O(1)-approximation algorithm to
place jobs onto machines in an iterative manner.

Our approximation algorithm works as follows. In the first
iteration, we select all the jobs J̈1 = {J ∈ J : s(J) ≤ g1}
which can be placed onto type-1 machines. A demand chart is
constructed for these jobs, such that the height of the demand
chart at any time t is the total size of the jobs active at this
moment, i.e., s(J̈1, t) (see Figure 1 for an illustration). Then,
we apply the placement phase of the Dual Coloring algorithm
to place all the jobs inside the demand chart with each job
J represented by a rectangle spanning its active interval I(J)
in the time dimension and having a height of its size s(J)
in the demand dimension (please refer to [13] for details of
the placement algorithm). The placement algorithm ensures
that no three jobs overlap together in their placement. Next,
the demand chart is partitioned into strips, each of height g1

2 .
For each of the bottom 2 · (r2

r1
− 1) strips, we assign all the

jobs placed fully inside it to a type-1 machine. Since each job
placed fully inside a strip must have a size no larger than g1

2
and no three jobs overlap together, the total size of the jobs
fully inside a strip must be no larger than g1 at any time, which
makes the job assignment feasible. For the jobs crossing every
pair of adjacent strips in the bottom 2 · (r2

r1
−1) strips, we can

use at most two type-1 machines for processing them. This
is because each job has a size no more than g1 and at most
two jobs can overlap together at any point on the boundary
between the two strips. As a result, at most 2 · (r2

r1
−1) + 2 · 2 ·

(r2
r1
−1) = 6 · (r2

r1
−1) type-1 machines are used for processing

jobs at any time in the first iteration. Let J̌1 denote all the jobs
assigned to these machines. If no jobs are left to be scheduled
(i.e., J̌1 = J̈1 =J), job scheduling completes. Otherwise, we
proceed with the second iteration to schedule jobs onto type-2
machines.

In general, in each iteration i∈{1, . . . ,m−1}, we consider
all the jobs J̈i = {J ∈ J : s(J) ≤ gi} −

⋃i−1
k=1 J̌k that

have sizes no larger than gi and are not scheduled by any
of the previous i− 1 iterations, where J̌k denotes all the jobs
scheduled in iteration k. A demand chart is constructed for
J̈i and all these jobs are placed inside the demand chart by

applying the placement algorithm. Then, the demand chart
is partitioned into strips of height gi

2 each. Similar to the
first iteration, we schedule all the jobs intersecting with the
bottom 2 · (ri+1

ri
−1) strips onto at most 6 · (ri+1

ri
−1) type-i

machines. Let J̌i denote all the jobs scheduled in iteration i.
If
⋃i

k=1 J̌k 6= J , we proceed with iteration i+ 1. In the final
iteration m (if needed), we schedule all the remaining jobs
onto type-m machines: after all the jobs J̈m = J −

⋃m−1
k=1 J̌k

are placed inside the demand chart constructed for them, the
demand chart is partitioned into strips of height gm

2 each. For
each strip, we assign all the jobs fully inside it to a type-m
machine. For every two adjacent strips, we use at most two
type-m machines for scheduling all the jobs crossing the strips.
We refer to the above iterative algorithm as DEC-OFFLINE.

Theorem 1: The DEC-OFFLINE algorithm achieves an
approximation ratio of 14 for offline BSHM-DEC.
Proof: By the lower bounding scheme (1), we only need to
show that at any time t, the total cost of the machines used
by DEC-OFFLINE is bounded by 14 ·

∑m
i=1 w

∗(i, t) · ri. To
prove this fact, we define k(t) as the highest-indexed machine
type onto which jobs active at time t are scheduled by DEC-
OFFLINE. In other words, all the jobs active at time t are
scheduled onto machines of types 1, . . . , k(t).

First, we consider the case that at least one machine of type
above k(t) is used in an optimal machine configuration at time
t, i.e., there exists an l ∈ {k(t)+1, . . . ,m} with w∗(l, t) ≥ 1.
Note that by applying DEC-OFFLINE, in each iteration i ∈
{1, . . . , k(t)}, at most 6 · (ri+1

ri
− 1) type-i machines are used

at time t. Consequently, the total cost rate of all the machines
used for processing jobs at time t is bounded by

6 ·
k(t)∑
i=1

(
ri+1

ri
− 1) · ri = 6 ·

k(t)∑
i=1

(ri+1 − ri) < 6 · rk(t)+1,

Since w∗(l, t) ≥ 1, we can thus further bound 6 ·rk(t)+1 by
6·rl≤6·w∗(l, t)·rl<14·

∑m
i=1 w

∗(i, t)·ri.
Now we consider the case that only machines of types

1, . . . , k(t) are possibly used in an optimal machine configura-
tion at time t, i.e., for each l ∈ {k(t)+1, . . . ,m}, w∗(l, t) = 0.
Since r1

g1
≥ r2

g2
≥ · · · ≥ rk(t)

gk(t)
, the cost rate per resource unit

in the optimal machine configuration must be at least rk(t)

gk(t)
.

Thus, to serve all the workloads s(J, t) at time t, we have
m∑
i=1

w∗(i, t) · ri ≥
rk(t)

gk(t)
· s(J, t). (2)

Define x=
⌈
2·s(J̈k(t),t)

gk(t)

⌉
, where s(J̈k(t), t) is the height of the

demand chart at time t in iteration k(t) of DEC-OFFLINE.
That is, s(J̈k(t), t) satisfies the following inequality:

(x− 1) ·
gk(t)

2
< s(J̈k(t), t) ≤ x ·

gk(t)

2
. (3)

Then, the demand chart is divided into x strips at time t. Thus,
the number of type-k(t) machines used at time t by DEC-
OFFLINE is no more than 3x−2, i.e., at most one type-k(t)
machine for processing the jobs fully inside each strip and at

most two type-k(t) machines for processing the jobs crossing
every pair of adjacent strips (there are x − 1 pairs). Besides,
in each iteration i ∈ {1, . . . , k(t) − 1}, at most 6 ·(ri+1

ri
−1)

type-i machines are used at time t for processing jobs. Since

6 ·
k(t)−1∑
i=1

(
ri+1

ri
− 1) · ri < 6 · rk(t), (4)

the total cost rate of all the machines used at time t is no more
than (3x−2+6) ·rk(t) = (3x+4) ·rk(t). In the following, we
prove that (3x+4)·rk(t)≤14·

∑m
i=1 w

∗(i, t)·ri by considering
three different cases.

In the case that x ≥ 3, it follows from (2) and (3) that
m∑
i=1

w∗(i, t) · ri ≥
rk(t)

gk(t)
· s(J , t)

≥
rk(t)

gk(t)
· s(J̈k(t), t)

>
rk(t)

gk(t)
· (x− 1) ·

gk(t)

2

=
x− 1

2
· rk(t).

Thus,

(3x+ 4) · rk(t) = (6 +
14

x− 1
) · x− 1

2
· rk(t)

< (6 +
14

x− 1
) ·
(m∑

i=1

w∗(i, t) · ri
)

≤ 13 ·
m∑
i=1

w∗(i, t) · ri.

In the case that x = 2, we need to further examine the
optimal machine configuration at time t. If w∗(k(t), t) ≥ 1, it
is straightforward that (3x+4)·rk(t) =10·rk(t) ≤ 10·w∗(k(t), t)·
rk(t) < 14 ·

∑m
i=1 w

∗(i, t) ·ri. If w∗(k(t), t) = 0, then in the
optimal machine configuration at time t, only machines of
types 1, . . . , k(t)−1 are possibly used. This suggests that each
job active at time t has a size no more than gk(t)−1. Conse-
quently, by the definition of DEC-OFFLINE, J̈k(t)⊆J̈k(t)−1.
Besides, in iteration k(t)− 1, each job J ∈ J̈k(t) must be
placed completely above the altitude (

rk(t)

rk(t)−1
−1) · gk(t)−1 in

the demand chart. Otherwise, the rectangle representing job J
must overlap with at least one of the first 2·(rk(t)

rk(t)−1
−1) strips

and thus J must have been scheduled in iteration k(t)−1,
which leads to a contradiction. Since all the jobs in J̈k(t) are
placed above the altitude (

rk(t)

rk(t)−1
− 1) · gk(t)−1 and no three

jobs overlap together in their placement, we have

s(J̈k(t), t) ≤ 2 ·
(
s(J̈k(t)−1, t)− (

rk(t)

rk(t)−1
− 1) · gk(t)−1

)
and thus

s(J̈k(t)−1, t) ≥ (
rk(t)

rk(t)−1
− 1) · gk(t)−1 +

1

2
· s(J̈k(t), t)

≥ 1

2
·
rk(t)

rk(t)−1
· gk(t)−1 +

1

2
· s(J̈k(t), t),

where the last inequality is due to rk(t)

rk(t)−1
≥ 2. It follows from

(3) and x = 2 that s(J̈k(t), t) >
gk(t)

2 . Therefore,

s(J̈k(t)−1, t) ≥
1

2
·
rk(t)

rk(t)−1
·gk(t)−1 +

1

2
·
gk(t)

2

≥ 1

2
·
rk(t)

rk(t)−1
·gk(t)−1 +

1

4
·
rk(t)

rk(t)−1
·gk(t)−1

=
3

4
·
rk(t)

rk(t)−1
·gk(t)−1.

On one hand, since only machines of types 1, . . . , k(t)−1
are possibly used in the optimal machine configuration at time
t, we have

m∑
i=1

w∗(i, t) · ri ≥
rk(t)−1

gk(t)−1
· s(J , t)

≥
rk(t)−1

gk(t)−1
· s(J̈k(t)−1, t)

≥
rk(t)−1

gk(t)−1
· 3

4
·
rk(t)

rk(t)−1
· gk(t)−1

=
3

4
· rk(t).

On the other hand, given x = 2, by applying DEC-OFFLINE,
at most 3 type-k(t) machines are used at time t in iteration
k(t): for each of the 2 strips, we assign all the jobs fully inside
the strip onto a type-k(t) machine; for all the jobs crossing the
strips, at most one type-k(t) machine is needed to schedule
them, since each job has a size no more than gk(t)−1 ≤

rk(t)−1

rk(t)
·

gk(t) ≤ 1
2 · gk(t). Further taking the machines of types below

k(t) into account (i.e., (4)), we can thus bound the total cost
rate of all the machines used at time t by 6 · rk(t) + 3 · rk(t) =
9 · rk(t) = 12 · 3

4 · rk(t) ≤ 12 ·
∑m

i=1 w
∗(i, t) · ri < 14 ·∑m

i=1 w
∗(i, t)·ri.

In the case that x = 1, if w∗(k(t), t) ≥ 1, we can easily
have (3x+ 4) · rk(t) = 7 · rk(t) ≤ 7 ·w∗(k(t), t) · rk(t) <
14 ·
∑m

i=1 w
∗(i, t) ·ri. If w∗(k(t), t) = 0, then in the optimal

machine configuration at time t, only machines of types
1, . . . , k(t)−1 are possibly used. Thus, we have

m∑
i=1

w∗(i, t) · ri ≥
rk(t)−1

gk(t)−1
· s(J , t).

By the definition of DEC-OFFLINE, in iteration k(t) − 1,
2 · (rk(t)

rk(t)−1
− 1) strips cannot fully cover the demand chart

created for J̈k(t)−1 at time t. This suggests that

s(J̈k(t)−1, t) > 2 · (
rk(t)

rk(t)−1
− 1) ·

gk(t)−1

2

= (
rk(t)

rk(t)−1
− 1) · gk(t)−1

≥ 1

2
·
rk(t)

rk(t)−1
· gk(t)−1.

Therefore,
m∑
i=1

w∗(i, t) · ri ≥
rk(t)−1

gk(t)−1
· s(J , t)

≥
rk(t)−1

gk(t)−1
· s(J̈k(t)−1, t)

≥
rk(t)−1

gk(t)−1
· 1

2
·
rk(t)

rk(t)−1
· gk(t)−1

=
1

2
· rk(t).

As a result, (3x+4) · rk(t) = 7 · rk(t) ≤ 14 ·
∑m

i=1 w
∗(i, t) · ri.

In summary, we have proved that at any time t, the total cost
rate of all the machines used by DEC-OFFLINE is bounded
by 14 ·

∑m
i=1 w

∗(i, t) · ri. Hence, the theorem is proven. �

B. Non-Clairvoyant Online Setting

In the non-clairvoyant online setting, each job must be
scheduled onto a machine immediately when it arrives, without
any information of the jobs arriving in the future. Besides, the
departure time of a job is not known at its arrival and thus
cannot be used for the scheduling purpose. Based on the First-
Fit rule, we propose a O(µ)-competitive online algorithm,
where µ is the max/min job duration ratio among all the jobs.

Our online algorithm uses two groups of machines: a group
A and a group B. In each group, at most 4·(ri+1

ri
−1) type-i

(i∈{1, . . . ,m−1}) machines are allowed to be used concur-
rently at any time. However, the number of type-m machines
used is not limited. In each group, all the machines of a given
type i∈{1, . . . ,m} are indexed. For group A, each type-i ma-
chine can only be used to accommodate jobs of size no larger
than gi

2 ; for group B, each type-i machine can only be used to
accommodate jobs of size larger than gi

2 . Consequently, each
type-i machine in group B can accommodate at most one job
at any time.

The online algorithm schedules each job J onto a machine
as follows. Note that ri−1

gi−1
≥ ri

gi
and ri

ri−1
≥ 2 indicate gi−1 ≤

gi
2 ≤ gi. In the situation that J has a size s(J)∈(gi

2 , gi] for a
particular machine type i, the algorithm checks whether there
exists an empty type-i machine in group B at time I(J)−. If
so, J is placed onto the lowest-indexed empty type-i machine
in group B. If not, J is placed onto a machine in group A
according to the First-Fit rule. That is, if at least one type-
(i+1) machine in group A can accommodate job J at time
I(J)−, then J is placed onto the lowest-indexed type-(i+1)
machine that can accommodate it. Otherwise, the algorithm
checks whether J can be placed onto a type-(i+2) machine in
group A and so on. In the situation that J has a size s(J)∈
(gi−1,

gi
2] for a particular machine type i, J is directly placed

onto a machine in group A according to the First-Fit rule. We
refer to the above online algorithm as DEC-ONLINE.

Theorem 2: The DEC-ONLINE algorithm is O(µ)-
competitive for non-clairvoyant BSHM-DEC, where µ is the
max/min job duration ratio among all the jobs to schedule.

The main idea to prove Theorem 2 is as follows. Based on
the given set of jobs J and the lower bounding scheme (1),
we determine a set of intervals I ′i,j (for each i∈{1, . . . ,m}
and j ≥ 1) such that

∑m
i=1

∑
j≥1 len(I ′i,j) ≤ 4 · (µ+ 1) ·

OPTBSHM(J). Then, for each job J placed onto a type-i
machine M of index ∈ {4j−3, 4j−2, 4j−1, 4j} (no matter
whether M is in Group A or Group B), we show that I(J) is

fully contained in I ′i,j , which implies that the DEC-ONLINE
algorithm achieves a competitive ratio of 32 · (µ+ 1).

Given any set of jobs J , we first construct a machine
configuration M(t) for each time point t ∈

⋃
J∈J I(J) such

that the total cost rate of the machines in M(t) is bounded
by 4 times that of an optimal machine configuration at time
t, i.e., 4 ·

∑m
i=1 w

∗(i, t) · ri.
To constructM(t) at time t, we define two parameters p1(t)

and p2(t) for this moment. For the first parameter p1(t), we
select the job Jt of the largest size from all the active jobs at
time t, i.e., s(Jt) = maxJ∈J (t) s(J). If Jt has to be placed
onto a machine of type at least i, i.e., s(Jt) ∈ (gi−1, gi], we
define p1(t) = i. For the second parameter p2(t), we check
the total size s(J, t) of all the active jobs at time t. If s(J, t)>
(rm
rm−1

− 1) · gm−1, we define p2(t) = m. Otherwise, we must
have s(J , t) ∈

(
(ri
ri−1
−1)·gi−1, (ri+1

ri
−1)·gi

]
for a particular

machine type i ≤ m − 1. In this case, we define p2(t) =
i. Given the two parameters, if p1(t) > p2(t), we let M(t)
contain ri+1

ri
−1 type-i machines for each i∈{1, . . . , p1(t)−1}

and contain only one machine of type p1(t). Otherwise, if
p1(t)≤ p2(t), we let M(t) contain ri+1

ri
−1 type-i machines

for each i∈{1, . . . , p2(t)−1} and contain
⌈ s(J ,t)
gp2(t)

⌉
machine(s)

of type p2(t).
Lemma 1: The total cost rate of the machines in M(t) is

bounded by 4·
∑m

i=1 w
∗(i, t)·ri.

Proof: For the case p1(t) > p2(t), the total cost rate of the
machines in M(t) is bounded by

p1(t)−1∑
i=1

(
ri+1

ri
−1)·ri+rp1(t) =

p1(t)−1∑
i=1

(ri+1−ri)+rp1(t)<2·rp1(t).

Since the job Jt has to be placed onto a machine of type
at least p1(t), we can infer that

∑m
i=1 w

∗(i, t) · ri ≥ rp1(t).
Consequently, the total cost rate of the machines in M(t) is
bounded by 2·

∑m
i=1 w

∗(i, t)·ri.
For the case p1(t)≤p2(t), the total cost rate of the machines

in M(t) is bounded by

p2(t)−1∑
i=1

(
ri+1

ri
−1)·ri+

⌈s(J, t)
gp2(t)

⌉
·rp2(t)

=

p2(t)−1∑
i=1

(ri+1−ri)+
⌈s(J, t)
gp2(t)

⌉
·rp2(t)

<
(⌈s(J, t)

gp2(t)

⌉
+1
)
·rp2(t).

If
⌈ s(J,t)
gp2(t)

⌉
=1, the total cost rate of the machines in M(t) is

bounded by 2 ·rp2(t). Besides,
⌈ s(J,t)
gp2(t)

⌉
= 1 also implies that

s(J, t)≤gp2(t), i.e., one type-p2(t) machine can accommodate
all the active jobs at time t. On the other hand, by the definition
of p2(t), we have s(J, t) > (

rp2(t)

rp2(t)−1
− 1) · gp2(t)−1. This

suggests that the optimal machine configuration at time t has
a cost rate at least (

rp2(t)

rp2(t)−1
−1) ·rp2(t)−1 = rp2(t)−rp2(t)−1

if no machine of type p2(t) or above is used. Therefore, the
optimal machine configuration at time t satisfies
m∑
i=1

w∗(i, t)·ri > min
{
rp2(t), rp2(t) − rp2(t)−1

}
≥
rp2(t)

2
.

Thus, the total cost rate of the machines in M(t) is bounded
by 4·

∑m
i=1 w

∗(i, t)·ri.
Finally, consider the scenario

⌈ s(J ,t)
gp2(t)

⌉
≥ 2. By the defini-

tion of p2(t), we have s(J , t) ≤ (
rp2(t)+1

rp2(t)
− 1) · gp2(t), which

implies that no machine of type above p2(t) should be used
in the optimal machine configuration at time t. This suggests
m∑
i=1

w∗(i, t) · ri ≥ s(J, t) ·
rp2(t)

gp2(t)
>
(⌈s(J, t)

gp2(t)

⌉
− 1
)
· rp2(t)

and thus
(⌈ s(J,t)

gp2(t)

⌉
+ 1
)
·rp2(t) ≤ 3 ·

(⌈ s(J ,t)
gp2(t)

⌉
−1
)
·rp2(t) <

3·
∑m

i=1 w
∗(i, t)·ri. Hence, the lemma is proven. �

Based on the machine configuration M(t) built for each
time point t, we construct a set of intervals Ii,j for each i ∈
{1, . . . ,m} and j ≥ 1. Specifically, Ii,j includes all the time
points t when M(t) contains at least j type-i machines. Note
that Ii,j may consist of one or several contiguous intervals
that are pairwise disjoint. Let len(Ii,j) denote the total length
of the intervals in Ii,j . By Lemma 1, we have

m∑
i=1

∑
j≥1

(
len(Ii,j) · ri

)
≤ 4·

∫
⋃

J∈J I(J)

(m∑
i=1

w∗(i, t)·ri
)

dt

≤ 4·OPTBSHM(J).

Next, we define I ′i,j =
⋃

I∈Ii,j

[
I−, I+ +µ · len(I)

)
which

extends every contiguous interval in Ii,j by µ times of its
own length. Here, µ is the max/min job duration ratio among
all the jobs. Obviously, we have len(I ′i,j) ≤ (µ+1)·len(Ii,j).

We now show that the DEC-ONLINE algorithm produces
a schedule with the total cost bounded by

8·
m∑
i=1

∑
j≥1

(
len(I ′i,j)·ri

)
≤ 8·(µ+1)·

m∑
i=1

∑
j≥1

(
len(Ii,j)·ri

)
≤ 32·(µ+1)·OPTBSHM(J). (5)

Specifically, for each i∈{1, . . . ,m} and j≥1, we defineMi,j

as the set of type-i machines with indexes {4j−3, 4j−2, 4j−
1, 4j} in Group A and in Group B. Note thatMi,j contains at
most 8 machines. Let Ji,j denote all the jobs placed onto the
machines inMi,j . Then, the total cost of the machines inMi,j

must be bounded by 8·len
(⋃

J∈Ji,j
I(J)

)
·ri. Consequently, if

we can show that each job J ∈ Ji,j has its active interval I(J)
fully contained in I ′i,j , then we can bound len

(⋃
J∈Ji,j

I(J)
)

by len(I ′i,j). Finally, by (5), we have

m∑
i=1

∑
j≥1

(
8·len

(⋃
J∈Ji,j

I(J)
)
·ri
)
≤ 8·

m∑
i=1

∑
j≥1

(
len(I ′i,j)·ri

)
≤ 32·(µ+1)·OPTBSHM(J),

which proves that DEC-ONLINE is O(µ)-competitive. In fact,
whether I(J) is fully contained in I ′i,j can be checked by
examining s(J , I(J)−), i.e., the total size of all the active
jobs at time I(J)−.

Lemma 2: Given any job J ∈Ji,j ,

(a) for each j≥2, if s(J, I(J)−)>2·(j−1)·gi, then I(J) is
fully contained in I ′i,j ;

(b) if s(J, I(J)−) > 2 · (ri
ri−1
−1) ·gi−1, then I(J) is fully

contained in I ′i,1.

Proof: We first prove (a). Since s(J, I(J)−)> 2 ·(j−1) ·gi,
by definition, M(I(J)−) contains at least j type-i machines,
so Ii,j includes the time point I(J)−. Let I∈Ii,j denote the
contiguous interval containing the time point I(J)−. We show
that len(I)≥ δ, where δ denotes the minimum job duration,
i.e., δ=minJ∈J len(I(J)). Specifically, we select all the jobs
active at time I(J)− (i.e., J (I(J)−)) and apply the placement
algorithm used in DEC-OFFLINE to place all these jobs inside
the demand chart constructed for them.

Suppose each job J ∈ J (I(J)−) is placed at an alti-
tude bounded by (j − 1) · gi. Recall that by applying the
placement algorithm, no three jobs overlap together in their
placement. Thus, the total size of the jobs J (I(J)−), i.e.,
s(J (I(J)−), I(J)−), is bounded by 2 ·(j−1) ·gi. However,
by the hypothesis of (a), we have s(J (I(J)−), I(J)−) =
s(J, I(J)−) > 2 · (j−1) ·gi, which leads to a contradiction.
Therefore, there must exist a job J ′∈J (I(J)−) placed at an
altitude higher than (j−1) ·gi. Then at any time t ∈ I(J ′),
the height of the demand chart is greater than (j − 1) · gi,
which implies that s(J, t) ≥ s(J (I(J)−), t) > (j−1) · gi
so that M(t) contains at least j type-i machines. This sug-
gests that Ii,j must include the entire interval I(J ′). Since
len(I(J ′))≥ δ and I(J ′) includes the time point I(J)−, the
contiguous interval I∈Ii,j has a length at least δ.

Since I(J)+ =I(J)−+len(I(J))≤I(J)−+µ·δ, it follows
that I(J)⊆ [I−, I++µ · δ)⊆ [I−, I++µ · len(I)). Therefore,
by the definition of I ′i,j , I(J) is fully contained in I ′i,j .

Similarly, we can prove (b). Since s(J, I(J)−) >
2 · (ri

ri−1
− 1) · gi−1 > (ri

ri−1
− 1) · gi−1, by definition,

p2(I(J)−) ≥ i and M(I(J)−) contains at least one type-i
machine, so Ii,1 includes the time point I(J)−. Let I ∈ Ii,1
denote the contiguous interval containing I(J)−. By similar
arguments as above, we can show that len(I) ≥ δ and thus
I(J) is fully contained in I ′i,1. �

Finally, we prove that each job J ∈Ji,j has its active interval
I(J) fully contained in I ′i,j .

Lemma 3: For each job J ∈Ji,j , I(J) is fully contained in
I ′i,j .
Proof: First, consider the case that J is placed onto a type-i
machine in Group B, which suggests that J has a size s(J) ∈
(gi
2 , gi]. By the definition of DEC-ONLINE, we know that at

least 4·(j−1) type-i machines in Group B are running jobs
at time I(J)− and these jobs all have sizes larger than gi

2 .
If j = 1, Ii,1 must include the entire interval I(J), since it
follows from s(J)> gi

2 ≥gi−1 that for any t∈I(J), p1(t)≥ i.

Consequently, I(J) is fully contained in I ′i,1. If j≥2, we have
s(J, I(J)−) > 4·(j−1)· gi2 = 2·(j−1)·gi. By Lemma 2, I(J)
is fully contained in I ′i,j .

Next, consider the case that J is placed onto a type-i
machine in Group A. This suggests that J has a size no larger
than gi

2 and thus at least 4·(j−1) type-i machines in Group A
are half full at time I(J)−. If j≥2, we can easily infer that
s(J, I(J)−) ≥ 4·(j−1)· gi2 +s(J) > 2·(j−1)·gi. By Lemma
2, J has its active interval I(J) fully contained in I ′i,j .

Now we assume j=1. If s(J)>gi−1 such that J must be
placed onto a machine of type at least i, we can infer that for
any t∈ I(J), p1(t)≥ i. Thus, I(J) is fully contained in Ii,1
and hence I ′i,1.

If s(J)∈ (gi−1

2 , gi−1] such that job J can be placed onto a
type-(i − 1) machine in Group B, by the definition of DEC-
ONLINE, all the type-(i−1) machines in Group B must be
running jobs at time I(J)−. Note that these jobs all have sizes
larger than gi−1

2 . This suggests that s(J, I(J)−) > 4 · (ri
ri−1
−

1) · gi−1

2 = 2 · (ri
ri−1
−1) · gi−1. By Lemma 2, I(J) is fully

contained in I ′i,1.
Finally, if s(J) ≤ gi−1

2 such that job J can be
placed onto a type-(i − 1) machine in Group A,
then all the type-(i − 1) machines in Group A must
be at least half full at time I(J)−. Consequently,
s(J, I(J)−) ≥ 4·(ri

ri−1
−1)· gi−1

2 +s(J) > 2·(ri
ri−1
−1)·gi−1.

Again, the claim follows from Lemma 2. �

Recall that the MinUsageTime DBP problem is a special
case of BSHM-DEC and no deterministic online algorithm
can achieve a competitive ratio less than µ for MinUsageTime
DBP in the non-clairvoyant online setting [11]. Thus, Theorem
2 implies that DEC-ONLINE achieves an asymptotically tight
competitive ratio for non-clairvoyant BSHM-DEC.

IV. BSHM-INC

Now, we consider another particular case BSHM-INC in
which ri

gi
≤ ri+1

gi+1
holds for each i ∈ {1, . . . ,m−1}. In this

case, it is preferable to assign each job to the lowest-indexed
machine type fitting the job size to take advantage of its
lowest amortized cost rate, unless the job can be scheduled
onto a machine of a higher-indexed type “for free” — that
is, the job can be accommodated by the residual capacity of
the machine after hosting the jobs that must run on it. We
show that partitioning a given set of jobs J into m disjoint
subsets Ji = {J ∈J : s(J)∈ (gi−1, gi]} (i∈ {1, . . . ,m}) and
scheduling the jobs in each subset separately form a decent
strategy. At any time, the cost rate of such a partitioning
strategy loses at most a small constant factor compared to
the optimal machine configuration. For the offline setting, the
Dual Coloring algorithm [13] can then be applied on each
subset Ji to achieve a O(1)-approximation ratio. We refer
to this algorithm as INC-OFFLINE. For the non-clairvoyant
online setting, the First Fit algorithm can be applied on each
subset Ji to achieve a competitive ratio of O(µ), where µ
is the max/min job duration ratio. We refer to this algorithm

as INC-ONLINE. We start by analyzing the cost rate of the
partitioning strategy.

Lemma 4: At any time t,
∑m

i=1d
s(Ji,t)

gi
e · ri ≤ 9

4 ·∑m
i=1 w

∗(i, t)·ri.
Proof: Given an optimal machine configuration w∗(i, t) (i ∈
{1, . . . ,m}) at time t, we convert it to another configuration,
in which at least d s(Ji,t)

gi
e type-i machines are used at time t.

Then, we show that the new machine configuration incurs a
total cost rate no more than 9

4 ·
∑m

i=1 w
∗(i, t)·ri.

Suppose the machine types used by the optimal machine
configuration at time t include k1, k2, . . . , kq (1≤kq< · · ·<
k1 ≤ m). For notational convenience, we define kq+1 = 1.
Then, the total cost rate of the optimal machine configuration
can be written as

m∑
i=1

w∗(i, t)·ri =

q∑
i=1

w∗(ki, t)·rki
.

By definition, for each j ∈ {k1 +1, . . . ,m}, since no type-
j machine is used, we have J≥j(t) = ∅. Besides, for each
machine type ki, at most one type-ki machine can be used to
serve the workloads due to jobs Jki+1 , Jki+1+1, . . . , Jki−1.
In other words, the last type-ki machine must be used to
serve all the workloads

∑ki−1
j=ki+1+1 s(Jj , t) and maybe part

of the workloads s(Jki+1
, t) as well. Otherwise, the last type-

ki machine can be replaced by rki

rki−1
type-(ki−1) machines

with possibly larger capacity but no extra cost to form another
optimal machine configuration.

We convert the optimal machine configuration w∗(i, t)
(i ∈ {1, . . . ,m}) as follows. For each machine type ki, we
let the last type-ki machine serve only the workloads due to
jobs Jki . For each machine type j∈{ki+1+1, . . . , ki−1}, we
further use d s(Jj ,t)

gj
e type-j machines to serve the workloads

s(Jj , t) due to jobs Jj . In the case that the last type-ki
machine was also used to serve a workload amount of ŝki

due to jobs Jki+1 , we further use d ŝki

gki+1
e type-ki+1 machines

to serve this workload amount. After the above conversion, it
is easy to see that for each i∈{1, . . . ,m}, all the workloads
s(Ji, t) due to jobs Ji are served by type-i machines. As a
result, at least d s(Ji,t)

gi
e type-i machines are used at time t.

Next, we prove that the new machine configuration incurs a
total cost rate no more than 9

4 ·
∑q

i=1 w
∗(ki, t)·rki . To do so,

we show that the extra cost incurred due to the above conver-
sion can be bounded by 5

4 ·
∑q

i=1 w
∗(ki, t)·rki

.
We first show that the extra cost incurred by using the

machines of types k2, . . . , k1 − 2, k1 − 1 is bounded by
5
4 ·w

∗(k1, t)·r1.
In the case that w∗(k1, t)≥2, the extra cost is bounded by

(k1−1∑
j=k2+1

⌈s(Jj , t)
gj

⌉
· rj
)

+
⌈ ŝk1

gk2

⌉
· rk2

≤
(k1−1∑

j=k2

rj

)
+

(k1−1∑
j=k2+1

s(Jj , t)
gj

· rj
)

+
ŝk1

gk2

· rk2
.

On one hand, since rj ≤ rj+1

2 holds for each j, it follows that
for any h1, h2∈{1, . . . ,m} where h1≤h2,

h2∑
j=h1

rj ≤ 2·rh2
−rh1

≤ rh2+1−rh1
. (6)

This implies that

k1−1∑
j=k2

rj ≤ rk1−rk2 . (7)

On the other hand, since rj
gj
≤ rj+1

gj+1
holds for each j, we have(k1−1∑

j=k2+1

s(Jj , t)
gj

·rj
)

+
ŝk1

gk2

· rk2≤
k1−1∑

j=k2+1

s(Jj , t)
gk1

·rk1 +
ŝk1

gk1

· rk1

=

∑k1−1
j=k2+1 s(Jj , t)+ŝk1

gk1

· rk1

≤rk1 , (8)

where the last inequality follows from the fact that all the
workloads

∑k1−1
j=k2+1 s(Jj , t)+ ŝk1

can be served by one type-
k1 machine. By adding (7) and (8) together, we can bound
the extra cost by rk1 − rk2 + rk1 ≤ w∗(k1, t) ·rk1 − rk2 <
5
4 ·w

∗(k1, t)·rk1
− rk2

.
In the case that w∗(k1, t)=1 (i.e., only one type-k1 machine

is used in the optimal machine configuration), we can assume
s(Jk1

, t) > 0. Otherwise, the only type-k1 machine can be
replaced by rk1

rk1
−1 type-(k1−1) machines with possibly larger

capacity but no extra cost to form another optimal machine
configuration. Since s(Jk1 , t)> 0, there must exist an active
job J̃ at time t satisfying

s(J̃) > gk1−1. (9)

In this case, if no type-(k1− 1) machine is used after the
conversion, then the extra cost can be bounded by(k1−2∑

j=k2+1

⌈s(Jj , t)
gj

⌉
· rj
)

+
⌈ ŝk1

gk2

⌉
· rk2

≤
(k1−2∑

j=k2

rj

)
+

(k1−2∑
j=k2+1

s(Jj , t)
gj

· rj
)

+
ŝk1

gk2

· rk2

≤ (rk1−1−rk2
) +

(k1−2∑
j=k2+1

s(Jj , t)
gj

· rj
)

+
ŝk1

gk2

· rk2
,

where the last inequality is due to (6). In the optimal machine
configuration, since the workloads served by the only type-k1
machine are capped by its capacity, we have

s(J̃) +
(k1−2∑

j=k2+1

s(Jj , t) + ŝk1

)
≤ gk1

. (10)

Therefore, it follows that(k1−2∑
j=k2+1

s(Jj , t)
gj

· rj
)

+
ŝk1

gk2

· rk2

≤
∑k1−2

j=k2+1 s(Jj , t) + ŝk1

gk1

· rk1

≤ gk1
− s(J̃)

gk1

· rk1
(due to (10))

<
gk1
− gk1−1

gk1

· rk1 (due to (9))

≤ rk1
− rk1−1

gk1−1
· gk1−1 = rk1

− rk1−1.

Consequently, the extra cost can be bounded by (rk1−1−rk2
)+

(rk1 − rk1−1) = rk1 − rk2 ≤ 5
4 ·w

∗(k1, t)·rk1 − rk2 .
If exactly one type-(k1 − 1) machine is used after the

conversion, then we can further infer that there must exist
an active job J̄ at time t satisfying s(J̄) ∈ (gk1−2, gk1−1].
Note that in the optimal machine configuration, the only
type-k1 machine used can serve the workload s(J̃) due to
job J̃ , the workload s(J̄) due to job J̄ and all the work-
loads

∑k1−2
j=k2+1 s(Jj , t) + ŝk1

. We can thus conclude that
s(J̃) + s(J̄) +

∑k1−2
j=k2+1 s(Jj , t) + ŝk1

≤ gk1
. Hence,

k1−2∑
j=k2+1

s(Jj , t) + ŝk1
≤ gk1

− s(J̃)− s(J̄)

< gk1
− gk1−1 − gk1−2. (11)

As a result, the extra cost is bounded by

rk1−1+

(k1−2∑
j=k2+1

⌈s(Jj , t)
gj

⌉
· rj
)

+
⌈ ŝk1

gk2

⌉
· rk2

< rk1−1+

(k1−2∑
j=k2

rj

)
+

(k1−2∑
j=k2+1

s(Jj , t)
gj

· rj
)

+
ŝk1

gk2

· rk2

≤ rk1−1+
(
2·rk1−2−rk2

)
+

(k1−2∑
j=k2+1

s(Jj , t)
gj

· rj
)

+
ŝk1

gk2

· rk2

(due to (6))

≤ rk1−1+2·rk1−2−rk2
+

∑k1−2
j=k2+1 s(Jj , t)+ŝk1

gk1

· rk1

< rk1−1+2·rk1−2−rk2 +
gk1−gk1−1−gk1−2

gk1

· rk1

(due to (11))

< rk1−1+2·rk1−2−rk2 +rk1−
rk1−1

gk1−1
· gk1−1−

rk1−2

gk1−2
· gk1−2

= rk1 +rk1−2−rk2

≤ 5

4
·rk1
−rk2

(since each ri is a power of 2)

=
5

4
·w∗(k1, t)·rk1

−rk2
.

If at least two type-(k1− 1) machines are used after the
conversion (i.e.,

⌈ s(Jk1−1,t)

gk1−1

⌉
≥2), then we have s(Jk1−1, t)>

gk1−1. Since the workload s(J̃) due to job J̃ and the work-
loads

∑k1−1
j=k2+1 s(Jj , t)+ ŝk1

can all be served by the only
type-k1 machine used in the optimal machine configuration,
we have

2·gk1−1 < s(J̃)+s(Jk1−1, t)

≤ s(J̃)+

k1−1∑
j=k2+1

s(Jj , t)+ŝk1
≤ gk1

. (12)

Recall that rk1−1

gk1−1
≤ rk1

gk1
. Thus, we have rk1−1

rk1
≤ gk1−1

gk1
< 1

2 ,
which suggests that

rk1−1

rk1

≤ 1

4
, (13)

since each ri is a power of 2. Therefore, the extra cost can be
bounded by(k1−1∑

j=k2+1

⌈s(Jj , t)
gj

⌉
· rj
)

+
⌈ ŝk1

gk2

⌉
· rk2

<

(k1−1∑
j=k2

rj

)
+

(k1−1∑
j=k2+1

s(Jj , t)
gj

· rj
)

+
ŝk1

gk2

· rk2

≤ (2·rk1−1−rk2
)+

(k1−1∑
j=k2+1

s(Jj , t)
gj

· rj
)

+
ŝk1

gk2

· rk2

(due to (6))

≤ 2·rk1−1−rk2
+

∑k1−1
j=k2+1 s(Jj , t)+ŝk1

gk1

· rk1

≤ 2·rk1−1−rk2 +
gk1
−s(J̃)

gk1

· rk1 (due to (12))

< 2·rk1−1−rk2
+
gk1 − gk1−1

gk1

·rk1
(due to (9))

< 2·rk1−1−rk2
+rk1

− rk1−1

gk1−1
·gk1−1

= rk1
+rk1−1−rk2

≤ 5

4
·rk1
−rk2

=
5

4
·w∗(k1, t)·rk1

−rk2
. (due to (13))

In summary, in any case, the extra cost incurred by using the
machines of types k2, . . . , k1−2, k1−1 in the conversion is
bounded by 5

4 ·w
∗(k1, t) · rk1

−rk2
.

By similar arguments, for each ki (i ≥ 2), the extra cost
incurred by using the machines of types ki+1, . . . , ki− 2,
ki−1 in the conversion can be bounded by(ki−1∑

j=ki+1+1

⌈s(Jj , t)
gj

⌉
· rj
)

+
⌈ ŝki

gki+1

⌉
· rki+1

≤
(ki−1∑

j=ki+1

rj

)
+

(ki−1∑
j=ki+1+1

s(Jj , t)
gj

·rj
)

+
ŝki

gki+1

· rki+1

≤ (rki−rki+1)+

ki−1∑
j=ki+1+1

s(Jj , t)
gj

· rj+
ŝki

gki+1

· rki+1

(due to (6))

≤ (rki
−rki+1

)+

∑ki−1
j=ki+1+1 s(Jj , t)+ŝki

gki

· rki

≤ (rki
−rki+1

)+
gki

gki

· rki
= 2·rki

−ri+1,

where the last inequality is due to the fact that all the
workloads

∑ki−1
j=ki+1+1 s(Jj , t) + ŝki can be served by the last

type-ki machine in the optimal machine configuration. Con-
sequently, the total extra cost incurred due to the conversion
is bounded by

5

4
·w∗(k1, t) · rk1−rk2 +

q∑
i=2

(
2·rki−rki+1

)
<

5

4
·w∗(k1, t)·rk1

+

q∑
i=2

rki
≤ 5

4
·

q∑
i=1

w∗(ki, t)·rki
.

Hence, the lemma is proved. �

Our earlier work [13] has shown that by applying the
Dual Coloring algorithm to schedule a set of jobs J on
homogeneous machines of capacity g, the number of machines
used at any time t is bounded by 4·d s(J ,t)

g e. This suggests that
the total cost rate incurred by INC-OFFLINE at any time t is
bounded by 4 ·

∑m
i=1d

s(Ji,t)
gi
e · ri. Based on Lemma 4 and the

lower bounding scheme (1), we can bound the accumulated
cost for scheduling all the jobs by∫

⋃
J∈J I(J)

4·
(m∑

i=1

⌈s(Ji, t)
gi

⌉
·ri
)

dt

≤
∫
⋃

J∈J I(J)

9·
(m∑

i=1

w∗(i, t)·ri
)

dt ≤ 9 ·OPTBSHM(J).

Thus, INC-OFFLINE achieves an approximation ratio of 9 for
offline BSHM-INC.

Our earlier work [14] has shown that by applying the First
Fit rule (see Section III-B) to schedule a set of jobs J on
homogeneous machines of capacity g, the total machine usage
time is bounded by∫

⋃
J∈J I(J)

(
(µ+2) · s(J , t)

g
+ 1
)

dt,

where µ is the max/min job duration ratio. This suggests
that by applying INC-ONLINE, the accumulated cost for
scheduling all the jobs is bounded by

m∑
i=1

ri ·
∫
⋃

J∈Ji
I(J)

(
(µ+2) · s(Ji, t)

gi
+ 1
)

dt

≤
m∑
i=1

ri ·
∫
⋃

J∈Ji
I(J)

(
(µ+ 3) ·

⌈s(Ji, t)
gi

⌉)
dt

= (µ+ 3) ·
∫
⋃

J∈J I(J)

(m∑
i=1

⌈s(Ji, t)
gi

⌉
· ri
)

dt

≤ 9

4
· (µ+ 3) ·OPTBSHM(J).

Thus, INC-ONLINE achieves a competitive ratio of 9
4µ+ 27

4
for non-clairvoyant BSHM-INC. Similar to DEC-ONLINE,
this O(µ) competitive ratio is also asymptotically tight.

V. GENERAL CASE

Based on the scheduling strategies introduced for BSHM-
DEC and BSHM-INC, we design the following algorithms to
deal with the general case of BSHM.

First, we construct a graph to describe the relationships
among the machine types, where each node i is used to
represent the machine type i. An edge from node i to node j
indicates that among all the machine types above i, type j is
the lowest-indexed one satisfying ri

gi
≥ rj

gj
. In this way, a forest

must be constructed for all the machine types and each tree
or sub-tree must contain a set of successive machine types. In
other words, if a tree contains nodes i and j (i<j), then this
tree must contain all the nodes i+ 1, . . . , j− 1. Furthermore,
the root node of a tree (or a sub-tree) must have the highest
index among all the nodes in the tree. For example, suppose
there are 8 machine types as shown in Figure 2. Then, the
forest constructed contains 3 trees as shown.

It is easy to infer that the amortized cost rate per resource
unit of a machine type is lower than the amotized cost rates
of all the machine types in the trees or sub-trees rooted at
its sibling nodes of higher indexes. For example, in Figure 2,
type 1 has a lower amortized cost rate than types 2, 3, 4; type
5 has a lower amortized cost rate than types 6, 7, 8. Thus,
enlightened by the partitioning strategy for BSHM-INC, we
conjecture that for each j ∈ {1, . . . ,m}, scheduling jobs of
size in (gj−1, gj] onto only machines of type j or j’s parent
or ancestor types in the forest would cause us to lose at most a
factor of O(1). On the other hand, note that the machine types
along the path from any node to the root node of a tree has
decreasing amortized cost rates per resource unit. Therefore,
we can design iterative scheduling algorithms following the
styles of DEC-OFFLINE and DEC-ONLINE. To implement
this idea, for each node j, we associate it with a set of jobs
J̈j ={J ∈J :s(J)∈(gi−1, gj]}, if the tree or subtree rooted at
node j includes nodes from i to j (i = j if j is a leaf node).

In the offline setting, the jobs are placed onto machines
iteratively by traversing the forest constructed in the post-
order. For each machine type j visited, a demand chart is
constructed for all the jobs in J̈j that are not yet scheduled.
Similar to DEC-OFFLINE, the jobs are first placed in the
demand chart. Then, the demand chart is sliced into strips
of height gj

2 each. If j is not the root node of a tree in the
forest, we schedule all the jobs intersecting with the bottom
d 1√
|C(k)|

· rkrj e strips onto O(1√
|C(k)|

· rkrj) type-j machines,

where k is the parent machine type of j and |C(k)| is the
number of k’s child machine types. The jobs not assigned
to the above machines are passed onto a subsequent iteration
when the parent machine type k is visited. If j is the root node
of a tree in the forest, we do not limit the number of strips to
consider and schedule all the jobs onto type-j machines.

We conjecture that the above algorithm achieves an ap-
proximation ratio of O(

√
m). The rationale is that for each

machine type k, a child machine type j of k passes jobs
onto type k only if the total size of the active jobs in its
demand chart exceeds the bottom 1√

|C(k)|
· rkrj strips. In this

case, the cost rate of using only type-j machines exceeds
O
(

1√
|C(k)|

· rkrj
)
·rj = O

(
1√
|C(k)|

)
·rk, which is O

(
1√
|C(k)|

)
times the cost rate of using only type-k machines. On the other
hand, if all the child machine types of k pass jobs onto type

type-1

cost rate
(r

i
)

capacity
(g

i
)

 ratio

(r
i
/ g

i
)

machine
type

1

2

3

4

5

6

7

8

22

23

2

24

25

26

27

28

1.25

1.333

2

1.333

1

1.6

1.25

2

1.6

3

4

12

32

40

102.4

128

type-5

type-4

type-2 type-3

type-6

type-7 type-8

A forest is
constructed

with 8 nodes

Fig. 2. Constructing a forest for the machine types

k, then the total cost rate of the child-type machines used is
bounded by |C(k)|·O

(
1√
|C(k)|

)
·rk = O

(√
|C(k)|

)
·rk, which

is O
(√
|C(k)|

)
times the cost rate of using only type-k ma-

chines. Since |C(k)| < m, we have O
(√
|C(k)|

)
= O(

√
m).

Similarly, in the non-clairvoyant online setting, we can
design an iterative scheduling algorithm following the style
of DEC-ONLINE. We conjecture that the algorithm achieves
a competitive ratio of O(

√
m · µ).

ACKNOWLEDGMENTS

This work is supported by Singapore Ministry of Education
Academic Research Fund Tier 1 under Grants 2018-T1-002-
063 and 2019-T1-002-042.

REFERENCES

[1] Amazon EC2 pricing. http://aws.amazon.com/ec2/pricing/.
[2] Google cloud pricing. https://cloud.google.com/pricing/.
[3] Microsoft azure pricing. https://azure.microsoft.com/en-us/pricing/.
[4] M. Alicherry and R. Bhatia. Line system design and a generalized

coloring problem. In Proc. ESA, pages 19–30, 2003.
[5] Y. Azar and D. Vainstein. Tight bounds for clairvoyant dynamic bin

packing. In Proc. ACM SPAA, pages 77–86, 2017.
[6] J. Chang, S. Khuller, and K. Mukherjee. Lp rounding and combinatorial

algorithms for minimizing active and busy time. Journal of Scheduling,
20(6):657–680, 2017.

[7] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom,
T. Tamir, and S. Zaks. Minimizing total busy time in parallel scheduling
with application to optical networks. Theoretical Computer Science,
411(40-42):3553–3562, 2010.

[8] J. Gergov. Algorithms for compile-time memory optimization. In Proc.
ACM-SIAM SODA, pages 907–908, 1999.

[9] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Real-time
scheduling to minimize machine busy times. Journal of Scheduling,
18(6):561–573, 2015.

[10] V. Kumar and A. Rudra. Approximation algorithms for wavelength
assignment. In Proc. FSTTCS, pages 152–163, 2005.

[11] Y. Li, X. Tang, and W. Cai. On dynamic bin packing for resource
allocation in the cloud. In Proc. ACM SPAA, pages 2–11, 2014.

[12] G. B. Mertzios, M. Shalom, A. Voloshin, P. W. Wong, and S. Zaks.
Optimizing busy time on parallel machines. Theoretical Computer
Science, 562:524–541, 2015.

[13] R. Ren and X. Tang. Clairvoyant dynamic bin packing for job scheduling
with minimum server usage time. In Proc. ACM SPAA, pages 227–237,
2016.

[14] R. Ren, X. Tang, Y. Li, and W. Cai. Competitiveness of dynamic bin
packing for online cloud server allocation. IEEE/ACM Transactions on
Networking, 25(3):1324–1331, 2017.

[15] M. Shalom, A. Voloshin, P. W. Wong, F. C. Yung, and S. Zaks. Online
optimization of busy time on parallel machines. Theoretical Computer
Science, 560:190–206, 2014.

[16] P. Winkler and L. Zhang. Wavelength assignment and generalized
interval graph coloring. In Proc. ACM-SIAM SODA, pages 830–831,
2003.

